1
|
Maeng J, Lee K. Inhibitors of dimerized translationally controlled tumor protein, a histamine releasing factor, may serve as anti-allergic drug candidates. Biochimie 2023; 211:141-152. [PMID: 36963558 DOI: 10.1016/j.biochi.2023.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
It has been established that translationally controlled tumor protein (TCTP), also called histamine releasing factor (HRF), exhibits cytokine-like activities associated with initiation of allergic responses only after forming dimers (dTCTP). Agents that inhibit dTCTP by preventing its dimerization or otherwise block its function, also block development of allergic reactions, thereby serving as potential drugs to treat allergic diseases. Several lines of evidence have proven that peptides and antibodies that specifically inhibit the interactions between dTCTP and either its putative receptor or immunoglobulins exhibit significant in vivo efficacy as potential anti-inflammatory agents in murine models of allergic inflammatory diseases. This review highlights the development of several inhibitors targeting dTCTP and discusses how they affect the pathophysiologic processes of allergic and inflammatory diseases in several animal models and offers new perspectives on anti-allergic drug discovery.
Collapse
Affiliation(s)
- Jeehye Maeng
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Jang EH, Bae HD, Jeon Y, Shin DH, Kang S, Lee K. Meclizine, a piperazine-derivative antihistamine, binds to dimerized translationally controlled tumor protein and attenuates allergic reactions in a mouse model. Biomed Pharmacother 2023; 157:114072. [PMID: 36493627 DOI: 10.1016/j.biopha.2022.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), a highly conserved protein present in most eukaryotes, is involved in numerous biological processes. Only the dimeric form of TCTP (dTCTP) formed during inflammatory conditions exhibits cytokine-like activity. Therefore, dTCTP is considered as a therapeutic target for allergic diseases. Because monomeric TCTP (mTCTP) and dTCTP share a high topological similarity, we hypothesized that small molecules interacting with mTCTP would also bind to dTCTP and interfere with dTCTP-based cellular processes. In this study, nine compounds listed in the literature as interacting with mTCTP were investigated for their ability to suppress the activity of extracellular dTCTP in bronchial epithelial cells. It was found that one of the nine, meclizine, a piperazine-derivative antihistamine, significantly reduced IL-8 release and suppressed the NF-κB pathway. The direct interaction of meclizine with dTCTP was confirmed by surface plasmon resonance (SPR). Also, we found that meclizine can attenuate ovalbumin (OVA)-induced airway inflammation in mice. Therefore, meclizine might be a potential anti-allergic drug as an inhibitor for dTCTP.
Collapse
Affiliation(s)
- Eun-Hwa Jang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Hae-Duck Bae
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Yejin Jeon
- Bone Science R&D Center, 3, Magokjungang 12-ro, Gangseo-gu, Seoul 07789, South Korea
| | - Dong Hae Shin
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Soosung Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Kyunglim Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
3
|
Seo H, Bae HD, Pyun H, Kim BG, Lee SI, Song JS, Lee K. PEGylation improves the therapeutic potential of dimerized translationally controlled tumor protein blocking peptide in ovalbumin-induced mouse model of airway inflammation. Drug Deliv 2022; 29:2320-2329. [PMID: 35850571 PMCID: PMC9302014 DOI: 10.1080/10717544.2022.2100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dimerized translationally controlled tumor protein (dTCTP) initiates a variety of allergic responses in mouse models and that dTCTP-binding peptide 2 (dTBP2) attenuates the allergic inflammation by targeting dTCTP. However, the usefulness of peptide-based drugs is often limited due to their short half-lives, rapid degradation, and high levels of clearance after systemic administration. In this study, we chemically conjugated dTBP2 with 10 kDa polyethylene glycol (PEG) to improve its therapeutic potential. N-terminal mono-PEGylated dTBP2 (PEG-dTBP2) was characterized by in vitro bioactivity assay, pharmacokinetics study, and in vivo efficacy. When compared to the unmodified dTBP2, PEG-dTBP2 reduced proinflammatory cytokine IL-8 secretion in human bronchial cells by 10 to 15% and increased plasma half-life by approximately 2.5-fold in mice. This study specifically demonstrated that PEG-dTBP2 shows higher inhibitory action against ovalbumin (OVA)-induced airway inflammation in mice compared to dTBP2. Importantly, PEG-dTBP2, when administered once at 1 mg/kg, significantly reduced the migration of inflammatory cells and the levels of cytokines in the bronchoalveolar lavage fluids as well as OVA-specific IgE levels in serum. In addition, the degree of goblet cell hyperplasia and mucus secretion were significantly attenuated in the PEG-dTBP2 group compared with the control group. These results suggest that PEG-dTBP2 can be considered a potential candidate drug for regulating allergic inflammation.
