1
|
Taheri M, Tehrani HA, Daliri F, Alibolandi M, Soleimani M, Shoari A, Arefian E, Ramezani M. Bioengineering strategies to enhance the interleukin-18 bioactivity in the modern toolbox of cancer immunotherapy. Cytokine Growth Factor Rev 2024; 75:65-80. [PMID: 37813764 DOI: 10.1016/j.cytogfr.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Cytokines are the first modern immunotherapeutic agents used for activation immunotherapy. Interleukin-18 (IL-18) has emerged as a potent anticancer immunostimulatory cytokine over the past three decades. IL-18, structurally is a stable protein with very low toxicity at biological doses. IL-18 promotes the process of antigen presentation and also enhances innate and acquired immune responses. It can induce the production of proinflammatory cytokines and increase tumor infiltration of effector immune cells to revert the immunosuppressive milieu of tumors. Furthermore, IL-18 can reduce tumorigenesis, suppress tumor angiogenesis, and induce tumor cell apoptosis. These characteristics present IL-18 as a promising option for cancer immunotherapy. Although several preclinical studies have reported the immunotherapeutic potential of IL-18, clinical trials using it as a monotherapy agent have reported disappointing results. These results may be due to some biological characteristics of IL-18. Several bioengineering approaches have been successfully used to correct its defects as a bioadjuvant. Currently, the challenge with this anticancer immunotherapeutic agent is mainly how to use its capabilities in a rational combinatorial therapy for clinical applications. The present study discussed the strengths and weaknesses of IL-18 as an immunotherapeutic agent, followed by comprehensive review of various promising bioengineering approaches that have been used to overcome its disadvantages. Finally, this study highlights the promising application of IL-18 in modern combinatorial therapies, such as chemotherapy, immune checkpoint blockade therapy, cell-based immunotherapy and cancer vaccines to guide future studies, circumventing the barriers to administration of IL-18 for clinical applications, and bring it to fruition as a potent immunotherapy agent in cancer treatment.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Soleimani
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Iran
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Zhang SW, Wang H, Ding XH, Xiao YL, Shao ZM, You C, Gu YJ, Jiang YZ. Bidirectional crosstalk between therapeutic cancer vaccines and the tumor microenvironment: Beyond tumor antigens. FUNDAMENTAL RESEARCH 2023; 3:1005-1024. [PMID: 38933006 PMCID: PMC11197801 DOI: 10.1016/j.fmre.2022.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 11/20/2022] Open
Abstract
Immunotherapy has rejuvenated cancer therapy, especially after anti-PD-(L)1 came onto the scene. Among the many therapeutic options, therapeutic cancer vaccines are one of the most essential players. Although great progress has been made in research on tumor antigen vaccines, few phase III trials have shown clinical benefits. One of the reasons lies in obstruction from the tumor microenvironment (TME). Meanwhile, the therapeutic cancer vaccine reshapes the TME in an ambivalent way, leading to immune stimulation or immune escape. In this review, we summarize recent progress on the interaction between therapeutic cancer vaccines and the TME. With respect to vaccine resistance, innate immunosuppressive TME components and acquired resistance caused by vaccination are both involved. Understanding the underlying mechanism of this crosstalk provides insight into the treatment of cancer by directly targeting the TME or synergizing with other therapeutics.
Collapse
Affiliation(s)
- Si-Wei Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Han Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xiao-Hong Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China
| | - Ya-Jia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Gong D, Wang Y, Wang Y, Chen X, Chen S, Wang R, Liu L, Duan C, Luo S. Extensive serum cytokine analysis in patients with prostate cancer. Cytokine 2020; 125:154810. [DOI: 10.1016/j.cyto.2019.154810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/09/2019] [Accepted: 08/09/2019] [Indexed: 12/23/2022]
|
4
|
Abstract
Cytokine-based immunotherapy is executed by harnessing cytokines to activate the immune system to suppress tumors. Th1-type cytokines including IL-1, IL-2, IL-12 and granulocyte-macrophage colony-stimulating factor are potent stimulators of Th1 differentiation and Th1-based antitumor response. Many preclinical studies demonstrated the antitumor effects of Th1 cytokines but their clinical efficacy is limited. Multiple factors influence the efficacy of immunotherapy for tumors. For instance immunosuppressive cells in the tumor microenvironment can produce inhibitory cytokines which suppress antitumor immune response. Most studies on cytokine immunotherapy focused on how to boost Th1 response; many studies combined cytokine-based therapy with other treatments to reverse immunosuppression in tumor microenvironment. In addition, cytokines have pleiotropic functions and some cytokines show paradoxical activities under different settings. Better understanding the physiological and pathological functions of cytokines helps clinicians to design Th1-based cancer therapy in clinical practice.
