1
|
de Castro LR, de Oliveira LD, Milan TM, Eskenazi APE, Bighetti-Trevisan RL, de Almeida OGG, Amorim MLM, Squarize CH, Castilho RM, de Almeida LO. Up-regulation of TNF-alpha/NFkB/SIRT1 axis drives aggressiveness and cancer stem cells accumulation in chemoresistant oral squamous cell carcinoma. J Cell Physiol 2024; 239:e31164. [PMID: 38149816 DOI: 10.1002/jcp.31164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/03/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Tumor resistance remains an obstacle to successfully treating oral squamous cell carcinoma (OSCC). Cisplatin is widely used as a cytotoxic drug to treat solid tumors, including advanced OSCC, but with low efficacy due to chemoresistance. Therefore, identifying the pathways that contribute to chemoresistance may show new possibilities for improving the treatment. This work explored the role of the tumor necrosis factor-alpha (TNF-alpha)/NFkB signaling in driving the cisplatin resistance of OSCC and its potential as a pharmacological target to overcome chemoresistance. Differential accessibility analysis demonstrated the enrichment of opened chromatin regions in members of the TNF-alpha/NFkB signaling pathway, and RNA-Seq confirmed the upregulation of TNF-alpha/NFkB signaling in cisplatin-resistant cell lines. NFkB was accumulated in cisplatin-resistant cell lines and in cancer stem cells (CSC), and the administration of TNF-alpha increased the CSC, suggesting that TNF-alpha/NFkB signaling is involved in the accumulation of CSC. TNF-alpha stimulation also increased the histone deacetylases HDAC1 and SIRT1. Cisplatin-resistant cell lines were sensitive to the pharmacological inhibition of NFkB, and low doses of the NFkB inhibitors, CBL0137, and emetine, efficiently reduced the CSC and the levels of SIRT1, increasing histone acetylation. The NFkB inhibitors decreased stemness potential, clonogenicity, migration, and invasion of cisplatin-resistant cell lines. The administration of the emetine significantly reduced the tumor growth of cisplatin-resistant xenograft models, decreasing NFkB and SIRT1, increasing histone acetylation, and decreasing CSC. TNF-alpha/NFkB/SIRT1 signaling regulates the epigenetic machinery by modulating histone acetylation, CSC, and aggressiveness of cisplatin-resistant OSCC and the NFkB inhibition is a potential strategy to treat chemoresistant OSCC.
Collapse
Affiliation(s)
- Letícia Rodrigues de Castro
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Dias de Oliveira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thaís Moré Milan
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Toxicology and Food Science, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Patrícia Espaladori Eskenazi
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rayana Longo Bighetti-Trevisan
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Otávio Guilherme Gonçalves de Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Toxicology and Food Science, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcio Luis Munhoz Amorim
- Department of Electrical Engineering, School of Engineering of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Luciana Oliveira de Almeida
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Liu S, Wang R, Fang J. Exploring the frontiers: tumor immune microenvironment and immunotherapy in head and neck squamous cell carcinoma. Discov Oncol 2024; 15:22. [PMID: 38294629 PMCID: PMC10830966 DOI: 10.1007/s12672-024-00870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
The global prevalence of head and neck malignancies positions them as the sixth most common form of cancer, with the head and neck squamous cell carcinoma (HNSCC) representing the predominant histological subtype. Despite advancements in multidisciplinary approaches and molecular targeted therapies, the therapeutic outcomes for HNSCC have only marginally improved, particularly in cases of recurrent or metastatic HNSCC (R/MHNSCC). This situation underscores the critical necessity for the development of innovative therapeutic strategies. Such strategies are essential not only to enhance the efficacy of HNSCC treatment but also to minimize the incidence of associated complications, thus improving overall patient prognosis. Cancer immunotherapy represents a cutting-edge cancer treatment that leverages the immune system for targeting and destroying cancer cells. It's applied to multiple cancers, including melanoma and lung cancer, offering precision, adaptability, and the potential for long-lasting remission through immune memory. It is observed that while HNSCC patients responsive to immunotherapy often experience prolonged therapeutic benefits, only a limited subset demonstrates such responsiveness. Additionally, significant clinical challenges remain, including the development of resistance to immunotherapy. The biological characteristics, dynamic inhibitory changes, and heterogeneity of the tumor microenvironment (TME) in HNSCC play critical roles in its pathogenesis, immune evasion, and therapeutic resistance. This review aims to elucidate the functions and mechanisms of anti-tumor immune cells and extracellular components within the HNSCC TME. It also introduces several immunosuppressive agents commonly utilized in HNSCC immunotherapy, examines factors influencing the effectiveness of these treatments, and provides a comprehensive summary of immunotherapeutic strategies relevant to HNSCC.