Collapse
Affiliation(s)
- Hyeran Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hae-Duck Bae
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Haejun Pyun
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Bo-Gyu Kim
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Sang-Il Lee
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Jin-Sook Song
- Data Convergence Drug Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
4
|
Cho H, Je JH, Kang J, Jeong MG, Song J, Jeon Y, Lee K, Hwang ES. Dimeric translationally controlled tumor protein-binding peptide 2 attenuates imiquimod-induced psoriatic inflammation through induction of regulatory T cells. Biomed Pharmacother 2022; 152:113245. [PMID: 35689858 DOI: 10.1016/j.biopha.2022.113245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Psoriasis is a chronic skin inflammation caused by a dysfunctional immune system, which causes systemic inflammation in various organs and tissues. Due to the risk of systemic inflammation and recurrence of psoriasis, it is important to identify the critical targets in the pathogenesis of psoriasis and develop targeted therapeutics. Dimerized translationally controlled tumor protein (dTCTP) promotes immune cell activation as a pro-inflammatory cytokine and plays a role in developing allergic diseases such as asthma and rhinitis. Here, we sought to explore whether dTCTP and its inhibition contributed to the development and control of imiquimod (IMQ)-induced psoriasis. Topical application of IMQ inflamed the skin of the back and ear, increased inflammatory cytokines, and decreased regulatory T cell markers. Interestingly, TCTP was significantly increased in inflamed skin and immune cells such as T cells, B cells, and macrophages after IMQ treatment and was secreted into the serum to undergo dimerization. Extracellular dTCTP treatment selectively suppressed regulatory T (Treg) cells, not other effector T helper (Th) cells, and increased M1 macrophages. Moreover, dTCTP-binding peptide 2 (dTBP2), a dTCTP inhibitor peptide, effectively attenuated the systemic inflammatory responses, including Th17 cell response, and alleviated psoriatic skin inflammation. dTBP2 blocked dTCTP-mediated Treg suppression and stimulated the expression of Treg cell markers in the spleen and inflammatory skin lesions. These results suggest that dTCTP dysregulated immune balance through Treg suppression in psoriatic inflammation and that functional inhibition of dTCTP by dTBP2 maintained immune homeostasis and attenuated inflammatory skin diseases by expanding Treg cells.
Collapse
Affiliation(s)
- Hyunsoo Cho
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Jeong Hwan Je
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Jio Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Jiseo Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Yejin Jeon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Kyunglim Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
5
|
Cho H, Kim HK, Oh A, Jeong MG, Song J, Lee K, Hwang ES. dTBP2 attenuates severe airway inflammation by blocking inflammatory cellular network mediated by dTCTP. Biomed Pharmacother 2021; 144:112316. [PMID: 34628164 DOI: 10.1016/j.biopha.2021.112316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/18/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022] Open
Abstract
Dimeric translationally controlled tumor protein (dTCTP), also known as histamine-releasing factor, amplifies allergic responses and its production has been shown to increase in inflammatory diseases such as allergic asthma. Despite the critical role of dTCTP in allergic inflammation, little is known about its production pathways, associated cellular networks, and underlying molecular mechanisms. In this study, we explored the dTCTP-mediated inflammatory networks and molecular mechanisms of dTCTP associated with lipopolysaccharides (LPS)-induced severe asthma. LPS stimulation increased dTCTP production by mast cells and dTCTP secretion during degranulation, and extracellular dTCTP subsequently increased the production of pro-inflammatory molecules, including IL-8, by airway epithelial cells without affecting mast cell activation. Furthermore, dimeric TCTP-binding peptide 2 (dTBP2), a dTCTP inhibitor peptide, selectively blocked the dTCTP-mediated signaling network from mast cells to epithelial cells and decreased IL-8 production through IkB induction and nuclear p65 export in airway epithelial cells. More importantly, dTBP2 efficiently attenuated LPS-induced severe airway inflammation in vivo, resulting in decreased immune cell infiltration and IL-17 production and attenuated dTCTP secretion. These results suggest that dTCTP produced by mast cells exacerbates airway inflammation through activation of airway epithelial cells in a paracrine signaling manner, and that dTBP2 is beneficial in the treatment of severe airway inflammation by blocking the dTCTP-mediated inflammatory cellular network.
