1
|
Drexler K, Bollmann L, Karrer S, Berneburg M, Haferkamp S, Niebel D. Retrospective Single-Center Case Study of Clinical Variables and the Degree of Actinic Elastosis Associated with Rare Skin Cancers. BIOLOGY 2024; 13:529. [PMID: 39056721 PMCID: PMC11274094 DOI: 10.3390/biology13070529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
(1) Background: Rare skin cancers include epithelial, neuroendocrine, and hematopoietic neoplasias as well as cutaneous sarcomas. Ultraviolet (UV) radiation and sunburns are important drivers for the incidence of certain cutaneous sarcomas; however, the pathogenetic role of UV light is less clear in rare skin cancers compared to keratinocyte cancer and melanoma. In this study, we compared the degree of actinic elastosis (AE) as a surrogate for lifetime UV exposure among selected rare skin cancers (atypical fibroxanthoma [AFX], pleomorphic dermal sarcoma [PDS], dermatofibrosarcoma protuberans [DFSP], Kaposi sarcoma [KS], Merkel cell carcinoma [MCC], and leiomyosarcoma [LMS]) while taking into account relevant clinical variables (age, sex, and body site). (2) Methods: We newly established a semi-quantitative score for the degree of AE ranging from 0 = none to 3 = total loss of elastic fibers (basophilic degeneration) and multiplied it by the perilesional vertical extent (depth), measured histometrically (tumor-associated elastosis grade (TEG)). We matched the TEG of n = 210 rare skin cancers from 210 patients with their clinical variables. (3) Results: TEG values were correlated with age and whether tumors arose on UV-exposed body sites. TEG values were significantly higher in AFX and PDS cases compared to all other analyzed rare skin cancer types. As expected, TEG values were low in DFSP and KS, while MCC cases exhibited intermediate TEG values. (4) Conclusions: High cumulative UV exposure is more strongly associated with AFX/PDS and MCC than with other rare skin cancers. These important results expand the available data associated with rare skin cancers while also offering insight into the value of differentiating among these tumor types based on their relationship with sun exposure, potentially informing preventative, diagnostic and/or therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Dennis Niebel
- Department of Dermatology, University Medical Center Regensburg, 93053 Regensburg, Germany; (K.D.)
| |
Collapse
|
2
|
Kurz B, Klein B, Berneburg M, Meller S. [Ultraviolet radiation in the pathogenesis of lupus erythematosus]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:528-538. [PMID: 38916603 DOI: 10.1007/s00105-024-05369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/26/2024]
Abstract
Photosensitivity represents an increased inflammatory reaction to sunlight, which can be observed particularly in the autoimmune disease lupus erythematosus. Cutaneous lupus erythematosus (CLE) can be provoked by ultraviolet (UV) radiation and can cause both acute, nonscarring and chronic, scarring skin changes. In systemic lupus erythematosus, on the other hand, provocation by UV radiation can lead to flare or progression of systemic involvement. The etiology of lupus erythematosus is multifactorial and includes genetic, epigenetic and immunologic mechanisms. In this review, we address the effect of UV radiation on healthy skin and photosensitive skin using the example of lupus erythematosus. We describe possible mechanisms of UV-triggered immune responses that could offer therapeutic approaches. Currently, photosensitivity can only be prevented by avoiding UV exposure itself. Therefore, it is important to better understand the underlying mechanisms in order to develop strategies to counteract the deleterious effects of photosensitivity.
Collapse
Affiliation(s)
- Bernadett Kurz
- Klinik und Poliklinik für Dermatologie, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Deutschland.
| | - Benjamin Klein
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - Mark Berneburg
- Klinik und Poliklinik für Dermatologie, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Deutschland
| | - Stephan Meller
- Klinik und Poliklinik für Dermatologie, Universität Düsseldorf, Düsseldorf, Deutschland
| |
Collapse
|
3
|
Gilaberte Y, Piquero-Casals J, Schalka S, Leone G, Brown A, Trullàs C, Jourdan E, Lim HW, Krutmann J, Passeron T. Exploring the impact of solar radiation on skin microbiome to develop improved photoprotection strategies. Photochem Photobiol 2024. [PMID: 38767119 DOI: 10.1111/php.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
The skin microbiome undergoes constant exposure to solar radiation (SR), with its effects on health well-documented. However, understanding SR's influence on host-associated skin commensals remains nascent. This review surveys existing knowledge on SR's impact on the skin microbiome and proposes innovative sun protection methods that safeguard both skin integrity and microbiome balance. A team of skin photodamage specialists conducted a comprehensive review of 122 articles sourced from PubMed and Research Gateway. Key terms included skin microbiome, photoprotection, photodamage, skin cancer, ultraviolet radiation, solar radiation, skin commensals, skin protection, and pre/probiotics. Experts offered insights into novel sun protection products designed not only to shield the skin but also to mitigate SR's effects on the skin microbiome. Existing literature on SR's influence on the skin microbiome is limited. SR exposure can alter microbiome composition, potentially leading to dysbiosis, compromised skin barrier function, and immune system activation. Current sun protection methods generally overlook microbiome considerations. Tailored sun protection products that prioritize both skin and microbiome health may offer enhanced defense against SR-induced skin conditions. By safeguarding both skin and microbiota, these specialized products could mitigate dysbiosis risks associated with SR exposure, bolstering skin defense mechanisms and reducing the likelihood of SR-mediated skin issues.