Collapse
Affiliation(s)
- Shaokun Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Xiao M, Zhang X, Zhang D, Deng S, Zheng A, Du F, Shen J, Yue L, Yi T, Xiao Z, Zhao Y. Complex interaction and heterogeneity among cancer stem cells in head and neck squamous cell carcinoma revealed by single-cell sequencing. Front Immunol 2022; 13:1050951. [PMID: 36451812 PMCID: PMC9701714 DOI: 10.3389/fimmu.2022.1050951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) have been characterized to be responsible for multidrug resistance, metastasis, recurrence, and immunosuppressive in head and neck squamous cell carcinoma (HNSCC). However, the diversity of CSCs remains to be investigated. In this study, we aimed to determine the heterogeneity of CSCs and its effect on the formation of tumor microenvironment (TME). METHODS We depicted the landscape of HNSCC transcriptome profile by single-cell RNA-sequencing analysis of 20 HNSCC tissues from public databases, to reveal the Cell components, trajectory changes, signaling network, malignancy status and functional enrichment of CSCs within tumors. RESULTS Immune checkpoint molecules CD276, LILRB2, CD47 were significantly upregulated in CSCs, enabling host antitumor response to be weakened or damaged. Notably, naive CSCs were divided to 2 different types of cells with different functions, exhibiting functional diversity. In addition, CSCs underwent self-renewal and tumor metastasis activity through WNT and ncWNT signaling. Among them, Regulon regulators (IRF1_394g, IRF7_160g, NFKB1_12g, NFKB2_33g and STAT1_356g) were activated in subgroups 2 and 3, suggesting their pivotal roles in the inflammatory response process in tumors. Among all CSCs, naive CSCs appear to be the most malignant resulting in a worse prognosis. CONCLUSIONS Our study reveals the major signal transduction and biological function of CSCs during HNSCC progression, highlighting the heterogeneity of CSCs and their underlying mechanisms in the formation of an immunosuppressive TME. Therefore, our study about heterogeneity of CSCs in HNSCC can bring new insights for the treatment of HNSCC.
Collapse
Affiliation(s)
- Mintao Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Xinyi Zhang
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Lin Yue
- School of Nursing, Hunan University of Medicine, Huaihua, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Ruiz-Pulido G, Medina DI, Barani M, Rahdar A, Sargazi G, Baino F, Pandey S. Nanomaterials for the Diagnosis and Treatment of Head and Neck Cancers: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3706. [PMID: 34279276 PMCID: PMC8269895 DOI: 10.3390/ma14133706] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Head and neck cancer (HNC) is a category of cancers that typically arise from the nose-, mouth-, and throat-lining squamous cells. The later stage of HNC diagnosis significantly affects the patient's survival rate. This makes it mandatory to diagnose this cancer with a suitable biomarker and imaging techniques at the earlier stages of growth. There are limitations to traditional technologies for early detection of HNC. Furthermore, the use of nanocarriers for delivering chemo-, radio-, and phototherapeutic drugs represents a promising approach for improving the outcome of HNC treatments. Several studies with nanostructures focus on the development of a targeted and sustained release of anticancer molecules with reduced side effects. Besides, nanovehicles could allow co-delivering of anticancer drugs for synergistic activity to counteract chemo- or radioresistance. Additionally, a new generation of smart nanomaterials with stimuli-responsive properties have been developed to distinguish between unique tumor conditions and healthy tissue. In this light, the present article reviews the mechanisms used by different nanostructures (metallic and metal oxide nanoparticles, polymeric nanoparticles, quantum dots, liposomes, nanomicelles, etc.) to improve cancer diagnosis and treatment, provides an up-to-date picture of the state of the art in this field, and highlights the major challenges for future improvements.
