1
|
Choi KM, Kim SJ, Ji MJ, Kim E, Kim JS, Park HM, Kim JY. Activity-based protein profiling and global proteome analysis reveal MASTL as a potential therapeutic target in gastric cancer. Cell Commun Signal 2024; 22:397. [PMID: 39138495 PMCID: PMC11323684 DOI: 10.1186/s12964-024-01783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a prevalent malignancy with limited therapeutic options for advanced stages. This study aimed to identify novel therapeutic targets for GC by profiling HSP90 client kinases. METHODS We used mass spectrometry-based activity-based protein profiling (ABPP) with a desthiobiotin-ATP probe, combined with sensitivity analysis of HSP90 inhibitors, to profile kinases in a panel of GC cell lines. We identified kinases regulated by HSP90 in inhibitor-sensitive cells and investigated the impact of MASTL knockdown on GC cell behavior. Global proteomic analysis following MASTL knockdown was performed, and bioinformatics tools were used to analyze the resulting data. RESULTS Four kinases-MASTL, STK11, CHEK1, and MET-were identified as HSP90-regulated in HSP90 inhibitor-sensitive cells. Among these, microtubule-associated serine/threonine kinase-like (MASTL) was upregulated in GC and associated with poor prognosis. MASTL knockdown decreased migration, invasion, and proliferation of GC cells. Global proteomic profiling following MASTL knockdown revealed NEDD4-1 as a potential downstream mediator of MASTL in GC progression. NEDD4-1 was also upregulated in GC and associated with poor prognosis. Similar to MASTL inhibition, NEDD4-1 knockdown suppressed migration, invasion, and proliferation of GC cells. CONCLUSIONS Our multi-proteomic analyses suggest that targeting MASTL could be a promising therapy for advanced gastric cancer, potentially through the reduction of tumor-promoting proteins including NEDD4-1. This study enhances our understanding of kinase signaling pathways in GC and provides new insights for potential treatment strategies.
Collapse
Affiliation(s)
- Kyoung-Min Choi
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sung-Jin Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Mi-Jung Ji
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02456, Republic of Korea
| | - Eunjung Kim
- Natural Product Informatics Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Hyun-Mee Park
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02456, Republic of Korea
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Zhou Y, Chen Z, Liu S, Liu S, Liao Y, Du A, Dong Z, Zhang Y, Chen X, Tao S, Wu X, Razzaq A, Xu G, Tan DA, Li S, Deng Y, Peng J, Dai S, Deng X, Zhang X, Jiang T, Zhang Z, Cheng G, Zhao J, Xia Z. A Cullin 5-based complex serves as an essential modulator of ORF9b stability in SARS-CoV-2 replication. Signal Transduct Target Ther 2024; 9:159. [PMID: 38937432 PMCID: PMC11211426 DOI: 10.1038/s41392-024-01874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 06/29/2024] Open
Abstract
The ORF9b protein, derived from the nucleocapsid's open-reading frame in both SARS-CoV and SARS-CoV-2, serves as an accessory protein crucial for viral immune evasion by inhibiting the innate immune response. Despite its significance, the precise regulatory mechanisms underlying its function remain elusive. In the present study, we unveil that the ORF9b protein of SARS-CoV-2, including emerging mutant strains like Delta and Omicron, can undergo ubiquitination at the K67 site and subsequent degradation via the proteasome pathway, despite certain mutations present among these strains. Moreover, our investigation further uncovers the pivotal role of the translocase of the outer mitochondrial membrane 70 (TOM70) as a substrate receptor, bridging ORF9b with heat shock protein 90 alpha (HSP90α) and Cullin 5 (CUL5) to form a complex. Within this complex, CUL5 triggers the ubiquitination and degradation of ORF9b, acting as a host antiviral factor, while HSP90α functions to stabilize it. Notably, treatment with HSP90 inhibitors such as GA or 17-AAG accelerates the degradation of ORF9b, leading to a pronounced inhibition of SARS-CoV-2 replication. Single-cell sequencing data revealed an up-regulation of HSP90α in lung epithelial cells from COVID-19 patients, suggesting a potential mechanism by which SARS-CoV-2 may exploit HSP90α to evade the host immunity. Our study identifies the CUL5-TOM70-HSP90α complex as a critical regulator of ORF9b protein stability, shedding light on the intricate host-virus immune response dynamics and offering promising avenues for drug development against SARS-CoV-2 in clinical settings.
Collapse
Affiliation(s)
- Yuzheng Zhou
- Department of Cell Biology, School of Life Sciences, Central South University, 410013, Changsha, China
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, China
| | - Zongpeng Chen
- Department of Cell Biology, School of Life Sciences, Central South University, 410013, Changsha, China
| | - Sijie Liu
- Department of Cell Biology, School of Life Sciences, Central South University, 410013, Changsha, China
| | - Sixu Liu
- Department of Cell Biology, School of Life Sciences, Central South University, 410013, Changsha, China
| | - Yujie Liao
- Department of Cell Biology, School of Life Sciences, Central South University, 410013, Changsha, China
| | - Ashuai Du
- Department of Cell Biology, School of Life Sciences, Central South University, 410013, Changsha, China
| | - Zijun Dong
- Department of Basic Medicine, School of Medicine, Hunan Normal University, 410081, Changsha, China
| | - Yongxing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, 410013, Changsha, China
| | - Xuan Chen
- Department of Cell Biology, School of Life Sciences, Central South University, 410013, Changsha, China
| | - Siyi Tao
- Department of Cell Biology, School of Life Sciences, Central South University, 410013, Changsha, China
| | - Xin Wu
- Department of spine surgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Aroona Razzaq
- Department of Cell Biology, School of Life Sciences, Central South University, 410013, Changsha, China
| | - Gang Xu
- School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China
| | - De-An Tan
- Hunan Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China (The Second Affiliated Hospital of Hunan Normal University), 410003, Changsha, Hunan, China
| | - Shanni Li
- Department of Cell Biology, School of Life Sciences, Central South University, 410013, Changsha, China
| | - Youwen Deng
- Department of spine surgery, The Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Jian Peng
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Shuyan Dai
- Xiangya School of Pharmaceutical Sciences, Central South University, 410013, Changsha, China
| | - Xu Deng
- Xiangya School of Pharmaceutical Sciences, Central South University, 410013, Changsha, China
| | - Xianwen Zhang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | | | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, China
| | - Gong Cheng
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, 518132, Shenzhen, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Jincun Zhao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, China
- Guangzhou Laboratory, 510005, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, 410013, Changsha, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics & Center for Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, China.
| |
Collapse
|
3
|
Simanjuntak MV, Jauhar MM, Syaifie PH, Arda AG, Mardliyati E, Shalannanda W, Hermanto BR, Anshori I. Revealing Propolis Potential Activity on Inhibiting Estrogen Receptor and Heat Shock Protein 90 Overexpressed in Breast Cancer by Bioinformatics Approaches. Bioinform Biol Insights 2024; 18:11779322231224187. [PMID: 38274992 PMCID: PMC10809879 DOI: 10.1177/11779322231224187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Breast cancer is the most commonly diagnosed cancer globally, with the highest incidence of breast cancer occurring in Asian countries including Indonesia. Among the types of breast cancer, the estrogen receptor (ER)-positive subtype which is prominent with estrogen receptor alpha (ERα) and heat shock protein 90 (HSP90) overexpression genes becomes the most prevalent than the others, approximately 75% of all breast cancer cases. ERα and HSP90 play a role in breast cancer activities including breast tumor growth, invasion, and metastasis mechanism. Propolis, a natural bee product, has been explored for its anticancer activity. However, there is lack of studies that evaluated the potential inhibitor from propolis compounds to the ERα and HSP90 proteins. Therefore, this article focuses on examining the correlation between ERα and HSP90's role in breast cancer and investigating the potential of 93 unique propolis compositions in inhibiting these genes in breast cancer using in silico approaches. This study revealed the positive correlation between ERα and HSP90 genes in breast cancer disease development. Furthermore, we also found novel potential bioactive compounds of propolis against breast cancer through binding with ERα and HSP90; they were 3',4',7-trihydroxyisoflavone and baicalein-7-O-β-D glucopyranoside, respectively. Further research on these compounds is needed to elucidate deeper mechanisms and activity in the real biological system to develop new breast cancer drug treatments.
Collapse
Affiliation(s)
- Masriana Vivi Simanjuntak
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Muhammad Miftah Jauhar
- Center of Excellences Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
- Biomedical Engineering, The Graduate School of Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Putri Hawa Syaifie
- Center of Excellences Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | - Adzani Gaisani Arda
- Center of Excellences Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Etik Mardliyati
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Wervyan Shalannanda
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Beni Rio Hermanto
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Isa Anshori
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
4
|
Kalyaanamoorthy S, Opare SK, Xu X, Ganesan A, Rao PPN. Post-Translational Modifications in Tau and Their Roles in Alzheimer's Pathology. Curr Alzheimer Res 2024; 21:24-49. [PMID: 38623984 DOI: 10.2174/0115672050301407240408033046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Microtubule-Associated Protein Tau (also known as tau) has been shown to accumulate into paired helical filaments and neurofibrillary tangles, which are known hallmarks of Alzheimer's disease (AD) pathology. Decades of research have shown that tau protein undergoes extensive post-translational modifications (PTMs), which can alter the protein's structure, function, and dynamics and impact the various properties such as solubility, aggregation, localization, and homeostasis. There is a vast amount of information describing the impact and role of different PTMs in AD pathology and neuroprotection. However, the complex interplay between these PTMs remains elusive. Therefore, in this review, we aim to comprehend the key post-translational modifications occurring in tau and summarize potential connections to clarify their impact on the physiology and pathophysiology of tau. Further, we describe how different computational modeling methods have helped in understanding the impact of PTMs on the structure and functions of the tau protein. Finally, we highlight the tau PTM-related therapeutics strategies that are explored for the development of AD therapy.
Collapse
Affiliation(s)
| | - Stanley Kojo Opare
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Xiaoxiao Xu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Aravindhan Ganesan
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Praveen P N Rao
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Beilankouhi EAV, Sajadi MA, Alipourfard I, Hassani P, Valilo M, Safaralizadeh R. Role of the ER-induced UPR pathway, apoptosis, and autophagy in colorectal cancer. Pathol Res Pract 2023; 248:154706. [PMID: 37499516 DOI: 10.1016/j.prp.2023.154706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
When large amounts of misfolded or unfolded proteins accumulate in the endoplasmic reticulum (ER) in response to stress, a process called unfolded protein response (UPR) is activated. The disruption of this process leads to many diseases including diabetes, neurodegenerative diseases, and many cancers. In the process of UPR in response to stress and unfolded proteins, specific signaling pathways are induced in the endoplasmic reticulum and subsequently transmitted to the nucleus and cytoplasm, causing homeostasis and restoring the cell's normal condition with reducing protein translation and synthesis. The UPR response followed by stress enhancement balances cell survival with death, therefore in this condition cells decide either to survive or have the path of apoptosis ahead. However, in some cases, this balance is disturbed and the UPR pathway is chronically activated or not activated and the cell conditions lead to cancer. This study aimed to briefly investigate the association between ER stress, UPR, apoptosis, and autophagy in colorectal cancer (CRC). Moreover, in current study, we will try to demonstrate canonical ways and methods for the treatment of CRC cells with attenuated ER stress.