Collapse
Affiliation(s)
- Yolanda Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, IIS Aragón, Zaragoza, Spain
| | - Jaime Piquero-Casals
- Department of Dermatology, Dermik Multidisciplinary Dermatology Clinic, Barcelona, Spain
| | - Sergio Schalka
- Medcin Skin Research Center and Biochemistry Department, Chemistry Institute of São Paulo University, São Paulo, Brazil
| | - Giovanni Leone
- Photodermatology and Vitiligo Treatment Unit, Israelite Hospital, Rome, Italy
| | | | | | - Eric Jourdan
- Innovation and Development, ISDIN, Barcelona, Spain
| | - Henry W Lim
- The Henry W. Lim Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
| | - Jean Krutmann
- IUF - Leibniz-Institut für umweltmedizinische Forschung, Düsseldorf, Germany
| | - Thierry Passeron
- Department of Dermatology, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
- Centre Méditerranéen de Médecine Moléculaire, INSERM U1065, Université Côte d'Azur, Nice, France
| |
Collapse
|
4
|
Drexler K, Zenderowski V, Schreieder L, Koschitzki K, Karrer S, Berneburg M, Haferkamp S, Niebel D. Subtypes of Melanomas Associated with Different Degrees of Actinic Elastosis in Conventional Histology, Irrespective of Age and Body Site, Suggesting Chronic Ultraviolet Light Exposure as Driver for Lentigo Maligna Melanoma and Nodular Melanoma. Cancers (Basel) 2023; 16:1. [PMID: 38201430 PMCID: PMC10778567 DOI: 10.3390/cancers16010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: Ultraviolet (UV) radiation and sunburns are associated with an increased incidence of acquired nevi and melanomas. However, the data are controversial as to whether chronic UV exposure or high intermittent UV exposure is the major carcinogenic factor in melanocytic tumors. In this study, we compared the degree of actinic elastosis (AE) as a surrogate for lifetime UV exposure in nevi and different clinical melanoma subtypes (i.e., superficial spreading melanoma (SSM), nodular malignant melanoma (NMM), acral lentiginous melanoma (ALM), and lentigo maligna melanoma (LMM)) with respect to clinical variables (age, sex, and body site). (2) Methods: We defined a semi-quantitative score for the degree of AE ranging from 0 = none to 3 = total loss of elastic fibers (basophilic degeneration) and multiplied it by the perilesional vertical extent (depth), measured histometrically (tumor-associated elastosis grade (TEG)). We matched the TEG of n = 595 melanocytic lesions from 559 patients with their clinical variables. (3) Results: The TEG was correlated with age and UV-exposed body sites. Furthermore, the TEG was significantly higher in LMM than in all other types of melanomas and the TEG in NMM was higher than in SSM, irrespective of patient age and tumor site. (4) Conclusions: High cumulative UV exposure is more strongly associated with LMM and NMM than with other melanoma subtypes.
Collapse
Affiliation(s)
- Konstantin Drexler
- Department of Dermatology, University Medical Center Regensburg, 93053 Regensburg, Germany (L.S.); (K.K.); (S.K.); (M.B.); (S.H.); (D.N.)
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Degree of Actinic Elastosis Is a Surrogate of Exposure to Chronic Ultraviolet Radiation and Correlates More Strongly with Cutaneous Squamous Cell Carcinoma than Basal Cell Carcinoma. Life (Basel) 2023; 13:life13030811. [PMID: 36983966 PMCID: PMC10055681 DOI: 10.3390/life13030811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
(1) Background: Keratinocyte cancer (KC) is associated with exposure to ultraviolet (UV) radiation. However, data are controversial as to whether chronic UV exposure or high intermittent UV exposure are key drivers of carcinogenesis in cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma (BCC). Prolonged sun exposure of the skin causes photo-aging, which is associated with actinic elastosis, a condition characterized by the degeneration of elastin in the upper dermis, which is assessable via conventional histology. In this study, we aimed to compare the degree of actinic elastosis in different types of KC with regard to various patient characteristics. (2) Methods: We defined a semiquantitative score for the degree of actinic elastosis ranging from 0 = none to 3 = total loss of elastic fibers (basophilic degeneration). The extent was measured histometrically by two independent dermatohistopathologists in the immediate vicinity of 353 KC. The scores were merged and matched with tumor types (cSCC and BCC with subtypes), and clinical variables such as body site, sex and age. (3) Results: As expected, the degree of actinic elastosis correlated with age. However, it was significantly higher in cSCC compared to BCC irrespective of age, sex, body site and tumor subtypes. (4): Conclusions: Lifetime sun exposure may be estimated via routine histology using this scoring technique for actinic elastosis as a surrogate marker. cSCCs are more strongly associated with chronic UV exposure than BCCs, even in sun-exposed localizations such as the face.
Collapse
|