Collapse
Affiliation(s)
- Hyunsoo Cho
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Areum Oh
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Jiseo Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Kyunglim Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
6
|
Cho H, Park J, Kim HK, Hwang ES, Lee K. Dimerized Translationally Controlled Tumor Protein-Binding Peptide 2 Attenuates Systemic Anaphylactic Reactions Through Direct Suppression of Mast Cell Degranulation. Front Pharmacol 2021; 12:764321. [PMID: 34737708 PMCID: PMC8560797 DOI: 10.3389/fphar.2021.764321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Dimerized translationally controlled tumor protein (dTCTP) amplifies allergic responses through activation of several types of immune cells and release of inflammatory mediators. In particular, dTCTP plays an important role in histamine release by triggering mast cells and has been proposed as a target in the treatment of allergic diseases. dTCTP-binding peptide 2 (dTBP2) is known to attenuate severe allergic rhinitis and asthma through inhibition of dTCTP activity on airway epithelial cells and T cells; however, it is unclear whether dTBP2 affects mast cell function and mast cell disease. In this study, we explored the effects of dTBP2 on mast cell degranulation and allergen-induced anaphylactic reactions. We found that bacterial product lipopolysaccharide increased the expression of dTCTP in mast cells and rapidly released dTCTP by the mast cell stimulator compound 48/80. Interestingly, the released dTCTP further promoted mast cell degranulation in an autocrine activation manner and increased calcium mobilization in mast cells, which is essential for degranulation. Furthermore, dTBP2 directly and dose-dependently inhibited in vitro mast cell degranulation enhanced by compound 48/80, suggesting a direct and potent anti-anaphylactic activity of dTBP2. dTBP2 also significantly suppressed the dTCTP-induced degranulation and histamine release through inhibition of the p38 MAPK signaling pathway and suppression of lysosomal expansion and calcium mobilization in mast cells. More importantly, in vivo administration of dTBP2 decreased mortality and significantly attenuated histamine release and inflammatory cytokine production in compound 48/80-induced systemic anaphylactic reactions. These results suggest that dTBP2 is beneficial for the control of anaphylaxis with increased dTCTP.
Collapse
Affiliation(s)
- Hyunsoo Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Jiyoung Park
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea.,Fluorescence Core Imaging Center, Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Hyo Kyeong Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Eun Sook Hwang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
7
|
Lee H, Kim MS, Lee JS, Cho H, Park J, Hae Shin D, Lee K. Flexible loop and helix 2 domains of TCTP are the functional domains of dimerized TCTP. Sci Rep 2020; 10:197. [PMID: 31932619 PMCID: PMC6957494 DOI: 10.1038/s41598-019-57064-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/19/2019] [Indexed: 01/26/2023] Open
Abstract
Translationally controlled tumor protein (TCTP), also called histamine releasing factor, is an evolutionarily conserved multifunctional protein in eukaryotes. We previously reported that extracellular TCTP acquires its cytokine-like function following dimerization. This study aims to identify the functional domain involved in the cytokine-like function of dimerized TCTP (dTCTP). We performed X-ray crystallographic studies and a deletion mutant of dTCTP which lacks the flexible loop domain. Synthetic peptides corresponding to TCTP domains and antibodies developed against them were examined for the anti-allergic effect. In an OVA-induced airway inflammation mouse model, inhibitory effect of synthetic peptides was evaluated. dTCTP was mediated by dimers between Cys172s of TCTP monomers. Synthetic peptides corresponding to the flexible loop and helix 2 domain of TCTP, and antibodies against them inhibited dTCTP-induced IL-8 release. In particular, the TCTP mutant lacking the flexible loop domain decreased the inflammatory cytokine activity of dTCTP. We conclude that the flexible loop and helix 2 domain of TCTP are the functional domains of dTCTP. They may have the potential to be therapeutic targets in the suppression of allergic reactions induced by dTCTP.
Collapse
Affiliation(s)
- Heewon Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea
| | - Mi-Sun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea
| | - Ji-Sun Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea
| | - Hyunsoo Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea
| | - Jimin Park
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea
| | - Dong Hae Shin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea.
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
8
|
Kawakami Y, Kasakura K, Kawakami T. Histamine-Releasing Factor, a New Therapeutic Target in Allergic Diseases. Cells 2019; 8:cells8121515. [PMID: 31779161 PMCID: PMC6952944 DOI: 10.3390/cells8121515] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Histamine-releasing activities on human basophils have been studied as potential allergy-causing agents for four decades. An IgE-dependent histamine-releasing factor (HRF) was recently shown to interact with a subset of immunoglobulins. Peptides or recombinant proteins that block the interactions between HRF and IgE have emerged as promising anti-allergic therapeutics, as administration of them prevented or ameliorated type 2 inflammation in animal models of allergic diseases such as asthma and food allergy. Basic and clinical studies support the notion that HRF amplifies IgE-mediated activation of mast cells and basophils. We discuss how secreted HRF promotes allergic inflammation in vitro and in vivo complex disease settings.
Collapse
Affiliation(s)
- Yu Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology; La Jolla, CA 92037, USA; (Y.K.); (K.K.)
| | - Kazumi Kasakura
- Division of Cell Biology, La Jolla Institute for Immunology; La Jolla, CA 92037, USA; (Y.K.); (K.K.)