Collapse
Affiliation(s)
- Hong-Mei Xu
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom.
| |
Collapse
|
5
|
Long J, Zhou B, Li H, Dai Q, Zhang B, Xing S, Zeng Z, Chen W, Yang J. Improvement of HBsAg gene-modified dendritic cell-based vaccine efficacy by optimizing immunization method or the application of β-glucosylceramide. Immunol Invest 2013; 42:137-55. [PMID: 23323523 DOI: 10.3109/08820139.2012.744418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hepatocellular carcinoma (HCC) in China is mostly Hepatitis B virus infection related. The antitumor efficacy of HBsAg gene-modified dendritic cells (DC) has been widely tested both in vitro and in vivo. In this study, we analyzed whether adenoviral vector mediated HBsAg expression would alter cell surface phenotype or autologous T cell stimulating function of mature DCs. Further, the anti-tumor efficacy of pAd-HBsAg-DC-based vaccine was evaluated in mice bearing HBsAg expressing HCC. We also tested whether β-glucosylceramide (β-GC) would enhance the anti-tumor activity of pAd-HBsAg-DC. Results revealed that pAd-HBsAg-DC expressed and secreted HBsAg, while maintaining phenotypic characteristics of mature DCs. Vaccination with pAd-HBsAg-DC conferred specific therapeutic antitumor immunity to animal model bearing HBsAg expressing HCC. The application of β-GC activated mice hepatic NKT cells and enhanced the antitumor activity of pAd-HBsAg-DC. Most importantly, in vivo results showed that the inhibiting effect of pAd-HBsAg-DC vaccination on tumor growth was more significant when applied before tumor inoculation, suggesting that genetically modified DC based therapeutic cancer vaccine may achieve the most optimized antitumor effect when applied before tumor onset, and β-GC may serve as a potent innate immune enhancer for augmenting the antitumor effect of pAd-HBsAg-DC vaccine.
Collapse
Affiliation(s)
- Jianting Long
- Department of Medicinal Oncology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mei HF, Jin XB, Zhu JY, Zeng AH, Wu Q, Lu XM, Li XB, Shen J. β-defensin 2 as an adjuvant promotes anti-melanoma immune responses and inhibits the growth of implanted murine melanoma in vivo. PLoS One 2012; 7:e31328. [PMID: 22348070 PMCID: PMC3278441 DOI: 10.1371/journal.pone.0031328] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 01/06/2012] [Indexed: 12/02/2022] Open
Abstract
β-defensin 2 is a small antimicrobial peptide of the innate immune system and has been thought to regulate anti-tumor immunity. However, little is known on whether β-defensin 2 could modulate melanoma-specific NK and T cell responses. In this study, we first cloned the murine β-defensin 2 gene by RT-PCR and generated the β-defensin 2 stably expressing B16 cells (B16-mBD2). Subsequently, we evaluated whether vaccination with irradiated B16-mBD2 could modulate the growth of implanted B16 cells and determined the potential mechanisms underlying the action of B16-mBD2 vaccine in modulating the growth of B16 tumors in C57BL/6. We found that vaccination with irradiated B16-mBD2, but not with control B16-p or parental B16, inhibited the development and progression of B16 tumors, and prolonged the survival of tumor-bearing mice. However, vaccination with irradiated B16-mBD2 failed to inhibit the development of B16 tumors in the CD4+- or CD8+-depleted recipients. Furthermore, vaccination with irradiated B16-mBD2 stimulated strong NK activity and promoted potent B16-specific CTL responses, accompanied by augmenting IFN-γ and IL-12, but not IL-4, responses in the recipient mice. Moreover, vaccination with irradiated B16-mBD2 promoted the infiltration of CD8+ and CD4+ T, NK cells and macrophages in the tumor tissues. These data suggest β-defensin 2 may act as a positive regulator, promoting anti-tumor NK and T cell responses in vivo. Therefore, β-defensin 2 may be used for the development of immunotherapy for the intervention of melanoma.