Collapse
Affiliation(s)
- Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Mexico
| | - Dora I Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Mexico
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-14115, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Science, Bam 76617-71967, Iran
| | - Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| |
Collapse
|
5
|
Dong H, Shu X, Xu Q, Zhu C, Kaufmann AM, Zheng ZM, Albers AE, Qian X. Current Status of Human Papillomavirus-Related Head and Neck Cancer: From Viral Genome to Patient Care. Virol Sin 2021; 36:1284-1302. [PMID: 34152564 PMCID: PMC8692589 DOI: 10.1007/s12250-021-00413-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Human papillomavirus (HPV) infection identified as a definitive human carcinogen is increasingly being recognized for its role in carcinogenesis of human cancers. Up to 38%–80% of head and neck squamous cell carcinoma (HNSCC) in oropharyngeal location (OPSCC) and nearly all cervical cancers contain the HPV genome which is implicated in causing cancer through its oncoproteins E6 and E7. Given by the biologically distinct HPV-related OPSCC and a more favorable prognosis compared to HPV-negative tumors, clinical trials on de-escalation treatment strategies for these patients have been studied. It is therefore raised the questions for the patient stratification if treatment de-escalation is feasible. Moreover, understanding the crosstalk of HPV-mediated malignancy and immunity with clinical insights from the proportional response rate to immune checkpoint blockade treatments in patients with HNSCC is of importance to substantially improve the treatment efficacy. This review discusses the biology of HPV-related HNSCC as well as successful clinically findings with promising candidates in the pipeline for future directions. With the advent of various sequencing technologies, further biomolecules associated with HPV-related HNSCC progression are currently being identified to be used as potential biomarkers or targets for clinical decisions throughout the continuum of cancer care.
Collapse
Affiliation(s)
- Haoru Dong
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinhua Shu
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Qiang Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Chen Zhu
- Department of Cancer Prevention, Cancer Hospital University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Andreas M Kaufmann
- Clinic for Gynecology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, 12203, Germany
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Andreas E Albers
- Department of Otolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, 13353, Germany
| | - Xu Qian
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
6
|
Xu Q, Fang M, Zhu J, Dong H, Cao J, Yan L, Leonard F, Oppel F, Sudhoff H, Kaufmann AM, Albers AE, Qian X. Insights into Nanomedicine for Immunotherapeutics in Squamous Cell Carcinoma of the head and neck. Int J Biol Sci 2020; 16:2506-2517. [PMID: 32792853 PMCID: PMC7415431 DOI: 10.7150/ijbs.47068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotherapies such as immune checkpoint blockade benefit only a portion of patients with head and neck squamous cell carcinoma. The multidisciplinary field of nanomedicine is emerging as a promising strategy to achieve maximal anti-tumor effect in cancer immunotherapy and to turn non-responders into responders. Various methods have been developed to deliver therapeutic agents that can overcome bio-barriers, improve therapeutic delivery into the tumor and lymphoid tissues and reduce adverse effects in normal tissues. Additional modification strategies also have been employed to improve targeting and boost cytotoxic T cell-based immune responses. Here, we review the state-of-the-art use of nanotechnologies in the laboratory, in advanced preclinical phases as well as those running through clinical trials assessing their advantages and challenges.
Collapse
Affiliation(s)
- Qiang Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| | - Meiyu Fang
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| | - Jing Zhu
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| | - Haoru Dong
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jun Cao
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| | - Lin Yan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Fransisca Leonard
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, USA
| | - Felix Oppel
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Bielefeld, Germany
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Bielefeld, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas E Albers
- Department of Otolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Xu Qian
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| |
Collapse
|