1
|
Weber L, Kwok P, Picou EM, Wendl C, Bohr C, Marcrum SC. [Measuring the cochlea using a tablet-based software package: influence of imaging modality and rater background]. HNO 2022; 70:769-777. [PMID: 35970933 PMCID: PMC9512738 DOI: 10.1007/s00106-022-01208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Cochlear duct length (CDL) is subject to significant individual variation. In the context of cochlear implantation, adapting the electrode array length to the CDL is of potential interest, as it has been associated with improvements in both speech recognition and sound quality. Using a tablet-based software package, it is possible to measure CDL at the level of the organ of Corti (CDLOC) to select appropriate electrode array lengths based on individual cochlear anatomy. OBJECTIVE To identify effects of imaging modality and rater background on CDL estimates. METHODS Magnetic resonance imaging (MRI) and flat-panel volume CT (fpVCT) scans of 10 patients (20 cochleae) were analyzed using the OTOPLAN software package (MED-EL, Innsbruck, Austria). Raters were an otorhinolaryngology (ORL) specialist, an ORL resident, and an audiologist. To analyze effects of rater background and imaging modality on CDL measurements, linear mixed models were constructed. RESULTS Measurements showed mean CDLOC(fpVCT) = 36.69 ± 1.78 mm and CDLOC(MRI) = 36.81 ± 1.87 mm. Analyses indicated no significant effect of rater background (F(2, 105) = 0.84; p = 0.437) on CDL estimates. Imaging modality, on the other hand, significantly affected CDL (F (1, 105) = 20.70; p < 0.001), whereby estimates obtained using MRI were 0.89 mm larger than those obtained using fpVCT. CONCLUSION No effect of rater background on CDL estimates could be identified, suggesting that comparable measurements could be obtained by personnel other than specially trained neurootologists. While imaging modality (fpVCT vs. MRI) did impact CDL results, the difference was small and of questionable clinical significance.
Collapse
Affiliation(s)
- Lena Weber
- Klinik und Poliklinik für Hals-Nasen-Ohren-Heilkunde, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Deutschland.
| | - Pingling Kwok
- Klinik und Poliklinik für Hals-Nasen-Ohren-Heilkunde, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Deutschland
| | - Erin M Picou
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 2201 West End Avenue, Nashville, TN 37235, USA
| | - Christina Wendl
- Institut für Röntgendiagnostik, Universitätsklinikum Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Deutschland
| | - Christopher Bohr
- Klinik und Poliklinik für Hals-Nasen-Ohren-Heilkunde, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Deutschland
| | - Steven C Marcrum
- Klinik und Poliklinik für Hals-Nasen-Ohren-Heilkunde, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Deutschland
| |
Collapse
|
2
|
Di Nardo W, Di Cesare T, Tizio A, Paludetti G, Fetoni AR. The Effectiveness of Targeted Electrical Stimulation via Cochlear Implant on Tinnitus-Perceived Loudness. Front Neurosci 2022; 16:885263. [PMID: 35812237 PMCID: PMC9263381 DOI: 10.3389/fnins.2022.885263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction The cause of tinnitus improvement in cochlear implant (CI) users is not understood. On the basis that a spatially limited dysfunction in the auditory pathway could cause tinnitus, we used single-channel stimulation to evaluate any variation of tinnitus-perceived loudness and identify the cochlear regions involved. Materials and Methods It was an observational prospective case-crossover study. After the first mapping, 21 adults with unilateral CI and chronic tinnitus expressed their tinnitus loudness based on the Visual Analog Scale (VAS) score (0–10) at baseline (L0), during a 10 s single-channel stimulation with C-level of electric current (L1) and 30 min after CI activation (L2). Tinnitus reduction [RT = (L0 – L1) × 100/L0] > 50% was considered significant. VAS outcomes were compared between baseline (L0) and (each) single-channel stimulation (L1) to find the channel with the greatest RT (suppressive channel-SC), whose frequency range revealed the cochlear region involved. Seven patients with asymmetric hearing loss underwent the pitch-matching test to identify the actual frequency evoked by the SC. We compared selective (L1) and non-selective (L2) intracochlear stimulation using paired t-test. Preoperative Tinnitus Handicap Inventory (THI) score was compared with those at 1, 6, and 12 months with paired t-tests to evaluate long-term tinnitus perception. Results We observed a significant reduction of tinnitus loudness during the experimental procedure [L0 (6.4 ± 2.4) vs. L1 (1.7 ± 2.7), p = 0.003]. A total of 15/21 patients (71.4%) had a significant (RT > 50%) and selective improvement, reporting a mean L1 of 0.4 ± 2.0 (p = 0.0001). In 10/15 (66.6%) patients, the SC was in the apical turn, within 1,000 Hz; in 5/15 patients (33.4%) within 4,000 Hz. The cochlear region 125–313 Hz was the most affected by tinnitus improvement (p = 0.0074). Targeted stimulation was more effective than non-selective stimulation [L1 vs. L2 (4.3 ± 2.5), p = 0.0022]. In 3/7 patients, the perceived pitch did not fall within the SC frequency ranges. All patients with selective attenuation described tinnitus as monotone. Patients with non-selective attenuation had polyphonic tinnitus and better THI results after 1 year. Conclusion Targeted intracochlear electrical stimulation improved chronic tinnitus perception, especially in monotone tinnitus, and the apical region was mainly involved. Our results provide new insights into the pathophysiological mechanisms of tinnitus and targets for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Walter Di Nardo
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, UOC di Otorinolaringoiatria, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Tiziana Di Cesare