Collapse
Affiliation(s)
- Han-fang Mei
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Tse BWC, Russell PJ, Lochner M, Förster I, Power CA. IL-18 inhibits growth of murine orthotopic prostate carcinomas via both adaptive and innate immune mechanisms. PLoS One 2011; 6:e24241. [PMID: 21935389 PMCID: PMC3174151 DOI: 10.1371/journal.pone.0024241] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/03/2011] [Indexed: 01/22/2023] Open
Abstract
Interleukin(IL)-18 is a pleiotrophic cytokine with functions in immune modulation, angiogenesis and bone metabolism. In this study, the potential of IL-18 as an immunotherapy for prostate cancer (PCa) was examined using the murine model of prostate carcinoma, RM1 and a bone metastatic variant RM1(BM)/B4H7-luc. RM1 and RM1(BM)/B4H7-luc cells were stably transfected to express bioactive IL-18. These cells were implanted into syngeneic immunocompetent mice, with or without an IL-18-neutralising antibody (αIL-18, SK113AE4). IL-18 significantly inhibited the growth of both subcutaneous and orthotopic RM1 tumors and the IL-18 neutralizing antibody abrogated the tumor growth-inhibition. In vivo neutralization of interferon-gamma (IFN-γ) completely eliminated the anti-tumor effects of IL-18 confirming an essential role of IFN-γ as a down-stream mediator of the anti-tumor activity of IL-18. Tumors from mice in which IL-18 and/or IFN-γ was neutralized contained significantly fewer CD4+ and CD8+ T cells than those with functional IL-18. The essential role of adaptive immunity was demonstrated as tumors grew more rapidly in RAG1−/− mice or in mice depleted of CD4+ and/or CD8+ cells than in normal mice. The tumors in RAG1−/− mice were also significantly smaller when IL-18 was present, indicating that innate immune mechanisms are involved. IL-18 also induced an increase in tumor infiltration of macrophages and neutrophils but not NK cells. In other experiments, direct injection of recombinant IL-18 into established tumors also inhibited tumor growth, which was associated with an increase in intratumoral macrophages, but not T cells. These results suggest that local IL-18 in the tumor environment can significantly potentiate anti-tumor immunity in the prostate and clearly demonstrate that this effect is mediated by innate and adaptive immune mechanisms.
Collapse
Affiliation(s)
- Brian Wan-Chi Tse
- Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Pamela Joan Russell
- Australian Prostate Cancer Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Irmgard Förster
- Institut fuer Umweltmedizinische Forschung, University of Düsseldorf, Düsseldorf, Germany
| | - Carl Andrew Power
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
8
|
Dai S, Zhou X, Wang B, Wang Q, Fu Y, Chen T, Wan T, Yu Y, Cao X. Enhanced induction of dendritic cell maturation and HLA-A*0201-restricted CEA-specific CD8(+) CTL response by exosomes derived from IL-18 gene-modified CEA-positive tumor cells. J Mol Med (Berl) 2006; 84:1067-76. [PMID: 17016692 PMCID: PMC7079873 DOI: 10.1007/s00109-006-0102-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 07/05/2006] [Indexed: 01/20/2023]
Abstract
Dendritic cells (DC)-derived or tumor-derived exosomes are a population of nanometer sized membrane vesicles that can induce specific anti-tumor immunity. However, the immunogenic potential and efficiency of exosomes-based tumor vaccine are not satisfactory enough to achieve a curative effect in clinical trials. In this article we investigated whether IL-18 genetic modification of tumor cells can increase the efficacy of exosomes derived from IL-18 gene-modified tumor cells. We transfected carcinoembryonic antigen (CEA)-expressing tumor cells with a recombinant adenovirus encoding human IL-18 (AdhIL-18) and prepared the exosomes, Exo/IL-18, from IL-18 gene-modified tumor cells. We found that Exo/IL-18 naturally contain CEA and bioactive IL-18. Moreover, Exo-IL-18 are potent in chemoattracting DC and T cells, enhancing the proliferation and Th1 cytokine release of PBMC, and promoting the phenotypic and functional maturation of DC. Furthermore, Exo/IL-18-pulsed DC are quite potent to induce HLA-A*0201-restricted, CEA-specific CD8(+) CTL from the PBMC of HLA-A*0201 CEA(+) cancer patients in vitro. In almost all of these experiments, Exo/IL-18 show more potent functions than the conventionally prepared exosomes derived from parent tumor cells without IL-18 gene modification. Our findings suggest that Exo/IL-18 has more potent capability to induce specific anti-tumor immunity, and our strategy of IL-18 modification of exosomes is a feasible approach to develop exosomes-based tumor vaccines.
