1
|
Tropitzsch A, Schade-Mann T, Gamerdinger P, Dofek S, Schulte B, Schulze M, Fehr S, Biskup S, Haack TB, Stöbe P, Heyd A, Harre J, Lesinski-Schiedat A, Büchner A, Lenarz T, Warnecke A, Müller M, Vona B, Dahlhoff E, Löwenheim H, Holderried M. Variability in Cochlear Implantation Outcomes in a Large German Cohort With a Genetic Etiology of Hearing Loss. Ear Hear 2023; 44:1464-1484. [PMID: 37438890 PMCID: PMC10583923 DOI: 10.1097/aud.0000000000001386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/04/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVES The variability in outcomes of cochlear implantation is largely unexplained, and clinical factors are not sufficient for predicting performance. Genetic factors have been suggested to impact outcomes, but the clinical and genetic heterogeneity of hereditary hearing loss makes it difficult to determine and interpret postoperative performance. It is hypothesized that genetic mutations that affect the neuronal components of the cochlea and auditory pathway, targeted by the cochlear implant (CI), may lead to poor performance. A large cohort of CI recipients was studied to verify this hypothesis. DESIGN This study included a large German cohort of CI recipients (n = 123 implanted ears; n = 76 probands) with a definitive genetic etiology of hearing loss according to the American College of Medical Genetics (ACMG)/Association for Molecular Pathology (AMP) guidelines and documented postoperative audiological outcomes. All patients underwent preoperative clinical and audiological examinations. Postoperative CI outcome measures were based on at least 1 year of postoperative audiological follow-up for patients with postlingual hearing loss onset (>6 years) and 5 years for children with congenital or pre/perilingual hearing loss onset (≤6 years). Genetic analysis was performed based on three different methods that included single-gene screening, custom-designed hearing loss gene panel sequencing, targeting known syndromic and nonsyndromic hearing loss genes, and whole-genome sequencing. RESULTS The genetic diagnosis of the 76 probands in the genetic cohort involved 35 genes and 61 different clinically relevant (pathogenic, likely pathogenic) variants. With regard to implanted ears (n = 123), the six most frequently affected genes affecting nearly one-half of implanted ears were GJB2 (21%; n = 26), TMPRSS3 (7%; n = 9), MYO15A (7%; n = 8), SLC26A4 (5%; n = 6), and LOXHD1 and USH2A (each 4%; n = 5). CI recipients with pathogenic variants that influence the sensory nonneural structures performed at or above the median level of speech performance of all ears at 70% [monosyllable word recognition score in quiet at 65 decibels sound pressure level (SPL)]. When gene expression categories were compared to demographic and clinical categories (total number of compared categories: n = 30), mutations in genes expressed in the spiral ganglion emerged as a significant factor more negatively affecting cochlear implantation outcomes than all clinical parameters. An ANOVA of a reduced set of genetic and clinical categories (n = 10) identified five detrimental factors leading to poorer performance with highly significant effects ( p < 0.001), accounting for a total of 11.8% of the observed variance. The single strongest category was neural gene expression accounting for 3.1% of the variance. CONCLUSIONS The analysis of the relationship between the molecular genetic diagnoses of a hereditary etiology of hearing loss and cochlear implantation outcomes in a large German cohort of CI recipients revealed significant variabilities. Poor performance was observed with genetic mutations that affected the neural components of the cochlea, supporting the "spiral ganglion hypothesis."
Collapse
Affiliation(s)
- Anke Tropitzsch
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Hearing Center, Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Center for Rare Hearing Disorders, Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
- Neurosensory Center, Departments of Otolaryngology—Head & Neck Surgery and Ophthalmology, University of Tübingen Medical Center, Tübingen, Germany
| | - Thore Schade-Mann
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Hearing Center, Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
| | - Philipp Gamerdinger
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Hearing Center, Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
| | - Saskia Dofek
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
| | - Björn Schulte
- CeGaT GmbH und Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Martin Schulze
- CeGaT GmbH und Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Sarah Fehr
- CeGaT GmbH und Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Saskia Biskup
- CeGaT GmbH und Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Petra Stöbe
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Andreas Heyd
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
| | - Jennifer Harre
- Department of Otorhinolaryngology—Head & Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation, Hannover, Germany
| | - Anke Lesinski-Schiedat
- Department of Otorhinolaryngology—Head & Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation, Hannover, Germany
| | - Andreas Büchner
- Department of Otorhinolaryngology—Head & Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation, Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology—Head & Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology—Head & Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation, Hannover, Germany
| | - Marcus Müller
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Neurosensory Center, Departments of Otolaryngology—Head & Neck Surgery and Ophthalmology, University of Tübingen Medical Center, Tübingen, Germany
| | - Barbara Vona
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Neurosensory Center, Departments of Otolaryngology—Head & Neck Surgery and Ophthalmology, University of Tübingen Medical Center, Tübingen, Germany
| | - Ernst Dahlhoff
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Neurosensory Center, Departments of Otolaryngology—Head & Neck Surgery and Ophthalmology, University of Tübingen Medical Center, Tübingen, Germany
| | - Hubert Löwenheim
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Neurosensory Center, Departments of Otolaryngology—Head & Neck Surgery and Ophthalmology, University of Tübingen Medical Center, Tübingen, Germany
| | - Martin Holderried
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Department of Medical Development and Quality Management, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
[The Heidelberg CI database module : Quality control in hearing restoration with cochlear implants]. HNO 2016; 64:891-896. [PMID: 27837216 DOI: 10.1007/s00106-016-0282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cochlear implants (CI) have been established as the therapy of choice for functional deafness. The number of CI-rehabilitated patients is continuously growing. The resulting data can provide important information for physicians, health insurance companies, and scientists. Assessment and structuring of data becomes more feasible with the application of modern database systems. MATERIALS AND METHODS In collaboration with Innoforce Est., Liechtenstein, the authors developed a database module for the specific needs of CI patients. Data of 100 patients were included and evaluated. The main features of the module and an example data analysis are presented. RESULTS Analysis of data from these 100 patients reveals 50 men and 50 women aged between 1 and 87 years, with a maximum value in the 51-60-years age group. More than 50% of the patients were also severely hearing impaired in the contralateral ear and fitted the CI indication criteria. Functional deafness in the ear subsequently fitted with CI in most of the patients had arisen more than 20 years previously. Preoperative diagnostic electrical stimulation of the cochlear nerve was positive in 67 patients. All 100 patients perceived auditory sensations with the CI. CONCLUSION The presented patient cohort is representative of patients at the Department of Otorhinolaryngology, University of Heidelberg Medical Center, Germany, and the demographic distribution is in accordance with the literature. The state of the contralateral ear, often also fitting the CI indication, is not surprising, as cochlear implantation is a comparatively new procedure. Preoperative electrical stimulation turned out not to be significant by itself. The hearing results and overview of complications were easy to calculate in comparison to a pure data storage system such as i.s.h.med.
Collapse
|