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, UOC di Otorinolaringoiatria, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- *Correspondence: Tiziana Di Cesare, ; orcid.org/0000-0001-9756-1880
| | - Angelo Tizio
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, UOC di Otorinolaringoiatria, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gaetano Paludetti
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, UOC di Otorinolaringoiatria, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Rita Fetoni
- Dipartimento di Neuroscienze, Sezione di Audiologia, Universitá Federico II, Naples, Italy
| |
Collapse
|
3
|
Taeger J, Müller-Graff FT, Ilgen L, Schendzielorz P, Hagen R, Neun T, Rak K. Cochlear Duct Length Measurements in Computed Tomography and Magnetic Resonance Imaging Using Newly Developed Techniques. OTO Open 2021; 5:2473974X211045312. [PMID: 34595367 PMCID: PMC8477698 DOI: 10.1177/2473974x211045312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Objective Growing interest in measuring the cochlear duct length (CDL) has emerged, since it can influence the selection of cochlear implant electrodes. Currently the measurements are performed with ionized radiation imaging. Only a few studies have explored CDL measurements in magnetic resonance imaging (MRI). Therefore, the presented study aims to fill this gap by estimating CDL in MRI and comparing it with multislice computed tomography (CT). Study Design Retrospective data analyses of 42 cochleae. Setting Tertiary care medical center. Methods Diameter (A value) and width (B value) of the cochlea were measured in HOROS software. The CDL and the 2-turn length were determined by the elliptic circular approximation (ECA). In addition, the CDL, the 2-turn length, and the angular length were determined via HOROS software by the multiplanar reconstruction (MPR) method. Results CDL values were significantly shorter in MRI by MPR (d = 1.38 mm, P < .001) but not by ECA. Similar 2-turn length measurements were significantly lower in MRI by MPR (d = 1.67 mm) and ECA (d = 1.19 mm, both P < .001). In contrast, angular length was significantly higher in MRI (d = 26.79°, P < .001). When the values were set in relation to the frequencies of the cochlea, no clinically relevant differences were estimated (58 Hz at 28-mm CDL). Conclusion In the presented study, CDL was investigated in CT and MRI by using different approaches. Since no clinically relevant differences were found, diagnostics with radiation may be omitted prior to cochlear implantation; thus, a concept of radiation-free cochlear implantation could be established.
Collapse
Affiliation(s)
- Johannes Taeger
- Department of Oto-rhino-laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| | - Franz Tassilo Müller-Graff
- Department of Oto-rhino-laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| | - Lukas Ilgen
- Department of Oto-rhino-laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| | - Phillip Schendzielorz
- Department of Oto-rhino-laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| | - Rudolf Hagen
- Department of Oto-rhino-laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| | - Tilman Neun
- Department of Diagnostic and Interventional Neuroradiology, University of Wuerzburg, Wuerzburg, Germany
| | - Kristen Rak
- Department of Oto-rhino-laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
4
|
Schendzielorz P, Ilgen L, Müller-Graff FT, Noyalet L, Völker J, Taeger J, Hagen R, Neun T, Zabler S, Althoff D, Rak K. Precise evaluation of the postoperative cochlear duct length by flat-panel volume computed tomography - Application of secondary reconstructions. Cochlear Implants Int 2021; 23:32-42. [PMID: 34519256 DOI: 10.1080/14670100.2021.1973208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE There is still a lack in precise postoperative evaluation of the cochlea because of strong artifacts. This study aimed to improve accuracy of postoperative two-turn (2TL) and cochlear duct length (CDL) measurements by applying flat-panel volume computed tomography (fpVCT), secondary reconstruction (fpVCTSECO) and three-dimensional curved multiplanar reconstruction. METHODS First, 10 temporal bone specimens with or without electrode were measured in multi-slice computed tomography (MSCT), fpVCT and fpVCTSECO and compared to high-resolution micro-CT scans. Later, pre- and postoperative scans of 10 patients were analyzed in a clinical setting. RESULTS Concerning 2TL, no statistically significant difference was observed between implanted fpVCTSECO and nonimplanted micro-CT in 10 temporal bone specimens. In contrast, there was a significant discrepancy for CDL (difference: -0.7 mm, P = 0.004). Nevertheless, there were no clinically unacceptable errors (±1.5 mm). These results could be confirmed in a clinical setting. Using fpVCTSECO, CDL was slightly underestimated postoperatively (difference: -0.5 mm, P = 0.002) but without any clinically unacceptable errors. CONCLUSION fpVCTSECO can be successfully applied for a precise measurement of the cochlear lengths pre- and postoperatively. However, users must be aware of a slight systematic underestimation of CDL postoperatively. These results may help to refine electrode selection and frequency mapping.
Collapse
Affiliation(s)
- Philipp Schendzielorz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Lukas Ilgen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Franz-Tassilo Müller-Graff
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Laurent Noyalet
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Johannes Völker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Johannes Taeger
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Tilmann Neun
- Department of Diagnostic and Interventional Neuroradiology, University of Würzburg, Würzburg, Germany
| | - Simon Zabler
- Department of X-ray Microscopy, University of Würzburg, Würzburg, Germany
| | - Daniel Althoff
- Fraunhofer Development Center for X-ray Technology, Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|