Collapse
Affiliation(s)
- Shengming Dai
- Institute of Immunology, Zhejiang University, Hangzhou, 310031 People’s Republic of China
- Institute of Immunology and State Key Laboratory of Medical Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433 People’s Republic of China
| | - Xiangyang Zhou
- Institute of Immunology and State Key Laboratory of Medical Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433 People’s Republic of China
| | - Baomei Wang
- Institute of Immunology and State Key Laboratory of Medical Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433 People’s Republic of China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University, Hangzhou, 310031 People’s Republic of China
| | - Yangxin Fu
- Institute of Immunology, Zhejiang University, Hangzhou, 310031 People’s Republic of China
| | - Taoyong Chen
- Institute of Immunology and State Key Laboratory of Medical Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433 People’s Republic of China
| | - Tao Wan
- Institute of Immunology and State Key Laboratory of Medical Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433 People’s Republic of China
| | - Yizhi Yu
- Institute of Immunology and State Key Laboratory of Medical Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433 People’s Republic of China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University, Hangzhou, 310031 People’s Republic of China
- Institute of Immunology and State Key Laboratory of Medical Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433 People’s Republic of China
| |
Collapse
|
9
|
Maxwell JR, Yadav R, Rossi RJ, Ruby CE, Weinberg AD, Aguila HL, Vella AT. IL-18 bridges innate and adaptive immunity through IFN-gamma and the CD134 pathway. THE JOURNAL OF IMMUNOLOGY 2006; 177:234-45. [PMID: 16785519 DOI: 10.4049/jimmunol.177.1.234] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IL-18 induces inflammation resulting in either enhanced protection from pathogens or exacerbation of autoimmunity, and T cells are profoundly activated during these responses. How IL-18 influences T cell activation is unknown, but this study in mice shows that IL-18 boosted Ag-specific T cell clonal expansion of effector T cells and induced a subpopulation of IFN-gamma superproducing T cells. Commitment to IFN-gamma production through IL-18 was independent of NK cells and IL-12 but dependent on host-derived IFN-gamma. To determine how expansion of these effectors occurred, IL-18 was shown to induce OX40L on dendritic cells, whereas peptide stimulation induced CD134 (OX40) on specific T cells. CD134 blockade inhibited T cell effector expansion thereby reducing the number of IFN-gamma superproducers by 12-fold. Thus, independent of IL-12, IL-18 impacts T cell immunity throughout lymphoid and nonlymphoid tissue by bridging the innate and adaptive arms of the immune system through IFN-gamma and the CD134 costimulatory pathway.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/physiology
- Adoptive Transfer
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Immunity, Cellular/genetics
- Immunity, Innate/genetics
- Interferon-gamma/biosynthesis
- Interferon-gamma/physiology
- Interleukin-12/physiology
- Interleukin-18/administration & dosage
- Interleukin-18/physiology
- Interleukin-18 Receptor alpha Subunit
- Killer Cells, Natural/immunology
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymph Nodes/transplantation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Interleukin/deficiency
- Receptors, Interleukin/genetics
- Receptors, Interleukin-18
- Receptors, OX40
- Receptors, Tumor Necrosis Factor/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/transplantation
Collapse
Affiliation(s)
- Joseph R Maxwell