Collapse
Affiliation(s)
| | | | - Iraj Alipourfard
- Insttue of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia, Katowice, Poland
| | - Peyman Hassani
- DVM Graduated, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
6
|
Role of Ganetespib, an HSP90 Inhibitor, in Cancer Therapy: From Molecular Mechanisms to Clinical Practice. Int J Mol Sci 2023; 24:ijms24055014. [PMID: 36902446 PMCID: PMC10002602 DOI: 10.3390/ijms24055014] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Heat-shock proteins are upregulated in cancer and protect several client proteins from degradation. Therefore, they contribute to tumorigenesis and cancer metastasis by reducing apoptosis and enhancing cell survival and proliferation. These client proteins include the estrogen receptor (ER), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), human epidermal growth factor receptor 2 (HER-2), and cytokine receptors. The diminution of the degradation of these client proteins activates different signaling pathways, such as the PI3K/Akt/NF-κB, Raf/MEK/ERK, and JAK/STAT3 pathways. These pathways contribute to hallmarks of cancer, such as self-sufficiency in growth signaling, an insensitivity to anti-growth signals, the evasion of apoptosis, persistent angiogenesis, tissue invasion and metastasis, and an unbounded capacity for replication. However, the inhibition of HSP90 activity by ganetespib is believed to be a promising strategy in the treatment of cancer because of its low adverse effects compared to other HSP90 inhibitors. Ganetespib is a potential cancer therapy that has shown promise in preclinical tests against various cancers, including lung cancer, prostate cancer, and leukemia. It has also shown strong activity toward breast cancer, non-small cell lung cancer, gastric cancer, and acute myeloid leukemia. Ganetespib has been found to cause apoptosis and growth arrest in these cancer cells, and it is being tested in phase II clinical trials as a first-line therapy for metastatic breast cancer. In this review, we will highlight the mechanism of action of ganetespib and its role in treating cancer based on recent studies.
Collapse
|
7
|
Oubella A, Bimoussa A, Byadi S, Laamari Y, Fawzi M, N'ait Ousidi A, Oblak D, Auhmani A, Riahi A, Morjani H, Ait Itto MY. Cytotoxic and apoptotic effects of some (R)-carvone-isoxazoline derivatives on human fibrosarcoma and carcinoma cells: experimental evaluation for cytotoxicity, molecular docking and molecular dynamics studies. J Biomol Struct Dyn 2023; 41:1930-1943. [PMID: 35014592 DOI: 10.1080/07391102.2022.2025903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study aimed to analyze the cytotoxic and apoptotic effects of isoxazoline derivatives with monoterpene scaffold 9a-e in HT-1080 fibrosarcoma, MCF-7, and MDA-MB-231 breast carcinoma, and A-549 lung carcinoma. The cytotoxic effects data revealed that compounds 9a-e generally induced significant cell growth inhibition in all cell lines, with IC50 ranging from 10 to 30 µM. However, for compounds 9c and 9e, the IC50 reached a value of 100 µM in HT-1080 cells. Compounds 9a, 9b, and 9d could induce apoptosis in HT-1080 cells as demonstrated by Annexin-V labeling and Caspase-3/7 activity. The apoptotic effect was accompanied by cell cycle arrest in the S phase. Molecular docking and molecular dynamics confirmed the empirical assay results and confirmed the stability of the complex with the inhibition of the anti-apoptotic protein, leading to cancer cell death. Overall, these data suggest that the proposed isoxazoline derivatives may be potential candidates for further investigation to evaluate their efficacy and optimal use in cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Oubella
- Department of Chemistry, Faculty of Sciences Semlalia, Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Marrakech, Morocco
| | - Abdoullah Bimoussa
- Department of Chemistry, Faculty of Sciences Semlalia, Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Marrakech, Morocco
| | - Said Byadi
- Equipe de spectroscopie d'extraction et de valorisation, Synthèse organique, Laboratoire d'extraction et de valorisation, Faculté des sciences d'Ain Chock, Université Hassan II, Casablanca, Morocco
| | - Yassine Laamari
- Department of Chemistry, Faculty of Sciences Semlalia, Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Marrakech, Morocco
| | - Mourad Fawzi
- Department of Chemistry, Faculty of Sciences Semlalia, Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Marrakech, Morocco
| | - Abdellah N'ait Ousidi
- Department of Chemistry, Faculty of Sciences Semlalia, Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Marrakech, Morocco
| | - Domen Oblak
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Aziz Auhmani
- Department of Chemistry, Faculty of Sciences Semlalia, Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Marrakech, Morocco
| | - Abdelkhalek Riahi
- Equipe MSO, CNRS UMR 7312 Institut de Chimie Moléculaire Université de Reims Champagne-Ardenne, REIMS Cédex 2, France
| | - Hamid Morjani
- BioSpectroscopie Translationnelle, BioSpecT-EA7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims Cedex, France
| | - My Youssef Ait Itto
- Department of Chemistry, Faculty of Sciences Semlalia, Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Marrakech, Morocco
| |
Collapse
|
8
|
Alagundagi DB, Ghate SD, Rajendra VKJ, Gollapalli P, Shetty VV, D’Souza C, Shetty P, Patil P. Exploring breast cancer exosomes for novel biomarkers of potential diagnostic and prognostic importance. 3 Biotech 2023; 13:7. [PMID: 36532861 PMCID: PMC9751250 DOI: 10.1007/s13205-022-03422-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The comprehensive bioinformatics analysis of breast cancer exosomes revealed that HSP90AA1, CCT2, and ENO1 were novel hub genes in the giant protein-protein interaction network of 110 exosomal proteins. Exosomes and their cargo such as discrete proteins, nucleic acids, and lipids are having potential role in the pathophysiology of breast cancer (BC). This study showed that the identified hub genes were particularly abundant in GO and KEGG pathways relevant to the positive regulation of telomerase. In addition, these hub genes were found to be considerably overexpressed in breast adenocarcinoma patients compared to healthy controls, and further, this overexpression is linked to the poor prognosis in BC patients. Furthermore, the ROC analysis revealed that CCT2 gene has strong diagnostic and prognostic value for BC. Additionally, this in silico analysis found that the anticancer agents and HSP90 inhibitors such as ganetespib, retaspimycin, and tanespimycin would have considerable potential in the treatment of BC. Overall, this study findings imply that HSP90AA1, a molecular chaperon and CCT2, a chaperonin would serve as diagnostic and prognostic biomarkers, respectively, for BC. However, these findings need to be further confirmed by laboratory and clinical studies for validating their potential applications. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03422-w.
Collapse
Affiliation(s)
- Dhananjay B. Alagundagi
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Sudeep D. Ghate
- Center for Bioinformatics and Biostatistics, K S Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, Karnataka 575018 India
| | - Vinay Kumar J. Rajendra
- Department of Oncology, Justice K S Hegde Charitable Hospital, K S Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, Karnataka 575018 India
| | - Pavan Gollapalli
- Center for Bioinformatics and Biostatistics, K S Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, Karnataka 575018 India
| | - Vijith V. Shetty
- Department of Oncology, Justice K S Hegde Charitable Hospital, K S Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, Karnataka 575018 India
| | - Caren D’Souza
- Department of General Surgery, Justice K S Hegde Charitable Hospital, K S Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, Karnataka 575018 India
| | - Praveenkumar Shetty
- Central Research Laboratory, Department of Biochemistry, K S Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, Karnataka 575018 India
| | - Prakash Patil
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| |
Collapse
|
9
|
Plitsi PK, Samakovli D, Roka L, Rampou A, Panagiotopoulos K, Koudounas K, Isaioglou I, Haralampidis K, Rigas S, Hatzopoulos P, Milioni D. GA-Mediated Disruption of RGA/BZR1 Complex Requires HSP90 to Promote Hypocotyl Elongation. Int J Mol Sci 2022; 24:ijms24010088. [PMID: 36613530 PMCID: PMC9820706 DOI: 10.3390/ijms24010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Circuitries of signaling pathways integrate distinct hormonal and environmental signals, and influence development in plants. While a crosstalk between brassinosteroid (BR) and gibberellin (GA) signaling pathways has recently been established, little is known about other components engaged in the integration of the two pathways. Here, we provide supporting evidence for the role of HSP90 (HEAT SHOCK PROTEIN 90) in regulating the interplay of the GA and BR signaling pathways to control hypocotyl elongation of etiolated seedlings in Arabidopsis. Both pharmacological and genetic depletion of HSP90 alter the expression of GA biosynthesis and catabolism genes. Major components of the GA pathway, like RGA (REPRESSOR of ga1-3) and GAI (GA-INSENSITIVE) DELLA proteins, have been identified as physically interacting with HSP90. Interestingly, GA-promoted DELLA degradation depends on the ATPase activity of HSP90, and inhibition of HSP90 function stabilizes the DELLA/BZR1 (BRASSINAZOLE-RESISTANT 1) complex, modifying the expression of downstream transcriptional targets. Our results collectively reveal that HSP90, through physical interactions with DELLA proteins and BZR1, modulates DELLA abundance and regulates the expression of BZR1-dependent transcriptional targets to promote plant growth.
Collapse
Affiliation(s)
| | - Despina Samakovli
- Biotechnology Department, Agricultural University of Athens, 11855 Athens, Greece
| | - Loukia Roka
- Biotechnology Department, Agricultural University of Athens, 11855 Athens, Greece
| | - Aggeliki Rampou
- Biotechnology Department, Agricultural University of Athens, 11855 Athens, Greece
- Laboratory of Virology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 14561 Athens, Greece
| | | | | | - Ioannis Isaioglou
- Biology Department, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Kosmas Haralampidis
- Biology Department, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Stamatis Rigas
- Biotechnology Department, Agricultural University of Athens, 11855 Athens, Greece
| | - Polydefkis Hatzopoulos
- Biotechnology Department, Agricultural University of Athens, 11855 Athens, Greece
- Correspondence: (P.H.); (D.M.); Tel.: +30-210-5294321 (P.H.); +30-210-5294348 (D.M.)
| | - Dimitra Milioni
- Biotechnology Department, Agricultural University of Athens, 11855 Athens, Greece
- Correspondence: (P.H.); (D.M.); Tel.: +30-210-5294321 (P.H.); +30-210-5294348 (D.M.)
| |
Collapse
|
10
|
Alrhmoun S, Sennikov S. The Role of Tumor-Associated Antigen HER2/neu in Tumor Development and the Different Approaches for Using It in Treatment: Many Choices and Future Directions. Cancers (Basel) 2022; 14:6173. [PMID: 36551661 PMCID: PMC9776683 DOI: 10.3390/cancers14246173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The treatment of HER2-positive cancers has changed significantly over the past ten years thanks to a significant number of promising new approaches that have been added to our arsenal in the fight against cancer, including monoclonal antibodies, inhibitors of tyrosine kinase, antibody-drug conjugates, vaccination, and particularly, adoptive-T-cell therapy after its great success in hematological malignancies. Equally important is the new methodology for determining patients eligible for targeted HER2 therapy, which has doubled the number of patients who can benefit from these treatments. However, despite the initial enthusiasm, there are still several problems in this field represented by drug resistance and tumor recurrence that require the further development of new more efficient drugs. In this review, we discuss various approaches for targeting the HER2 molecule in cancer treatment, highlighting their benefits and drawbacks, along with the different mechanisms responsible for resistance to HER2-targeted therapies and how to overcome them.
Collapse
Affiliation(s)
- Saleh Alrhmoun
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Department of Immunology, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
11
|
Clos J, Grünebast J, Holm M. Promastigote-to-Amastigote Conversion in Leishmania spp.-A Molecular View. Pathogens 2022; 11:1052. [PMID: 36145483 PMCID: PMC9503511 DOI: 10.3390/pathogens11091052] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
A key factor in the successful infection of a mammalian host by Leishmania parasites is their conversion from extracellular motile promastigotes into intracellular amastigotes. We discuss the physical and chemical triggers that induce this conversion and the accompanying changes at the molecular level crucial for the survival of these intracellular parasites. Special emphasis is given to the reliance of these trypanosomatids on the post-transcriptional regulation of gene expression but also to the role played by protein kinases, chaperone proteins and proteolytic enzymes. Lastly, we offer a model to integrate the transduction of different stress signals for the induction of stage conversion.
