1
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 280] [Impact Index Per Article: 280.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
2
|
Jangholi A, Müller Bark J, Kenny L, Vasani S, Rao S, Dolcetti R, Punyadeera C. Exosomes at the crossroad between therapeutic targets and therapy resistance in head and neck squamous cell carcinoma. Biochim Biophys Acta Rev Cancer 2022; 1877:188784. [PMID: 36028150 DOI: 10.1016/j.bbcan.2022.188784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are aggressive and clinically challenging tumours that require a multidisciplinary management approach. Despite significant therapy improvements, HNSCC patients have a poor prognosis with a 5-year survival rate of about 65%. As recently recognised key players in cancer, exosomes are extracellular vesicles (EVs) with a diameter of nearly 50-120 nm which transport information from one cell to another. Exosomes are actively involved in various aspects of tumour initiation, development, metastasis, immune regulation, therapy resistance, and therapeutic applications. However, current knowledge of the role of exosomes in the pathophysiological processes of HNSCC is still in its infancy, and additional studies are needed. In this review, we summarise and discuss the relevance of exosomes in mediating local immunosuppression and therapy resistance of HNSCC. We also review the most recent studies that have explored the therapeutic potential of exosomes as cancer vaccines, drug carriers or tools to reverse the drug resistance of HNSCC.
Collapse
Affiliation(s)
- Abolfazl Jangholi
- Centre for Biomedical Technologies, The School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia; The School of Environment and Science, Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, Australia
| | - Juliana Müller Bark
- The School of Environment and Science, Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, Australia
| | - Lizbeth Kenny
- Royal Brisbane and Women's Hospital, Cancer Care Services, Herston, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Sarju Vasani
- Royal Brisbane and Women's Hospital, Cancer Care Services, Herston, Australia; Department of Otolaryngology, Royal Brisbane and Women's Hospital, Herston, Australia
| | - Sudha Rao
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia; Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia; The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Chamindie Punyadeera
- The School of Environment and Science, Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, Australia; Menzies Health Institute Queensland (MIHQ), Griffith University, Gold Coast, Australia.
| |
Collapse
|
3
|
Wang X, Guo J, Yu P, Guo L, Mao X, Wang J, Miao S, Sun J. The roles of extracellular vesicles in the development, microenvironment, anticancer drug resistance, and therapy of head and neck squamous cell carcinoma. J Exp Clin Cancer Res 2021; 40:35. [PMID: 33478586 PMCID: PMC7819156 DOI: 10.1186/s13046-021-01840-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the main malignant tumours affecting human health, mainly due to delayed diagnosis and high invasiveness. Extracellular vehicles (EVs) are membranous vesicles released by cells into the extracellular matrix that carry important signalling molecules and stably and widely exist in various body fluids, such as plasma, saliva, cerebrospinal fluid, breast milk, urine, semen, lymphatic fluid, synovial fluid, amniotic fluid, and sputum. EVs transport almost all types of bioactive molecules (DNA, mRNAs, microRNAs (miRNAs), proteins, metabolites, and even pharmacological compounds). These "cargoes" can act on recipient cells, reshaping the surrounding microenvironment and altering distant targets, ultimately affecting their biological behaviour. The extensive exploration of EVs has deepened our comprehensive understanding of HNSCC biology. In this review, we not only summarized the effect of HNSCC-derived EVs on the tumour microenvironment but also described the role of microenvironment-derived EVs in HNSCC and discussed how the "mutual dialogue" between the tumour and microenvironment mediates the growth, metastasis, angiogenesis, immune escape, and drug resistance of tumours. Finally, the clinical application of EVS in HNSCC was assessed.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Junnan Guo
- The First Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Pingyang Yu
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Lunhua Guo
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Xionghui Mao
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Junrong Wang
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China
| | - Susheng Miao
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China.
| | - Ji Sun
- Department of Head and Neck Tumors, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, 150000, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|