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Xia D, Moyana T, Xiang J. Combinational adenovirus-mediated gene therapy and dendritic cell vaccine in combating well-established tumors. Cell Res 2006; 16:241-59. [PMID: 16541123 DOI: 10.1038/sj.cr.7310032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent developments in tumor immunology and biotechnology have made cancer gene therapy and immunotherapy feasible. The current efforts for cancer gene therapy mainly focus on using immunogenes, chemogenes and tumor suppressor genes. Central to all these therapies is the development of efficient vectors for gene therapy. By far, adenovirus (AdV)-mediated gene therapy is one of the most promising approaches, as has confirmed by studies relating to animal tumor models and clinical trials. Dendritic cells (DCs) are highly efficient, specialized antigen-presenting cells, and DC-based tumor vaccines are regarded as having much potential in cancer immunotherapy. Vaccination with DCs pulsed with tumor peptides, lysates, or RNA, or loaded with apoptotic/necrotic tumor cells, or engineered to express certain cytokines or chemokines could induce significant antitumor cytotoxic T lymphocyte (CTL) responses and antitumor immunity. Although both AdV-mediated gene therapy and DC vaccine can both stimulate antitumor immune responses, their therapeutic efficiency has been limited to generation of prophylactic antitumor immunity against re-challenge with the parental tumor cells or to growth inhibition of small tumors. However, this approach has been unsuccessful in combating well-established tumors in animal models. Therefore, a major strategic goal of current cancer immunotherapy has become the development of novel therapeutic strategies that can combat well-established tumors, thus resembling real clinical practice since a good proportion of cancer patients generally present with significant disease. In this paper, we review the recent progress in AdV-mediated cancer gene therapy and DC-based cancer vaccines, and discuss combined immunotherapy including gene therapy and DC vaccines. We underscore the fact that combined therapy may have some advantages in combating well-established tumors vis-a-vis either modality administered as a monotherapy.
Collapse
Affiliation(s)
- Dajing Xia
- Research Unit, Health Research Division, Saskatchewan Cancer Agency, Department of Oncology, University of Saskatchewan, 20 Campus Drive, Saskatoon, Saskatchewan S7N 4H4, Canada
| | | | | |
Collapse
|
11
|
He X, Luo P, Tsang TC, Zhang T, Harris DT. Immuno-gene therapy of melanoma by tumor antigen epitope modified IFN-gamma. Cancer Immunol Immunother 2005; 54:741-9. [PMID: 15726359 PMCID: PMC11034313 DOI: 10.1007/s00262-004-0634-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 09/30/2004] [Indexed: 10/25/2022]
Abstract
Cytokine-based vaccines play a major part in tumor immuno-gene therapy. However, down-regulated antigen expression on tumor cells may diminish the immuno-potentiating aspects of cellular vaccines. In this study, we coexpressed a tumor antigen epitope with IFN-gamma in the same gene by replacing the IFN-gamma signal peptide with an antigen epitope-expressing signal peptide. We then investigated the effect of the antigen epitope-incorporated IFN-gamma on the immunotherapy of murine melanoma B16 tumors. Results showed that TRP-2 epitope-expressing IFN-gamma decreased B16 tumorigenicity and enhanced its immunogenicity after gene transfer. Protective immunity against wild type B16 tumors was induced by vaccination with IFN-gamma transiently gene-modified tumor cells. These data suggest that cellular vaccines engineered to express an antigen epitope within an immunostimulatory cytokine could potentiate the immunization effect.
Collapse
Affiliation(s)
- Xianghui He
- Gene Therapy Group, Department of Microbiology and Immunology, Arizona Health Sciences Center, University of Arizona, Tucson, 245049, AZ 85724 USA
| | - Phoebe Luo
- Cardiovascular Research Department, St. Elizabeth Medical Center, Tufts University, Boston, MA 02135 USA
| | - Tom C Tsang
- Gene Therapy Group, Department of Microbiology and Immunology, Arizona Health Sciences Center, University of Arizona, Tucson, 245049, AZ 85724 USA
| | - Tong Zhang
- Department of Microbiology and Immunology, Dartmouth Medical School, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766 USA
| | - David T Harris
- Gene Therapy Group, Department of Microbiology and Immunology, Arizona Health Sciences Center, University of Arizona, Tucson, 245049, AZ 85724 USA
| |
Collapse
|