Collapse
|
12
|
Abdelmoaty AAA, Zhang P, Lin W, Fan YJ, Ye SN, Xu JH. C0818, a novel curcumin derivative, induces ROS-dependent cytotoxicity in human hepatocellular carcinoma cells in vitro via disruption of Hsp90 function. Acta Pharmacol Sin 2022; 43:446-456. [PMID: 33824458 PMCID: PMC8792041 DOI: 10.1038/s41401-021-00642-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/08/2021] [Indexed: 02/03/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is the most common molecular chaperone that controls the maturation of many oncoproteins critical in tumor development. Hsp90 has been considered as a promising target for cancer treatment, but the clinical significance of Hsp90 and the mechanisms of Hsp90 regulating the tumor-promoting effects in hepatocellular carcinoma (HCC) remain obscure. Previous studies have shown that curcumin, a polyphenol derived from the plant turmeric (Curcuma longa), inhibits tumor growth, which may provide an effective alternative therapy for HCC. Compared to curcumin, a novel derivative of curcumin, 3,5-(E)-Bis(3-methoxy-4-hydroxybenzal)-4-piperidinone hydrochloride (C0818) that is more potent in Hsp90 inhibition and antitumor activity. In this study, we investigated the effect of C0818 on HCC cells in vitro and its relation to Hsp90 inhibition. We showed that C0818 concentration-dependently inhibited the proliferation, the colony formation and induced apoptosis in HepG2 and Sk-Hep-1 cells. C0818 concentration-dependently inhibited DNA synthesis and induced G2/M phase arrest in HepG2 and Sk-Hep-1 cells. We further demonstrated that C0818 induced ROS- and caspase-dependent apoptosis in HCC cells through the mitochondrial-mediated pathway. C0818 induced the degradation of Hsp90 client proteins as RAS, C-Raf, P-C-Raf, Erk, P-ERK, MEK, P-MEK, Akt and P-Akt, which led to subsequent inhibition of the RAS/RAF/MEK/ERK and PI3K/AKT pathways. We revealed that C0818 could inhibit the binding of Hsp90 with its clients without affecting their transcription, which subsequently induced the degradation of Hsp90 clients by the proteasome rather than the lysosome. These results are of potential importance for elucidating a novel Hsp90 inhibitor targeting HCC.
Collapse
Affiliation(s)
- Ahmed Attia Ahmed Abdelmoaty
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, China
| | - Ping Zhang
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, China
| | - Wen Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - Ying-Juan Fan
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, China
| | - Sheng-Nan Ye
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
| | - Jian-Hua Xu
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
13
|
The Effect of Liposomal Diallyl Disulfide and Oxaliplatin on Proliferation of Colorectal Cancer Cells: In Vitro and In Silico Analysis. Pharmaceutics 2022; 14:pharmaceutics14020236. [PMID: 35213970 PMCID: PMC8877238 DOI: 10.3390/pharmaceutics14020236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Diallyl disulfide (DADS) is one of the main bioactive organosulfur compounds of garlic, and its potential against various cancer models has been demonstrated. The poor solubility of DADS in aqueous solutions limits its uses in clinical application. The present study aimed to develop a novel formulation of DADS to increase its bioavailability and therapeutic potential and evaluate its role in combination with oxaliplatin (OXA) in the colorectal cancer system. We prepared and characterized PEGylated, DADS (DCPDD), and OXA (DCPDO) liposomes. The anticancer potential of these formulations was then evaluated in HCT116 and RKO colon cancer cells by different cellular assays. Further, a molecular docking-based computational analysis was conducted to determine the probable binding interactions of DADS and OXA. The results revealed the size of the DCPDD and DCPDO to be 114.46 nm (95% EE) and 149.45 nm (54% EE), respectively. They increased the sensitivity of the cells and reduced the IC50 several folds, while the combinations of them showed a synergistic effect and induced apoptosis by 55% in the cells. The molecular docking data projected several possible targets of DADS and OXA that could be evaluated more precisely by these novel formulations in detail. This study will direct the usage of DCPDD to augment the therapeutic potential of DCPDO against colon cancer in clinical settings.
Collapse
|
14
|
Larghi EL, Bruneau A, Sauvage F, Alami M, Vergnaud-Gauduchon J, Messaoudi S. Synthesis and Biological Activity of 3-(Heteroaryl)quinolin-2(1 H)-ones Bis-Heterocycles as Potential Inhibitors of the Protein Folding Machinery Hsp90. Molecules 2022; 27:412. [PMID: 35056725 PMCID: PMC8778022 DOI: 10.3390/molecules27020412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/02/2023] Open
Abstract
In the context of our SAR study concerning 6BrCaQ analogues as C-terminal Hsp90 inhibitors, we designed and synthesized a novel series of 3-(heteroaryl)quinolin-2(1H), of types 3, 4, and 5, as a novel class of analogues. A Pd-catalyzed Liebeskind-Srogl cross-coupling was developed as a convenient approach for easy access to complex purine architectures. This series of analogues showed a promising biological effect against MDA-MB231 and PC-3 cancer cell lines. This study led to the identification of the best compounds, 3b (IC50 = 28 µM) and 4e, which induce a significant decrease of CDK-1 client protein and stabilize the levels of Hsp90 and Hsp70 without triggering the HSR response.
Collapse
Affiliation(s)
- Enrique L. Larghi
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France;
- Instituto de Química Rosario (IQUIR) CONICET/UNR, FBioyF, Rosario S2002LRK, Argentina;
| | - Alexandre Bruneau
- Instituto de Química Rosario (IQUIR) CONICET/UNR, FBioyF, Rosario S2002LRK, Argentina;
| | - Félix Sauvage
- CNRS, Institut Galien-Paris Saclay, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (F.S.); (J.V.-G.)
| | - Mouad Alami
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France;
| | - Juliette Vergnaud-Gauduchon
- CNRS, Institut Galien-Paris Saclay, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (F.S.); (J.V.-G.)
| | - Samir Messaoudi
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France;
| |
Collapse
|
15
|
Dong Y, Ma N, Fan L, Yuan L, Wu Q, Gong L, Tao Z, Chen J, Ren J. GADD45β stabilized by direct interaction with HSP72 ameliorates insulin resistance and lipid accumulation. Pharmacol Res 2021; 173:105879. [PMID: 34508810 DOI: 10.1016/j.phrs.2021.105879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022]
Abstract
Growth arrest and DNA damage-inducible 45β (GADD45β) belongs to the GADD45 family which is small acidic proteins in response to cellular stress. GADD45β has already been reported to have excellent capabilities against cancer, innate immunity and neurological diseases. However, there is little information regard GADD45β and non-alcoholic fatty liver disease (NAFLD). In the current work, we found that the expression of GADD45β was markedly decreased in the livers of NAFLD patients via analyzing Gene Expression Omnibus (GEO) dataset and in mouse model through detecting its mRNA in high-fat-high-fructose diet (HFHFr)-fed mice. Moreover, the results from in vivo experiment demonstrated that overexpression of GADD45β by AAV8-mediated gene transfer in HFHFr-fed mouse model could reduce the level of serum and hepatic triglyceride (TG), and alleviate insulin resistance. Subsequently, by combining immunoprecipitation (IP) and mass spectrometry, we identified that HSP72 directly interacted with GADD45β to prevent GADD45β from being degraded by the proteasome pathway. Finally, the benefits of GADD45β in regulating key factors of TG synthesis and insulin signaling pathway were abolished after HSP72 knockdown. In conclusion, GADD45β stabilized by the interaction with HSP72 could alleviate the NAFLD-related pathologies, suggested it might be a potential target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yunxia Dong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Ningning Ma
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Lei Fan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Luyang Yuan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Qian Wu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Likun Gong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Zhouteng Tao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
16
|
Gutierrez M, Guo R, Giaccone G, Liu SV, Hao Z, Hilton C, Hinson JM, Kris MG, Orlemans EO, Drilon A. Phase 1 multicenter study of the HSP90 inhibitor SNX-5422 plus carboplatin and paclitaxel in patients with lung cancers. Lung Cancer 2021; 162:23-28. [PMID: 34655925 DOI: 10.1016/j.lungcan.2021.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Single-agent heat shock protein 90 (HSP90) inhibition has demonstrated activity in oncogene-driven non-small cell and small cell lung cancers. SNX-5422 is an oral HSP90 inhibitor with increased activity in vitro with the addition of carboplatin and paclitaxel. Therefore, we conducted a phase 1, open-label, multicenter study to evaluate SNX-5422, carboplatin and paclitaxel followed by SNX-5422 maintenance in patients with advanced lung cancers. MATERIALS AND METHODS In part 1 (3 + 3 dose escalation), SNX-5422 (50/75/100-mg/m2) was dosed every other day (qod) for 21 days (28-day cycle) for ≤4 cycles; carboplatin (AUC 5)-paclitaxel (175 mg/m2) was administered once every 3 weeks for ≤6 courses. In part 2 (maintenance), subjects who achieved at least stable disease in part 1 received 100 mg/m2 SNX-5422 monotherapy qod for 21 days (28-day cycle). RESULTS Twenty-three patients with advanced non-small cell lung cancer (NSCLC, n = 20) and small cell lung cancer (SCLC, n = 3) were enrolled. The median age was 60 years and 61% (n = 14/23) had ≥1 prior treatment regimens. The maximum tolerated dose of SNX-5422 was 100 mg/m2 qod in combination with carboplatin-paclitaxel. The most common treatment-related grade 3/4 adverse events (part 1/part 2) were diarrhea (26%/15%) and nausea (9%/0%). In response-evaluable patients with NSCLC, 33% (6/18) had a partial response, 56% (10/18) stable disease, and 11% (2/18) progressive disease. Patients who remained on single-agent SNX-5422 maintenance therapy ≥2 months (n = 9) had cancers enriched for oncogenic drivers (n = 3 KRAS mutation, n = 1 EGFR exon 20 mutation, n = 1 HER2 mutation, and n = 1 RET fusion). CONCLUSIONS The triplet combination of SNX-5422, carboplatin and paclitaxel followed by maintenance SNX-5422 therapy was well-tolerated and showed anti-tumor activity. Cancers for which disease control on single-agent SNX-5422 maintenance was observed were enriched for oncogene-driven NSCLCs.
