2
|
Efferth T, Banerjee M, Abu-Darwish MS, Abdelfatah S, Böckers M, Bhakta-Guha D, Bolzani V, Daak S, Demirezer ÖL, Dawood M, Efferth M, El-Seedi HR, Fischer N, Greten HJ, Hamdoun S, Hong C, Horneber M, Kadioglu O, Khalid HE, Khalid SA, Kuete V, Mahmoud N, Marin J, Mbaveng A, Midiwo J, Nakagawa H, Naß J, Ngassapa O, Ochwang'i D, Omosa LK, Ooko EA, Özenver N, Poornima P, Romero MR, Saeed MEM, Salgueiro L, Seo EJ, Yan G, Yasin Z, Saeed EM, Paul NW. Biopiracy versus One-World Medicine-From colonial relicts to global collaborative concepts. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:319-331. [PMID: 30190231 DOI: 10.1016/j.phymed.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/10/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Practices of biopiracy to use genetic resources and indigenous knowledge by Western companies without benefit-sharing of those, who generated the traditional knowledge, can be understood as form of neocolonialism. HYPOTHESIS The One-World Medicine concept attempts to merge the best of traditional medicine from developing countries and conventional Western medicine for the sake of patients around the globe. STUDY DESIGN Based on literature searches in several databases, a concept paper has been written. Legislative initiatives of the United Nations culminated in the Nagoya protocol aim to protect traditional knowledge and regulate benefit-sharing with indigenous communities. The European community adopted the Nagoya protocol, and the corresponding regulations will be implemented into national legislation among the member states. Despite pleasing progress, infrastructural problems of the health care systems in developing countries still remain. Current approaches to secure primary health care offer only fragmentary solutions at best. Conventional medicine from industrialized countries cannot be afforded by the impoverished population in the Third World. Confronted with exploding costs, even health systems in Western countries are endangered to burst. Complementary and alternative medicine (CAM) is popular among the general public in industrialized countries, although the efficacy is not sufficiently proven according to the standards of evidence-based medicine. CAM is often available without prescription as over-the-counter products with non-calculated risks concerning erroneous self-medication and safety/toxicity issues. The concept of integrative medicine attempts to combine holistic CAM approaches with evidence-based principles of conventional medicine. CONCLUSION To realize the concept of One-World Medicine, a number of standards have to be set to assure safety, efficacy and applicability of traditional medicine, e.g. sustainable production and quality control of herbal products, performance of placebo-controlled, double-blind, randomized clinical trials, phytovigilance, as well as education of health professionals and patients.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Mita Banerjee
- Department of English and Linguistics, American Studies, Center for Comparative Native and Indigenous Studies, Johannes Gutenberg University, Mainz, Germany
| | - Mohammad Sanad Abu-Darwish
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; Shoubak University College, Al-Balqa Applied University, Jordan
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Madeleine Böckers
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Dipita Bhakta-Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, TN, India
| | - Vanderlan Bolzani
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, Brazil
| | - Salah Daak
- Dr. Salah Wanesi Foundation for Cancer Research and Control, Khartoum, Sudan
| | | | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Monika Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Hesham R El-Seedi
- Chemistry Department, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Nicolas Fischer
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Henry J Greten
- Biomedical Sciences Institute Abel Salazar, University of Porto, Porto, Portugal; Heidelberg School of Chinese Medicine, Heidelberg, Germany
| | - Sami Hamdoun
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Chunlan Hong
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Markus Horneber
- Department of Internal Medicine, Division of Oncology and Hematology, Paracelsus Medical University, Klinikum Nürnberg, Germany
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Hassan E Khalid
- Department of Pharmacognosy, University of Khartoum, Khartoum, Sudan
| | - Sami A Khalid
- Faculty of Pharmacy, University of Science and Technology, Omdurman, Sudan; Faculty of Pharmacy, University of Khartoum, Karthoum, Sudan
| | - Victor Kuete
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Nuha Mahmoud
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - José Marin
- Department of Biochemistry and Molecular Biology, Experimental Hepatology and Drug Targeting (HEVEFARM), CIBERehd, IBSAL, University of Salamanca Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Armelle Mbaveng
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Jacob Midiwo
- Department of Chemistry, University of Nairobi, Nairobi, Kenya
| | - Hiroshi Nakagawa
- Department of Applied Biological Chemistry, Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Janine Naß
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Olipa Ngassapa
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Dominic Ochwang'i
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Leonida K Omosa
- Department of Chemistry, University of Nairobi, Nairobi, Kenya
| | - Edna A Ooko
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Nadire Özenver
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, Ankara, Turkey
| | - Paramasivan Poornima
- Molecular and Cellular Pharmacology Laboratory, School of Science, Engineering and Technology, University of Abertay, Dundee, Scotland, United Kingdom
| | - Marta Rodriguez Romero
- Department of Biochemistry and Molecular Biology, Experimental Hepatology and Drug Targeting (HEVEFARM), CIBERehd, IBSAL, University of Salamanca Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ligia Salgueiro
- Center of Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ge Yan
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | | | | | - Norbert W Paul
- Institute for the History, Philosophy, and Ethics of Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
3
|
Abstract
BACKGROUND AND OBJECTIVES Pharmacogenetics (PGx) promises to optimize patient response to therapy. However, the public's acceptance of PGx is not well known, notably when this applies to children. Our objective was to explore perceptions of PGx testing among individuals, who differ from each other by either parental status or educational exposure to PGx, and to explore parents' views between PGx testing for oneself and PGx testing for their children. METHODS An exploratory survey was conducted among parents and other adults. Surveys P and C were completed by parents, survey NP by middle-aged nonparents, and survey MS by medical students. RESULTS Proper explanation before PGx testing appeared to be the most important issue to the respondents (eg, P = 1.55 × 10(-38) for survey NP). Respondents who were more knowledgeable about PGx were also more comfortable with PGx testing (eg, P = 2.53 × 10(-7) in case of mild disease). When PGx testing was for one's child, parents valued their own understanding more than their child's assent (P = 1.57 × 10(-17)). CONCLUSIONS The acceptability of PGx testing, either for oneself or for one's child, seemed to depend on baseline PGx knowledge, but not on parenthood.
Collapse
Affiliation(s)
| | - Carleton Bruce
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Hayden
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael J Rieder
- Schulich School of Medicine and Dentistry, and Departments of Pediatrics, Physiology and Pharmacology, and Medicine, and University of Western Ontario, London, Ontario, Canada; and
| |
Collapse
|