Collapse
Affiliation(s)
- Martin Gutierrez
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Robin Guo
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical Center, New York, NY, USA
| | | | - Stephen V Liu
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Zhonglin Hao
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | | | | | - Mark G Kris
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical Center, New York, NY, USA
| | | | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical Center, New York, NY, USA.
| |
Collapse
|
17
|
Soo TCC, Bhassu S. Differential STAT gene expressions of Penaeus monodon and Macrobrachium rosenbergii in response to white spot syndrome virus (WSSV) and bacterial infections: Additional insight into genetic variations and transcriptomic highlights. PLoS One 2021; 16:e0258655. [PMID: 34653229 PMCID: PMC8519450 DOI: 10.1371/journal.pone.0258655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023] Open
Abstract
Diseases have remained the major issue for shrimp aquaculture industry for decades by which different shrimp species demonstrated alternative disease resistance or tolerance. However, there had been insufficient studies on the underlying host mechanisms of such phenomenon. Hence, in this study, the main objective involves gaining a deeper understanding into the functional importance of shrimp STAT gene from the aspects of expression, sequence, structure, and associated genes. STAT gene was selected primarily because of its vital signalling roles in stress, endocrine, and immune response. The differential gene expressions of Macrobrachium rosenbergii STAT (MrST) and Penaeus monodon STAT (PmST) under White Spot Syndrome Virus (WSSV) and Vibrio parahaemolyticus/VpAHPND infections were identified through qPCR analysis. Notably, during both pathogenic infections, MrST demonstrated significant gene expression down-regulations (during either early or later post-infection time points) whereas PmST showed only significant gene expression up-regulations. Important sequence conservation or divergence was highlighted through STAT sequence comparison especially amino acid alterations at 614 aa [K (Lysine) to E (Glutamic Acid)] and 629 aa [F (Phenylalanine) to V (Valine)] from PmST (AY327491.1) to PmST (disease tolerant strain). There were significant differences observed between in silico characterized structures of MrST and PmST proteins. Important functional differentially expressed genes (DEGs) in the aspects of stress, endocrine, immune, signalling, and structural were uncovered through comparative transcriptomic analysis. The DEGs associated with STAT functioning were identified including inositol 1,4,5-trisphosphate receptor, hsp90, caspase, ATP binding cassette transmembrane transporter, C-type Lectin, HMGB, ALF1, ALF3, superoxide dismutase, glutathione peroxidase, catalase, and TBK1. The main findings of this study are STAT differential gene expression patterns, sequence divergence, structural differences, and associated functional DEGs. These findings can be further utilized for shrimp health or host response diagnostic studies. STAT gene can also be proposed as a suitable candidate for future studies of shrimp innate immune enhancement.
Collapse
Affiliation(s)
- Tze Chiew Christie Soo
- Faculty of Science, Animal Genetics and Genome Evolutionary Laboratory (AGAGEL), Department of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Faculty of Science, Animal Genetics and Genome Evolutionary Laboratory (AGAGEL), Department of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Terra Aqua Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), Research Management and Innovation Complex, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Birbo B, Madu EE, Madu CO, Jain A, Lu Y. Role of HSP90 in Cancer. Int J Mol Sci 2021; 22:ijms221910317. [PMID: 34638658 PMCID: PMC8508648 DOI: 10.3390/ijms221910317] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
HSP90 is a vital chaperone protein conserved across all organisms. As a chaperone protein, it correctly folds client proteins. Structurally, this protein is a dimer with monomer subunits that consist of three main conserved domains known as the N-terminal domain, middle domain, and the C-terminal domain. Multiple isoforms of HSP90 exist, and these isoforms share high homology. These isoforms are present both within the cell and outside the cell. Isoforms HSP90α and HSP90β are present in the cytoplasm; TRAP1 is present in the mitochondria; and GRP94 is present in the endoplasmic reticulum and is likely secreted due to post-translational modifications (PTM). HSP90 is also secreted into an extracellular environment via an exosome pathway that differs from the classic secretion pathway. Various co-chaperones are necessary for HSP90 to function. Elevated levels of HSP90 have been observed in patients with cancer. Despite this observation, the possible role of HSP90 in cancer was overlooked because the chaperone was also present in extreme amounts in normal cells and was vital to normal cell function, as observed when the drastic adverse effects resulting from gene knockout inhibited the production of this protein. Differences between normal HSP90 and HSP90 of the tumor phenotype have been better understood and have aided in making the chaperone protein a target for cancer drugs. One difference is in the conformation: HSP90 of the tumor phenotype is more susceptible to inhibitors. Since overexpression of HSP90 is a factor in tumorigenesis, HSP90 inhibitors have been studied to combat the adverse effects of HSP90 overexpression. Monotherapies using HSP90 inhibitors have shown some success; however, combination therapies have shown better results and are thus being studied for a more effective cancer treatment.
Collapse
Affiliation(s)
- Bereket Birbo
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Elechi E. Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Chikezie O. Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Aayush Jain
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA; (E.E.M.); (C.O.M.); (A.J.)
| | - Yi Lu
- Health Science Center, Department of Pathology and Laboratory Medicine, University of Tennessee, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-(901)-448-5436; Fax: +1-(901)-448-5496
| |
Collapse
|
19
|
Durairajan SSK, Selvarasu K, Bera MR, Rajaram K, Iyaswamy A, Li M. Alzheimer's Disease and other Tauopathies: Exploring Efficacy of Medicinal Plant-Derived Compounds in Alleviating Tau-Mediated Neurodegeneration. Curr Mol Pharmacol 2021; 15:361-379. [PMID: 34488602 DOI: 10.2174/1874467214666210906125318] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/12/2020] [Accepted: 01/27/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD), a major form of dementia, has been reported to affect more than 50 million people worldwide. It is characterized by the presence of amyloid-β (Aβ) plaques and hyperphosphorylated Tau-associated neurofibrillary tangles in the brain. Apart from AD, microtubule (MT)-associated protein Tau is also involved in other neurodegenerative diseases called tauopathies, including Pick's disease, frontotemporal lobar degeneration, progressive supranuclear palsy, and corticobasal degeneration. The recently unsuccessful phase III clinical trials related to Aβ-targeted therapeutic drugs indicated that alternative targets, such as Tau, should be studied to discover more effective and safer drugs. Recent drug discovery approaches to reduce AD-related Tau pathologies are primarily based on blocking Tau aggregation, inhibiting Tau phosphorylation, compensating impaired Tau function with MT-stabilizing agents, and targeting the degradation pathways in neuronal cells to degrade Tau protein aggregates. Owing to several limitations of the currently-available Tau-directed drugs, further studies are required to generate further effective and safer Tau-based disease-modifying drugs. Here, we review the studies that focused on medicinal plant-derived compounds capable of modulating the Tau protein, which is significantly elevated and hyperphosphorylated in AD and other tauopathies. We mainly considered the studies that focused on Tau protein as a therapeutic target. We reviewed several pertinent papers retrieved from PubMed and ScienceDirect using relevant keywords, with a primary focus on the Tau-targeting compounds from medicinal plants. These compounds include indolines, phenolics, flavonoids, coumarins, alkaloids, and iridoids, which have been scientifically proven to be Tau-targeting candidates for the treatment of AD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur. India
| | - Karthikeyan Selvarasu
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur. India
| | - Minu Rani Bera
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur. India
| | - Kaushik Rajaram
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur. India
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR. China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR. China
| |
Collapse
|
20
|
Marunouchi T, Nakashima M, Ebitani S, Umezu S, Karasawa K, Yano E, Tanonaka K. Hsp90 Inhibitor Attenuates the Development of Pathophysiological Cardiac Fibrosis in Mouse Hypertrophy via Suppression of the Calcineurin-NFAT and c-Raf-Erk Pathways. J Cardiovasc Pharmacol 2021; 77:822-829. [PMID: 34016843 DOI: 10.1097/fjc.0000000000001017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/27/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT In the previous study, we showed that an Hsp90 inhibitor, 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), attenuates hypertrophic remodeling of cardiomyocytes during the development of heart failure. In this present study, we investigated the effects of 17-AAG on cardiac fibrosis during the development of heart failure. We used pressure-loaded cardiac hypertrophic mice prepared by constriction of the transverse aorta (TAC), which induces significant cardiac fibrosis without scar tissue. From the sixth week after the TAC operation, vehicle or 17-AAG was administered intraperitoneally twice a week. Eight weeks after the operation, the vehicle-treated animals showed chronic heart failure. On the other hand, cardiac deterioration of the 17-AAG-treated animals was attenuated. In 17-AAG-treated animals, when the degree of fibrosis was observed by histological staining, their volume of fibrosis was found to be reduced. The content of calcineurin, an Hsp90 client protein, and the level of dephosphorylated NFATc2, a transcription factor in the cardiac fibroblasts, in the TAC mice was reduced by treatment with 17-AAG. Furthermore, c-Raf and Erk signaling, indicators for cell proliferation and collagen synthesis, was also attenuated. In in vitro experiments, the proliferation and collagen synthesis of the cultured cardiac fibroblasts were attenuated by the presence of 17-AAG. When cardiac fibroblasts were incubated with angiotensin II, calcineurin-NFATc2 and c-Raf-Erk signaling in the cells were activated. These activations were attenuated by 17-AAG. Our findings suggest that suppression of the calcineurin-NFAT and c-Raf-Erk pathways may partially contribute to the attenuation of myocardial fibrosis caused by treatment with 17-AAG. Therefore, our data imply that the Hsp90 inhibitor may have potential for novel therapeutic strategy for the treatment of heart failure.
Collapse
Affiliation(s)
- Tetsuro Marunouchi
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences
| | | | | | | | | | | | | |
Collapse
|
21
|
Dash R, Jahan I, Ali MC, Mitra S, Munni YA, Timalsina B, Hannan MA, Moon IS. Potential roles of natural products in the targeting of proteinopathic neurodegenerative diseases. Neurochem Int 2021; 145:105011. [PMID: 33711400 DOI: 10.1016/j.neuint.2021.105011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Defective proteostasis is associated with the gradual accumulations of misfolded proteins and is a hallmark of many age-associated neurodegenerative diseases. In the aged brain, maintenance of the proteostasis network presents a substantial challenge, and its loss contributes to the onset and progression of neurological diseases associated with cognitive decline due to the generation of toxic protein aggregates, a process termed 'proteinopathy'. Emerging evidence suggests that reversing proteinopathies by boosting proteostasis might provide an effective means of preventing neurodegeneration. From this perspective, phytochemicals may play significant roles as potent modulators of the proteostasis network, as previous reports have suggested they can interact with various network components to modify pathologies and confer neuroprotection. This review focuses on some potent phytochemicals that directly or indirectly modulate the proteostasis network and on their possible molecular targets. In addition, we propose strategies for the natural product-based modulation of proteostasis machinery that target proteinopathies.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Israt Jahan
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
22
|
Okada S, Furuya M, Fukui-Kaneshige A, Nakanishi H, Tani H, Sasai K. HSP110 expression in canine mammary gland tumor and its correlation with histopathological classification and grade. Vet Immunol Immunopathol 2020; 232:110171. [PMID: 33385709 DOI: 10.1016/j.vetimm.2020.110171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/07/2020] [Accepted: 12/16/2020] [Indexed: 12/28/2022]
Abstract
Heat shock proteins (HSPs) play critical roles as molecular chaperones, thereby promoting cellular homeostasis. HSPs are overexpressed in many types of human tumors and their serum concentration is elevated in cancer patients. Recent studies have suggested that HSPs may promote tumorigenesis via interactions with tumor-related proteins. There are only a few studies that address the expression of HSPs in canine tumors. In our previous study, we identified elevated levels of HSP110 expression in canine mammary gland tumors (cMGTs). In this study, we examined both serum concentrations and tissue expression of HSP110 in dogs with cMGT. We found that serum HSP110 concentrations were not significantly different in a comparison between dogs with cMGT (3.44 ± 1.27 μg/mL) and healthy controls (3.23 ± 1.18 μg/mL). By contrast, significant differences in levels of HSP110 expression were identified in comparisons between simple carcinoma and benign mixed tumor (p = 0.001), simple carcinoma and non-neoplastic lesions (p < 0.001), complex carcinoma and benign mixed tumor (p = 0.015), complex carcinoma and non-neoplastic lesions (p < 0.001), simple adenoma and benign mixed tumor (p = 0.041), and simple adenoma and non-neoplastic lesions (p = 0.007). Similarly, significantly different levels of HSP110 expression were identified when comparing grade Ⅲ with non-neoplastic lesion (p = 0.026), grade Ⅱ with benign tumor (p = 0.015), grade Ⅱ with non-neoplastic lesion (p < 0.001), and grade Ⅰ with non-neoplastic lesion (p < 0.001). Taken together, our results indicate that expression of HSP110 correlates with the malignancy in this cohort of dogs diagnosed with cMGT. These findings also suggest that HSP110 is associated with tumorigenesis and the relative malignancy of cMGT.
Collapse
Affiliation(s)
- Satoru Okada
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Masaru Furuya
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan.
| | - Ayano Fukui-Kaneshige
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Hitoshi Nakanishi
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Hiroyuki Tani
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Kazumi Sasai
- Laboratory of Veterinary Internal Medicine, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
23
|
Li L, Chen NN, You QD, Xu XL. An updated patent review of anticancer Hsp90 inhibitors (2013-present). Expert Opin Ther Pat 2020; 31:67-80. [PMID: 32990109 DOI: 10.1080/13543776.2021.1829595] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Heat shock protein 90 (Hsp90) is one of the most critical chaperones amenable to mediating the folding and maturation of more than 300 client proteins. In normal cells, Hsp90 chaperone cycle is required for regulating multiple cellular processes to maintain homeostasis. However, extremely overexpressed Hsp90 in neoplastic cells results in the dysregulation of client proteins, many of which are indispensable to the accumulation of cancer hallmarks, such as infinite proliferation and increased invasiveness. Consequently, modulation of Hsp90 activity has been considered as a potential strategy for cancer treatment. AREAS COVERED This review recapitulated recent patents' progress in the development of Hsp90 inhibitors with potent antitumor activities during 2013 to present. Besides, the structural-activity relationships of the patented inhibitors and their structural similarity were also discussed. EXPERT OPINION Hsp90, as an anticancer target, has been investigated for several decades. The first generation of Hsp90 inhibitors exhibited potent antitumor activities in preclinical trials but were trapped in different phases of clinical trials. The second generation of Hsp90 inhibitors has been identified with increased specificity and security through structure modification. Moreover, these inhibitors may offer opportunities for studies of Hsp90 chaperone and development of Hsp90 inhibition therapy.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University , Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , Nanjing, China
| | - Nan-Nan Chen
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University , Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , Nanjing, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University , Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , Nanjing, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University , Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , Nanjing, China
| |
Collapse
|
24
|
Shi W, Huang Q, Xie J, Wang H, Yu X, Zhou Y. CKS1B as Drug Resistance-Inducing Gene-A Potential Target to Improve Cancer Therapy. Front Oncol 2020; 10:582451. [PMID: 33102238 PMCID: PMC7545642 DOI: 10.3389/fonc.2020.582451] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer is a threat to human health and life. Although previously centered on chemical drug treatments, cancer treatment has entered an era of precision targeted therapy. Targeted therapy entails precise guidance, allowing the selective killing of cancer cells and thereby reducing damage to healthy tissues. Therefore, the need to explore potential targets for tumor treatment is vital. Cyclin-dependent kinase regulatory subunit 1B (CKS1B), a member of the conserved cyclin kinase subunit 1 (CKS1) protein family, plays an essential role in cell cycling. A large number of studies have shown that CKS1B is associated with the pathogenesis of many human cancers and closely related to drug resistance. Here, we describe the current understanding of the cellular functions of CKS1B and its underlying mechanisms, summarize a recent study of CKS1B as a target for cancer treatment and discuss the potential of CKS1B as a therapeutic target.
Collapse
Affiliation(s)
- Wenwen Shi
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiudi Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiacui Xie
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - He Wang
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Ishikawa C, Mori N. The role of CUDC-907, a dual phosphoinositide-3 kinase and histone deacetylase inhibitor, in inhibiting proliferation of adult T-cell leukemia. Eur J Haematol 2020; 105:763-772. [PMID: 32780889 DOI: 10.1111/ejh.13508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES New effective therapeutic strategies for human T-cell leukemia virus type 1 (HTLV-1)-driven adult T-cell leukemia (ATL) are required because of resistance to chemotherapeutic agents. Here, we aimed to determine the therapeutic efficacy of a dual phosphoinositide 3 kinase (PI3K)/histone deacetylase (HDAC) inhibitor, CUDC-907. METHODS Cell viability, cell cycle progression, and apoptotic events were examined by WST-8 assay, flow cytometry, and Hoechst 33342 staining. Caspase activity was determined using Calorimetric Caspase Assay kits. Immunoblotting and electrophoretic mobility shift assay were used to assess the intracellular signaling cascades. RESULTS The combination of PI3K inhibitor BKM120 and HDAC inhibitor LBH589 resulted in a synergistic cytotoxic effect in HTLV-1-infected T cells. CUDC-907 was more efficacious than BKM120 and LBH589. It induced G1 cell cycle arrest with downregulation of cyclin D1/D2, CDK4/6, c-Myc, and phosphorylated retinoblastoma protein expression. Apoptosis was induced via caspase-3/8/9 activation along with downregulation of Bcl-XL , Bcl-2, XIAP, survivin, and cIAP1/2, and upregulation of Bax and Bak. Histone H3 acetylation, H2AX activation, Hsp27 phosphorylation, and Hsp70 and Hsp27 upregulation were observed after treatment. CUDC-907 suppressed Akt, NF-κB, and AP-1 by downregulating phosphorylated and/or total Akt, IKKα/β, RelA, JunB, and JunD. CONCLUSION CUDC-907 may be a potential therapeutic agent for ATL.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan.,Division of Health Sciences, Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
26
|
Molecular insights into information processing and developmental and immune regulation of Eriocheir sinensis megalopa under hyposaline stress. Genomics 2020; 112:4647-4656. [PMID: 32798716 DOI: 10.1016/j.ygeno.2020.07.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 11/23/2022]
Abstract
Eriocheir sinensis is an important euryhaline catadromous crustacean of the Yangtze River and an important commercial species for breeding in China. However, wild E. sinensis have suffered serious damage attributed to overfishing, climate change, etc. The Ministry of Agriculture of China issued a notice banning the commercial fishing of wild E. sinensis. E. sinensis megalopa migrates upriver into fresh water for growth and fattening, which creates optimal conditions to experimentally explore its hyposaline osmoregulation mechanism. We performed comparative transcriptome analyses of E. sinensis megalopae under hyposaline stress. The results suggest that KEGG pathways and genes related to genetic information processing, developmental regulation, immune and anti-stress responses were differentially expressed. The present study reveals the most significantly enriched pathways and functional gene groups, and explores the hyposaline osmoregulation mode of E. sinensis megalopae. This study lays a theoretical foundation for further studies on the osmoregulation and developmental mechanisms of E. sinensis.
Collapse
|
27
|
De Vita S, Terracciano S, Bruno I, Chini MG. From Natural Compounds to Bioactive Molecules through NMR and
In Silico
Methodologies. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Simona De Vita
- Department of Pharmacy University of Salerno Via Giovanni Paolo II, n°132 84084 Fisciano (SA) Italy
| | - Stefania Terracciano
- Department of Pharmacy University of Salerno Via Giovanni Paolo II, n°132 84084 Fisciano (SA) Italy
| | - Ines Bruno
- Department of Pharmacy University of Salerno Via Giovanni Paolo II, n°132 84084 Fisciano (SA) Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory University of Molise C.da Fonte Lappone‐ 86090 Pesche (IS) Italy
| |
Collapse
|
28
|
Liu J, Li H, Xia T, Du P, Giri B, Li X, Li X, Cheng G. Identification of Schistosoma japonicum GSK3β interacting partners by yeast two-hybrid screening and its role in parasite survival. Parasitol Res 2020; 119:2217-2226. [PMID: 32500370 DOI: 10.1007/s00436-020-06731-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/25/2020] [Indexed: 01/04/2023]
Abstract
Schistosoma is the causative agent of schistosomiasis, a common infectious disease distributed worldwide. Our previous phosphoproteomic analysis suggested that glycogen synthase kinase 3 (GSK3), a conserved protein kinase in eukaryotes, is likely involved in protein phosphorylation of Schistosoma japonicum. Here, we aimed to identify the interacting partners of S. japonicum GSK3β (SjGSK3β) and to evaluate its role in parasite survival. Toward these ends, we determined the transcription levels of SjGSK3β at different developmental stages and identified its interacting partners of SjGSK3β by screening a yeast two-hybrid S. japonicum cDNA library. We further used RNA interference (RNAi) to inhibit the expression of SjGSK3β in adult worms in vitro and examined the resultant changes in transcription of its putative interacting proteins and in worm viability compared with those of control worms. Reverse transcription-quantitative polymerase chain analysis indicated that SjGSK3β is expressed throughout the life cycle of S. japonicum, with higher expression levels detected in the eggs and relatively higher expression level found in male worms than in female worms. By screening the yeast two-hybrid library, eight proteins were identified as potentially interacting with SjGSK3β including cell division cycle 37 homolog (Cdc37), 14-3-3 protein, tegument antigen (I(H)A), V-ATPase proteolipid subunit, myosin alkali light chain 1, and three proteins without recognized functional domains. In addition, SjGSK3β RNAi reduced the SjGSK3β gene transcript level, leading to a significant decrease in kinase activity, cell viability, and worm survival. Collectively, these findings suggested that SjGSK3β may interact with its partner proteins to influence worm survival by regulating kinase activity.
Collapse
Affiliation(s)
- Jingyi Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Huimin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Tianqi Xia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Pengfei Du
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Bikash Giri
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Xue Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Xuxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China
| | - Guofeng Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Shanghai, 200241, China.
- Tongji University of School of Medicine, #1239 Si-Ping Road, Shanghai, 200092, China.
| |
Collapse
|
29
|
Nouri-Vaskeh M, Alizadeh L, Hajiasgharzadeh K, Mokhtarzadeh A, Halimi M, Baradaran B. The role of HSP90 molecular chaperones in hepatocellular carcinoma. J Cell Physiol 2020; 235:9110-9120. [PMID: 32452023 DOI: 10.1002/jcp.29776] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Misfolded proteins have enhanced formation of toxic oligomers and nonfunctional protein copies lead to recruiting wild-type protein types. Heat shock protein 90 (HSP90) is a molecular chaperone generated by cells that are involved in many cellular functions through regulation of folding and/or localization of large multi-protein complexes as well as client proteins. HSP90 can regulate a number of different cellular processes including cell proliferation, motility, angiogenesis, signal transduction, and adaptation to stress. HSP90 makes the mutated oncoproteins able to avoid misfolding and degradation and permits the malignant transformation. As a result, HSP90 is an important factor in several signaling pathways associated with tumorigenicity, therapy resistance, and inhibiting apoptosis. Clinically, the upregulation of HSP90 expression in hepatocellular carcinoma (HCC) is linked with advanced stages and inappropriate survival in cases suffering from this kind of cancer. The present review comprehensively assesses HSP90 functions and its possible usefulness as a potential diagnostic biomarker and therapeutic option for HCC.
Collapse
Affiliation(s)
- Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Alizadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Halimi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Chebotareva N, Vinogradov A, Gindis A, Tao E, Moiseev S. Heat shock protein 90 and NFkB levels in serum and urine in patients with chronic glomerulonephritis. Cell Stress Chaperones 2020; 25:495-501. [PMID: 32240529 PMCID: PMC7193002 DOI: 10.1007/s12192-020-01089-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 10/24/2022] Open
Abstract
Heat shock proteins play an important role in immune inflammation and the formation and restoration of proteins. In recent years, the importance of heat shock protein 90 (Hsp90) in the activation of immune inflammation through nuclear factor kB (NFkB) has been discussed. To assess the activation of the Hsp90-NFkB system by measuring serum and urinary levels in patients with chronic glomerulonephritis (CGN). This study included 32 patients with active forms of CGN and 14 patients with Fabry nephropathy. The control group included 10 healthy individuals. Twenty-one out of 32 CGN patients had nephrotic syndrome (NS). Eleven out of 32 CGN patients had proteinuria levels from 1 to 3 g/day without nephrotic syndrome. A total of 17 patients had renal dysfunction (estimated glomerular filtration rate < 60 ml/min/1.73m2). Fourteen patients with Fabry nephropathy had proteinuria without nephrotic syndrome. Serum and urine HSP-90 and NFkB p65 levels were determined using an enzyme-linked immunosorbent assay. The levels of HSP-90 and NFkB in the serum of patients with CGN were significantly higher than in healthy individuals and patients with Fabry nephropathy. In patients with Fabry nephropathy, the HSP-90 and NFkB levels in the urine and serum did not significantly differ from those in the control subjects. Serum Hsp90 levels were significantly higher in the CGN patients with NS than in patients without NS, as well as in patients with normal renal function compared with patients with an eGFR < 60 ml/min/1.73 m2 and patients with tubulo-interstitial fibrosis. Higher levels of HSP-90 and NFkB in serum were observed in patients with nephrotic forms of CGN, including focal segmental glomerulosclerosis, minimal change disease and membranous nephropathy. There were no correlations between the clinical signs of CGN and urinary HSP90/NFkB levels. Activation of the HSP-90-NFkB system, which is directly involved in the development of immune inflammation in CGN, was found in patients with an active course of CGN, especially in those with nephrotic syndrome.
Collapse
Affiliation(s)
- Natalia Chebotareva
- Tareev Clinic of Internal Diseases, Sechenov First Moscow State Medical University, Rossolimo 11/5, Moscow, Russia, 119435.
| | - Anatoliy Vinogradov
- Tareev Clinic of Internal Diseases, Sechenov First Moscow State Medical University, Rossolimo 11/5, Moscow, Russia, 119435
| | - Alla Gindis
- Tareev Clinic of Internal Diseases, Sechenov First Moscow State Medical University, Rossolimo 11/5, Moscow, Russia, 119435
| | - Ekaterina Tao
- Tareev Clinic of Internal Diseases, Sechenov First Moscow State Medical University, Rossolimo 11/5, Moscow, Russia, 119435
| | - Sergey Moiseev
- Tareev Clinic of Internal Diseases, Sechenov First Moscow State Medical University, Rossolimo 11/5, Moscow, Russia, 119435
| |
Collapse
|
31
|
Vivas-Reyes R, Morales-Bayuelo A, Gueto C, Drosos JC, Márquez Lázaro J, Baldiris R, Ahumedo M, Vivas-Gomez C, Aparicio D. Study of interaction energies between residues of the active site of Hsp90 and geldanamycin analogues using quantum mechanics/molecular mechanics methods. F1000Res 2020; 8:2040. [PMID: 37767457 PMCID: PMC10521063 DOI: 10.12688/f1000research.20844.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2020] [Indexed: 09/29/2023] Open
Abstract
Background: Heat shock protein (Hsp90KDa) is a molecular chaperone involved in the process of cellular oncogenesis, hence its importance as a therapeutic target. Geldanamycin is an inhibitor of Hsp90 chaperone activity, which binds to the ATP binding site in the N-terminal domain of Hsp90. However, geldanamycin has shown hepatotoxic damage in clinical trials; for this reason, its use is not recommended. Taking advantage that geldanamycin binds successfully to Hsp90, many efforts have focused on the search for similar analogues, which have the same or better biological response and reduce the side effects of its predecessor; 17-AAG and 17-DMAG are examples of these analogues. Methods: In order to know the chemical factors influencing the growth or decay of the biological activity of geldanamycin analogues, different computational techniques such as docking, 3DQSAR and quantum similarity were used. Moreover, the study quantified the interaction energy between amino acids residues of active side and geldanamycin analogues, through hybrid methodology (Autodock-PM6) and DFT indexes. Results: The evaluation of interaction energies showed that the interaction with Lys58 residue is essential for the union of the analogues to the active site of Hsp90, and improves its biological activity. This union is formed through a substituent on C-11 of the geldanamycin macrocycle. A small and attractor group was found as the main steric and electrostatic characteristic that substituents on C11 need in order to interact with Lys 58; behavior was observed with hydroxy and methoxy series of geldanamycin analogues, under study. Conclusion: This study contributes with new hybrid methodology (Autodock-PM6) for the generation of 3DQSAR models, which to consider the interactions between compounds and amino acids residues of Hsp90´s active site in the alignment generation. Additionally, quantum similarity and reactivity indices calculations using DFT were performed to know the non-covalent stabilization in the active site of these compounds.
Collapse
Affiliation(s)
- Ricardo Vivas-Reyes
- Grupo de investigación (CIPTEC), Facultad de Ingeniería, Programa de Ingeniería de Procesos, Fundación Universitaria Tecnológico Comfenalco, Cartagena, Bolívar, Colombia
- Grupo de Química Cuántica y Teórica, Programa de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Bolívar, Colombia
- Grupo GINUMED, Facultad de Salud, Programa de Medicina, Corporación Universitaria Rafael Núñez, Cartagena, Bolívar, Colombia
| | - Alejando Morales-Bayuelo
- Grupo de investigación (CIPTEC), Facultad de Ingeniería, Programa de Ingeniería de Procesos, Fundación Universitaria Tecnológico Comfenalco, Cartagena, Bolívar, Colombia
| | - Carlos Gueto
- Grupo de Química Cuántica y Teórica, Programa de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Bolívar, Colombia
| | - Juan C. Drosos
- Grupo de Bioinorganica, Programa de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Bolívar, Colombia
| | - Johana Márquez Lázaro
- Grupo de Química Cuántica y Teórica, Programa de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Bolívar, Colombia
- Grupo GINUMED, Facultad de Salud, Programa de Medicina, Corporación Universitaria Rafael Núñez, Cartagena, Bolívar, Colombia
| | - Rosa Baldiris
- Grupo de investigación (CIPTEC), Facultad de Ingeniería, Programa de Ingeniería de Procesos, Fundación Universitaria Tecnológico Comfenalco, Cartagena, Bolívar, Colombia
- Grupo de Microbiología Clínica y Ambiental, Facultad de Ciencias Naturales y Exactas, Programa de Biologia, Universidad de Cartagena, Cartagena, Bolívar, Colombia
| | - Maicol Ahumedo
- Grupo de investigación (CIPTEC), Facultad de Ingeniería, Programa de Ingeniería de Procesos, Fundación Universitaria Tecnológico Comfenalco, Cartagena, Bolívar, Colombia
- Grupo de Química Cuántica y Teórica, Programa de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Bolívar, Colombia
| | - Catalina Vivas-Gomez
- Grupo de Química Cuántica y Teórica, Programa de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Bolívar, Colombia
- Grupo GINUMED, Facultad de Salud, Programa de Medicina, Corporación Universitaria Rafael Núñez, Cartagena, Bolívar, Colombia
| | - Dilia Aparicio
- Grupo GINUMED, Facultad de Salud, Programa de Medicina, Corporación Universitaria Rafael Núñez, Cartagena, Bolívar, Colombia
| |
Collapse
|
32
|
Combination of Anti-Cancer Drugs with Molecular Chaperone Inhibitors. Int J Mol Sci 2019; 20:ijms20215284. [PMID: 31652993 PMCID: PMC6862641 DOI: 10.3390/ijms20215284] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Most molecular chaperones belonging to heat shock protein (HSP) families are known to protect cancer cells from pathologic, environmental and pharmacological stress factors and thereby can hamper anti-cancer therapies. In this review, we present data on inhibitors of the heat shock response (particularly mediated by the chaperones HSP90, HSP70, and HSP27) either as a single treatment or in combination with currently available anti-cancer therapeutic approaches. An overview of the current literature reveals that the co-administration of chaperone inhibitors and targeting drugs results in proteotoxic stress and violates the tumor cell physiology. An optimal drug combination should simultaneously target cytoprotective mechanisms and trigger the imbalance of the tumor cell physiology.
Collapse
|
33
|
Huynh TK, Ho CY, Tsai CH, Wang CK, Chen YJ, Bau DT, Tu CY, Li TS, Huang WC. Proteasome Inhibitors Suppress ErbB Family Expression through HSP90-Mediated Lysosomal Degradation. Int J Mol Sci 2019; 20:ijms20194812. [PMID: 31569723 PMCID: PMC6801459 DOI: 10.3390/ijms20194812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/31/2022] Open
Abstract
Although dual EGFR/HER2 tyrosine kinase inhibitor lapatinib has provided effective clinical benefits for HER2-positive breast cancer patients, acquired resistance to this drug remains a major concern. Thus, the development of alternative therapeutic strategies is urgently needed for patients who failed lapatinib treatment. Proteasome inhibitors have been reported to possess high anti-tumor activity to breast cancer cells. Therefore, this study aims to examine whether and how proteasome inhibitor bortezomib can overcome lapatinib resistance. Treatments with several proteasome inhibitors, including Bortezomib, MG132, and proteasome inhibitor I (PSI), as well as the viabilities of both HER2-positive breast cancer cell lines and their lapatinib-resistant clones, were inhibited. Importantly, the expressions of ErbB family were downregulated at both transcriptional and translational levels. Also, our results further indicated that proteasome inhibitors decreased ErbB family expression through lysosomal degradation pathway in a heat shock protein 90 (HSP90)-dependent manner. In this study, our data supported a potential approach to overcome the acquired resistance of HER2-overexpressing breast cancer patients to lapatinib using proteasome inhibitors.
Collapse
Affiliation(s)
- Thanh Kieu Huynh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404, Taiwan.
| | - Chien-Yi Ho
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 404, Taiwan.
- Department of Family Medicine, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan.
- Physical Examination Center, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan.
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan.
| | - Chi-Hua Tsai
- Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan.
| | - Chien-Kuo Wang
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| | - Yun-Ju Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung 824, Taiwan.
- School of Medicine for International Students, I-Shou University, Kaohsiung 824, Taiwan.
- Department of Pharmacy, E-Da Hospital, Kaohsiung 824, Taiwan.
| | - Da-Tian Bau
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404, Taiwan.
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung 404, Taiwan.
| | - Chih-Yen Tu
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan.
| | - Tzong-Shiun Li
- Department of Plastic Surgery, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- Innovation Research Center, Show Chwan Health Care System, Changhua 500, Taiwan.
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404, Taiwan.
- Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University, Taichung 404, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan.
- Drug Development Center, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
34
|
Epigenetic Alterations of Heat Shock Proteins (HSPs) in Cancer. Int J Mol Sci 2019; 20:ijms20194758. [PMID: 31557887 PMCID: PMC6801855 DOI: 10.3390/ijms20194758] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Heat shock proteins (HSPs) are associated with various physiological processes (protein refolding and degradation) involved in the responses to cellular stress, such as cytotoxic agents, high temperature, and hypoxia. HSPs are overexpressed in cancer cells and play roles in their apoptosis, invasion, proliferation, angiogenesis, and metastasis. The regulation or translational modification of HSPs is recognized as a therapeutic target for the development of anticancer drugs. Among the regulatory processes associated with HSP expression, the epigenetic machinery (miRNAs, histone modification, and DNA methylation) has key functions in cancer. Moreover, various epigenetic modifiers of HSP expression have also been reported as therapeutic targets and diagnostic markers of cancer. Thus, in this review, we describe the epigenetic alterations of HSP expression in cancer cells and suggest that HSPs be clinically applied as diagnostic and therapeutic markers in cancer therapy via controlled epigenetic modifiers.
Collapse
|
35
|
Metabolic stress controls mutant p53 R248Q stability in acute myeloid leukemia cells. Sci Rep 2019; 9:5637. [PMID: 30948782 PMCID: PMC6449403 DOI: 10.1038/s41598-019-42220-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/26/2019] [Indexed: 01/03/2023] Open
Abstract
Eliminating mutant p53 (mt p53) protein could be a useful strategy to treat mt p53 tumors and potentially improve the prognosis of cancer patients. In this study, we unveil different mechanisms that eliminate p53-R248Q, one of the most frequent mutants found in human cancers. We show that the Hsp90 inhibitor 17-AAG eliminates R248Q by stimulating macroautophagy under normal growth conditions. Metabolic stress induced by the pyruvate dehydrogenase kinase-1 (PDK1) inhibitor dichloroacetate (DCA) inhibits the macroautophagy pathway. This induces the accumulation of R248Q, which in addition further inhibits macroautophagy. Combination of DCA and 17-AAG further decreases the autophagy flux compared to DCA alone. Despite this, this co-treatment strongly decreases R248Q levels. In this situation of metabolic stress, 17-AAG induces the binding of p53-R248Q to Hsc70 and the activation of Chaperone-Mediated Autophagy (CMA), leading to higher R248Q degradation than in non-stress conditions. Thus, different metabolic contexts induce diverse autophagy mechanisms that degrade p53-R248Q, and under metabolic stress, its degradation is CMA-mediated. Hence, we present different strategies to eliminate this mutant and provide new evidence of the crosstalk between macroautophagy and CMA and their potential use to target mutant p53.
Collapse
|
36
|
Hsp90 Inhibitor SNX-2112 Enhances TRAIL-Induced Apoptosis of Human Cervical Cancer Cells via the ROS-Mediated JNK-p53-Autophagy-DR5 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9675450. [PMID: 31019655 PMCID: PMC6452544 DOI: 10.1155/2019/9675450] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent cancer cell apoptosis-inducing factor that can induce apoptosis in a variety of cancer cells. However, resistance to TRAIL in cancer cells is a huge obstacle in creating effective TRAIL-targeted clinical therapies. Thus, agents that can either enhance the effect of TRAIL or overcome its resistance are needed. In this study, we combined TRAIL with SNX-2112, an Hsp90 inhibitor we previously developed, to explore the effect and mechanism that SNX-2112 enhanced TRAIL-induced apoptosis in cervical cancer cells. Our results showed that SNX-2112 markedly enhanced TRAIL-induced cytotoxicity in HeLa cells, and this combination was found to be synergistic. Additionally, we found that SNX-2112 sensitized TRAIL-mediated apoptosis caspase-dependently in TRAIL-resistant HeLa cells. Mechanismly, SNX-2112 downregulated antiapoptosis proteins, including Bcl-2, Bcl-XL, and FLIP, promoted the accumulation of reactive oxygen species (ROS), and increased the expression levels of p-JNK and p53. ROS scavenger NAC rescued SNX-2112/TRAIL-induced apoptosis and suppressed SNX-2112-induced p-JNK and p53. Moreover, SNX-2112 induced the upregulation of death-receptor DR5 in HeLa cells. The silencing of DR5 by siRNA significantly decreased cell apoptosis by the combined effect of SNX-2112 and TRAIL. In addition, SNX-2112 inhibited the Akt/mTOR signaling pathway and induced autophagy in HeLa cells. The blockage of autophagy by bafilomycin A1 or Atg7 siRNA abolished SNX-2112-induced upregulation of DR5. Meanwhile, ROS scavenger NAC, JNK inhibitor SP600125, and p53 inhibitor PFTα were used to verify that autophagy-mediated upregulation of DR5 was regulated by the SNX-2112-stimulated activation of the ROS-JNK-p53 signaling pathway. Thus, the combination of SNX-2112 and TRAIL may provide a novel strategy for the treatment of human cervical cancer by overcoming cellular mechanisms of apoptosis resistance.
Collapse
|
37
|
Talaei S, Mellatyar H, Asadi A, Akbarzadeh A, Sheervalilou R, Zarghami N. Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment. Chem Biol Drug Des 2019; 93:760-786. [PMID: 30697932 DOI: 10.1111/cbdd.13486] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/31/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Hsp90 is a ubiquitous chaperone with important roles in the organization and maturation of client proteins that are involved in the progression and survival of cancer cells. Multiple oncogenic pathways can be affected by inhibition of Hsp90 function through degradation of its client proteins. That makes Hsp90 a therapeutic target for cancer treatment. 17-allylamino-17-demethoxy-geldanamycin (17-AAG) is a potent Hsp90 inhibitor that binds to Hsp90 and inhibits its chaperoning function, which results in the degradation of Hsp90's client proteins. There have been several preclinical studies of 17-AAG as a single agent or in combination with other anticancer agents for a wide range of human cancers. Data from various phases of clinical trials show that 17-AAG can be given safely at biologically active dosages with mild toxicity. Even though 17-AAG has suitable pharmacological potency, its low water solubility and high hepatotoxicity could significantly restrict its clinical use. Nanomaterials-based drug delivery carriers may overcome these drawbacks. In this paper, we review preclinical and clinical research on 17-AAG as a single agent and in combination with other anticancer agents. In addition, we highlight the potential of using nanocarriers and nanocombination therapy to improve therapeutic effects of 17-AAG.
Collapse
Affiliation(s)
- Sona Talaei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Mellatyar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Piredda ML, Gaur G, Catalano G, Divona M, Banella C, Travaglini S, Puzzangara MC, Voso MT, Lo-Coco F, Noguera NI. PML/RARA inhibits expression of HSP90 and its target AKT. Br J Haematol 2018; 184:937-948. [PMID: 30536958 DOI: 10.1111/bjh.15715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/05/2018] [Indexed: 12/29/2022]
Abstract
Essential for cell survival, the 90 kD Heat Shock Proteins (HSP90) are molecular chaperons required for conformational stabilization and trafficking of numerous client proteins. Functional HSP90 is required for the stability of AKT, a serine-threonine kinase phosphorylated in response to growth factor stimulation. AKT plays a crucial regulatory role in differentiation, cell cycle, transcription, translation, metabolism and apoptosis. Acute promyelocytic leukaemia (APL) is characterized by the presence of the promyelocytic leukaemia/retinoic acid receptor alpha (PML/RARA) fusion protein, which deregulates expression of several genes involved in differentiation and apoptosis. Here, we report inhibition of HSP90AA1 and HSP90AB1 isomer transcription in blasts isolated from patients with APL, associated with reduction of HSP90 protein expression and loss of control on AKT protein phosphorylation. We show that in vitro treatment of PML/RARA expressing cells with all-trans retinoic acid (ATRA) up-regulates HSP90 expression and stabilizes AKT. Addition of the HSP90-inhibitor 17-(allylamino)-17-demethoxygeldanamycin in combination with ATRA, blocks upregulation of AKT protein, indicating that HSP90 is necessary for ATRA action on AKT. This is the first report proving that expression of HSP90 isomers are directly and differentially repressed by PML/RARA, with critical results on cellular homeostasis of target proteins, such as AKT, in APL blasts.
Collapse
Affiliation(s)
- Maria Liliana Piredda
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Santa Lucia Foundation, I.R.C.C.S., Rome, Italy
| | - Girish Gaur
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Santa Lucia Foundation, I.R.C.C.S., Rome, Italy
| | - Gianfranco Catalano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Cristina Banella
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Santa Lucia Foundation, I.R.C.C.S., Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Santa Lucia Foundation, I.R.C.C.S., Rome, Italy
| | - Nelida Ines Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Santa Lucia Foundation, I.R.C.C.S., Rome, Italy
| |
Collapse
|
39
|
Alford BD, Brandman O. Quantification of Hsp90 availability reveals differential coupling to the heat shock response. J Cell Biol 2018; 217:3809-3816. [PMID: 30131327 PMCID: PMC6219726 DOI: 10.1083/jcb.201803127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/22/2018] [Accepted: 08/10/2018] [Indexed: 11/22/2022] Open
Abstract
The heat shock response (HSR) is a protective gene expression program that is activated by conditions that cause proteotoxic stress. While it has been suggested that the availability of free chaperones regulates the HSR, chaperone availability and the HSR have never been precisely quantified in tandem under stress conditions. Thus, how the availability of chaperones changes in stress conditions and the extent to which these changes drive the HSR are unknown. In this study, we quantified Hsp90 chaperone availability and the HSR under multiple stressors. We show that Hsp90-dependent and -independent pathways both regulate the HSR, and the contribution of each pathway varies greatly depending on the stressor. Moreover, stressors that regulate the HSR independently of Hsp90 availability do so through the Hsp70 chaperone. Thus, the HSR responds to diverse defects in protein quality by monitoring the state of multiple chaperone systems independently.
Collapse
Affiliation(s)
- Brian D Alford
- Department of Biochemistry, Stanford University, Stanford, CA
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, CA
| |
Collapse
|
40
|
Hsp90β promotes aggressive vasculogenic mimicry via epithelial-mesenchymal transition in hepatocellular carcinoma. Oncogene 2018; 38:228-243. [PMID: 30087438 DOI: 10.1038/s41388-018-0428-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 01/20/2023]
Abstract
Hepatocellular carcinoma (HCC) is a typical hypervascular solid tumor. Vasculogenic mimicry (VM) formed by aggressive tumor cells to mimic vasculogenic networks plays an important role in the tumor malignancy of HCC. Hsp90β promotes endothelial cell-dependent angiogenesis in HCC. However, the relationship between Hsp90β and VM formation is unclear. In this study, we found that Hsp90β is positively correlated with VM and EMT marker proteins in HCC tissues and promotes tube formation, cell migration, and invasion in vitro. Hsp90β interacts with Twist1 and promotes its deubiquitination and stabilization to nuclear translocation and enhances the VE-cadherin promoter activity. Results of in vitro analysis indicate that Hsp90β enhances the tumor VM in tumor-burdened mice, and the Hsp90 inhibitor NVP-BEP800 suppresses VM formation by releasing Hsp90β and Twist1 interaction. This study provides a potential antitumor therapy for inhibiting VM by targeting Hsp90β in HCC.
Collapse
|
41
|
Lomeli N, Bota DA. Targeting HSP90 in malignant gliomas: onalespib as a potential therapeutic. Transl Cancer Res 2018; 7:6215-6226. [PMID: 31840022 PMCID: PMC6910236 DOI: 10.21037/tcr.2018.03.05] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Naomi Lomeli
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Daniela A. Bota
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
- Department of Neurology, University of California Irvine, Irvine, CA, USA
- Department of Neurological Surgery, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
42
|
Huang YH, Lei J, Yi GH, Huang FY, Li YN, Wang CC, Sun Y, Dai HF, Tan GH. Coroglaucigenin induces senescence and autophagy in colorectal cancer cells. Cell Prolif 2018; 51:e12451. [PMID: 29484762 DOI: 10.1111/cpr.12451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/24/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Coroglaucigenin (CGN), a natural product isolated from Calotropis gigantean by our research group, has been identified as a potential anti-cancer agent. However, the molecular mechanisms involved remain poorly understood. MATERIALS AND METHODS Cell viability and cell proliferation were detected by MTT and BrdU assays. Flow cytometry, SA-β-gal assay, western blotting and immunofluorescence were performed to determine CGN-induced apoptosis, senescence and autophagy. Western blotting, siRNA transfection and coimmunoprecipitation were carried out to investigate the mechanisms of CGN-induced senescence and autophagy. The anti-tumour activities of combination therapy with CGN and chloroquine were observed in mice tumour models. RESULTS We demonstrated that CGN inhibits the proliferation of colorectal cancer cells both in vitro and in vivo. We showed that the inhibition of cell proliferation by CGN is independent of apoptosis, but is associated with cell-cycle arrest and senescence in colorectal cancer cells. Notably, CGN induces protective autophagy that attenuates CGN-mediated cell proliferation. Functional studies revealed that CGN disrupts the association of Hsp90 with both CDK4 and Akt, leading to CDK4 degradation and Akt dephosphorylation, eventually resulting in senescence and autophagy, respectively. Combination therapy with CGN and chloroquine resulted in enhanced anti-tumour effects in vivo. CONCLUSIONS Our results demonstrate that CGN induces senescence and autophagy in colorectal cancer cells and indicate that combining it with an autophagy inhibitor may be a novel strategy suitable for CGN-mediated anti-cancer therapy.
Collapse
Affiliation(s)
- Yong-Hao Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, China
| | - Jing Lei
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, China
| | - Guo-Hui Yi
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, China.,Public Research Laboratory, Hainan Medical College, Haikou, China
| | - Feng-Ying Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, China
| | - Yue-Nan Li
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, China
| | - Cai-Chun Wang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, China
| | - Yan Sun
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, China
| | - Hao-Fu Dai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guang-Hong Tan
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou, China
| |
Collapse
|
43
|
Sun Y, Huang YH, Huang FY, Mei WL, Liu Q, Wang CC, Lin YY, Huang C, Li YN, Dai HF, Tan GH. 3'-epi-12β-hydroxyfroside, a new cardenolide, induces cytoprotective autophagy via blocking the Hsp90/Akt/mTOR axis in lung cancer cells. Am J Cancer Res 2018; 8:2044-2060. [PMID: 29556372 PMCID: PMC5858516 DOI: 10.7150/thno.23304] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/19/2018] [Indexed: 02/05/2023] Open
Abstract
Rationale: Cardenolides have potential as anticancer drugs. 3′-epi-12β-hydroxyfroside (HyFS) is a new cardenolide structure isolated by our research group, but its molecular mechanisms remain poorly understood. This study investigates the relationship between its antitumor activities and autophagy in lung cancer cells. Methods: Cell growth and proliferation were detected by MTT, lactate dehydrogenase (LDH) release, 5-ethynyl-20-deoxyuridine (EDU) and colony formation assays. Cell apoptosis was detected by flow cytometry. Autophagic and signal proteins were detected by Western blotting. Markers of autophagy and autophagy flux were also detected by immunofluorescence, transmission electron microscopy and acridine orange staining. Real time RT-PCR was used to analyze the gene expression of Hsp90. Hsp90 ubiquitination was detected by coimmunoprecipitation. The antitumore activities of HyFS were observed in nude mice. Results: HyFS treatment inhibited cell proliferation and induced autophagy in A549 and H460 lung cancer cells, but stronger inhibition of cell proliferation and induction of cell apoptosis were shown when HyFS-mediated autophagy was blocked. The Hsp90/Akt/mTOR axis was found to be involved in the activation of HyFS-mediated autophagy. Evidence of direct interaction between Hsp90 and Akt was observed. HyFS treatment resulted in decreased levels of heat shock protein 90 (Hsp90) and phosphorylated Akt, overexpression of Hsp90 increased activation of autophagy, and inhibition of Hsp90 expression decreased autophagy. In addition, ubiquitin-mediated degradation of Hsp90 and subsequent dephosphorylation of its client protein Akt were also found in HyFS-treated lung cancer cells. Moreover, combination treatment with HyFS and chloroquine showed remarkably increased tumor inhibition in both A549- and H460-bearing mice. Conclusion: Our results demonstrate that HyFS induced cytoprotective autophagy through ubiquitin-mediated degradation of Hsp90, which further blocked the Akt/mTOR pathway in lung cancer cells. Thus, a combination of a HyFS-like cardenolide and an autophagic inhibitor is a potential alternative approach for the treatment of lung cancer.
Collapse
|
44
|
Yang J, Wu W, Wen J, Ye H, Luo H, Bai P, Tang M, Wang F, Zheng L, Yang S, Li W, Peng A, Yang L, Wan L, Chen L. Liposomal honokiol induced lysosomal degradation of Hsp90 client proteins and protective autophagy in both gefitinib-sensitive and gefitinib-resistant NSCLC cells. Biomaterials 2017; 141:188-198. [DOI: 10.1016/j.biomaterials.2017.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022]
|
45
|
Yang SY, Nguyen TT, Ung TT, Jung YD. Role of Recepteur D'origine Nantais on Gastric Cancer Development and Progression. Chonnam Med J 2017; 53:178-186. [PMID: 29026705 PMCID: PMC5636756 DOI: 10.4068/cmj.2017.53.3.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/12/2023] Open
Abstract
Recepteur d'origine nantais (RON) is a receptor tyrosine kinase belonging to the subfamily of which c-MET is the prototype. Large epidemiologic studies have confirmed the strong association between RON and gastric cancer development. Constitutive activation of RON signaling directly correlates with tumorigenic phenotypes of gastric cancer and a poor survival rate in advanced gastric cancer patients. In this review, we focus on recent evidence of the aberrant expression and activation of RON in gastric cancer tumors and provide insights into the mechanism of RON signaling associated with gastric cancer progression and metastasis. Current therapeutics against RON in gastric cancer are summarized.
Collapse
Affiliation(s)
- Sung Yeul Yang
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Thi Thinh Nguyen
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Trong Thuan Ung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
46
|
Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. Int J Mol Sci 2017; 18:ijms18091978. [PMID: 28914774 PMCID: PMC5618627 DOI: 10.3390/ijms18091978] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Heat shock proteins (HSPs) are a large family of chaperones that are involved in protein folding and maturation of a variety of "client" proteins protecting them from degradation, oxidative stress, hypoxia, and thermal stress. Hence, they are significant regulators of cellular proliferation, differentiation and strongly implicated in the molecular orchestration of cancer development and progression as many of their clients are well established oncoproteins in multiple tumor types. Interestingly, tumor cells are more HSP chaperonage-dependent than normal cells for proliferation and survival because the oncoproteins in cancer cells are often misfolded and require augmented chaperonage activity for correction. This led to the development of several inhibitors of HSP90 and other HSPs that have shown promise both preclinically and clinically in the treatment of cancer. In this article, we comprehensively review the roles of some of the important HSPs in cancer, and how targeting them could be efficacious, especially when traditional cancer therapies fail.
Collapse
|
47
|
Forsberg LK, Liu W, Holzbeierlein J, Blagg BSJ. Modified biphenyl Hsp90 C-terminal inhibitors for the treatment of cancer. Bioorg Med Chem Lett 2017; 27:4514-4519. [PMID: 28844386 DOI: 10.1016/j.bmcl.2017.07.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 01/27/2023]
Abstract
Heat Shock Protein 90 (Hsp90) is a molecular chaperone under clinical investigation for the treatment of neurodegenerative diseases and cancer. Neuroprotective Hsp90 C-terminal inhibitors (novologues) contain a biaryl ring system, and include KU-596, which was modified and investigated for potential anti-cancer activity. Incorporation of a benzamide group onto the biaryl novologues in lieu of the acetamide yielded compounds that manifest anti-cancer activity. Further exploration of the central phenyl ring led to compounds with enhanced anti-proliferative activity. The design, synthesis, and evaluation of these new analogs against breast and prostate cancer cell lines is reported herein, where it was found that 8b and 10 manifest potent anti-proliferative activity and a robust degradation of Hsp90 client-dependent proteins.
Collapse
Affiliation(s)
- Leah K Forsberg
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott 4070, The University of Kansas, Lawrence, Kansas 66045-7563, United States
| | - Weiya Liu
- Department of Urology, 3901 Rainbow Boulevard, Stop 3016, The University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Jeffrey Holzbeierlein
- Department of Urology, 3901 Rainbow Boulevard, Stop 3016, The University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Brian S J Blagg
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott 4070, The University of Kansas, Lawrence, Kansas 66045-7563, United States.
| |
Collapse
|
48
|
Jia Z, Dong A, Che H, Zhang Y. 17-DMAG Protects Against Hypoxia-/Reoxygenation-Induced Cell Injury in HT22 Cells Through Akt/Nrf2/HO-1 Pathway. DNA Cell Biol 2017; 36:95-102. [PMID: 27982695 DOI: 10.1089/dna.2016.3445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Zhuopeng Jia
- Department of Neurosurgery, The First Affiliated hospital of Xi'an Medical University, Xi'an, China
| | - Arui Dong
- Department of Neurosurgery, Shaanxi Second Provincial People's Hospital, Xi'an, China
| | - Hongmin Che
- Department of Neurosurgery, The First Affiliated hospital of Xi'an Medical University, Xi'an, China
| | - Yu Zhang
- Department of Neurosurgery, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, China
| |
Collapse
|
49
|
Mishra SJ, Ghosh S, Stothert AR, Dickey CA, Blagg BSJ. Transformation of the Non-Selective Aminocyclohexanol-Based Hsp90 Inhibitor into a Grp94-Seletive Scaffold. ACS Chem Biol 2017; 12:244-253. [PMID: 27959508 DOI: 10.1021/acschembio.6b00747] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Glucose regulated protein 94 kDa, Grp94, is the endoplasmic reticulum (ER) localized isoform of heat shock protein 90 (Hsp90) that is responsible for the trafficking and maturation of toll-like receptors, immunoglobulins, and integrins. As a result, Grp94 has emerged as a therapeutic target to disrupt cellular communication, adhesion, and tumor proliferation, potentially with fewer side effects compared to pan-inhibitors of all Hsp90 isoforms. Although, the N-terminal ATP binding site is highly conserved among all four Hsp90 isoforms, recent cocrystal structures of Grp94 have revealed subtle differences between Grp94 and other Hsp90 isoforms that has been exploited for the development of Grp94-selective inhibitors. In the current study, a structure-based approach has been applied to a Grp94 nonselective compound, SNX 2112, which led to the development of 8j (ACO1), a Grp94-selective inhibitor that manifests ∼440 nM affinity and >200-fold selectivity against cytosolic Hsp90 isoforms.
Collapse
Affiliation(s)
- Sanket J. Mishra
- Department
of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas, United States
| | - Suman Ghosh
- Department
of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas, United States
| | - Andrew R. Stothert
- Department
of Molecular Medicine and Byrd Alzheiemer’s Research Institute, University of South Florida, Tampa, Florida 33613, United States
| | - Chad A. Dickey
- Department
of Molecular Medicine and Byrd Alzheiemer’s Research Institute, University of South Florida, Tampa, Florida 33613, United States
| | - Brian S. J. Blagg
- Department
of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas, United States
| |
Collapse
|
50
|
Molecular Biomarkers for Prediction of Targeted Therapy Response in Metastatic Breast Cancer: Trick or Treat? Int J Mol Sci 2017; 18:ijms18010085. [PMID: 28054957 PMCID: PMC5297719 DOI: 10.3390/ijms18010085] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 01/01/2023] Open
Abstract
In recent years, the study of genomic alterations and protein expression involved in the pathways of breast cancer carcinogenesis has provided an increasing number of targets for drugs development in the setting of metastatic breast cancer (i.e., trastuzumab, everolimus, palbociclib, etc.) significantly improving the prognosis of this disease. These drugs target specific molecular abnormalities that confer a survival advantage to cancer cells. On these bases, emerging evidence from clinical trials provided increasing proof that the genetic landscape of any tumor may dictate its sensitivity or resistance profile to specific agents and some studies have already showed that tumors treated with therapies matched with their molecular alterations obtain higher objective response rates and longer survival. Predictive molecular biomarkers may optimize the selection of effective therapies, thus reducing treatment costs and side effects. This review offers an overview of the main molecular pathways involved in breast carcinogenesis, the targeted therapies developed to inhibit these pathways, the principal mechanisms of resistance and, finally, the molecular biomarkers that, to date, are demonstrated in clinical trials to predict response/resistance to targeted treatments in metastatic breast cancer.
Collapse
|