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology; La Jolla, CA 92037, USA; (Y.K.); (K.K.)
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Correspondence: ; Tel.: +85-8-752-6814
| |
Collapse
|
9
|
Lee H, Lee K. Dimerized translationally controlled tumor protein increases interleukin-8 expression through MAPK and NF-κB pathways in a human bronchial epithelial cell line. Cell Biosci 2018; 8:13. [PMID: 29484169 PMCID: PMC5819651 DOI: 10.1186/s13578-018-0214-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/13/2018] [Indexed: 11/10/2022] Open
Abstract
Background Histamine releasing factor (HRF) is a unique cytokine known to regulate a variety of immune cells in late allergic reactions. In the previous study, we revealed that the biologically active form of HRF is the dimerized translationally controlled tumor protein (dTCTP) for the first time, and confirmed the secretion of IL-8 cytokine by dTCTP in human bronchial epithelial cells. However, the signaling pathway by which dTCTP promotes the secretion of IL-8 is not known. Results When the cells were stimulated with dTCTP, the canonical NF-κB pathway and ERK, JNK and p38 MAPK become activated. dTCTP promoted transcription of IL-8, which involved NF-κB and AP-1 transcription factors. NF-κB was found to be essential for the transcriptional activation of IL-8, while AP-1 was partially responsible for the transcriptional activation by dTCTP. p38 MAPK was found to be involved in post-transcriptional regulation of dTCTP by stabilizing IL-8 mRNA. Conclusions This study demonstrated that dTCTP induces IL-8 secretion in BEAS-2B cells through transcriptional and post-transcriptional regulation of MAPK and NF-κB pathways. This study provides insight into the mechanism by which dTCTP induces inflammation.
Collapse
Affiliation(s)
- Heewon Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750 Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750 Korea
| |
Collapse
|
10
|
Dimerized Translationally Controlled Tumor Protein-Binding Peptide Ameliorates Atopic Dermatitis in NC/Nga Mice. Int J Mol Sci 2017; 18:ijms18020256. [PMID: 28134765 PMCID: PMC5343792 DOI: 10.3390/ijms18020256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/22/2016] [Accepted: 01/13/2017] [Indexed: 01/20/2023] Open
Abstract
Our previous study showed that dimerized translationally controlled tumor protein (dTCTP) plays a role in the pathogenesis of allergic diseases, such as asthma and allergic rhinitis. A 7-mer peptide, called dTCTP-binding peptide 2 (dTBP2), binds to dTCTP and inhibits its cytokine-like effects. We therefore examined the protective effects of dTBP2 in house dust mite-induced atopic dermatitis (AD)-like skin lesions in Nishiki-nezumi Cinnamon/Nagoya (NC/Nga) mice. We found that topical administration of dTBP2 significantly reduced the AD-like skin lesions formation and mast cell infiltration in NC/Nga mice, similarly to the response seen in the Protopic (tacrolimus)-treated group. Treatment with dTBP2 also decreased the serum levels of IgE and reduced IL-17A content in skin lesions and inhibited the expression of mRNAs of interleukin IL-4, IL-5, IL-6, IL-13, macrophage-derived chemokine (MDC), thymus and activation-regulated chemokine (TARC) and thymic stromal lymphopoietin (TSLP). These findings indicate that dTBP2 not only inhibits the release of Th2 cytokine but also suppresses the production of proinflammatory cytokines in AD-like skin lesions in NC/Nga mice, by inhibiting TCTP dimer, in allergic responses. Therefore, dTCTP is a therapeutic target for AD and dTBP2 appears to have a potential role in the treatment of AD.
Collapse
|
11
|
Assrir N, Malard F, Lescop E. Structural Insights into TCTP and Its Interactions with Ligands and Proteins. Results Probl Cell Differ 2017; 64:9-46. [PMID: 29149402 DOI: 10.1007/978-3-319-67591-6_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 19-24 kDa Translationally Controlled Tumor Protein (TCTP) is involved in a wide range of molecular interactions with biological and nonbiological partners of various chemical compositions such as proteins, peptides, nucleic acids, carbohydrates, or small molecules. TCTP is therefore an important and versatile binding platform. Many of these protein-protein interactions have been validated, albeit only few received an in-depth structural characterization. In this chapter, we will focus on the structural analysis of TCTP and we will review the available literature regarding its interaction network from a structural perspective.
Collapse
Affiliation(s)
- Nadine Assrir
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Florian Malard
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
12
|
Bommer UA. The Translational Controlled Tumour Protein TCTP: Biological Functions and Regulation. Results Probl Cell Differ 2017; 64:69-126. [PMID: 29149404 DOI: 10.1007/978-3-319-67591-6_4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Translational Controlled Tumour Protein TCTP (gene symbol TPT1, also called P21, P23, Q23, fortilin or histamine-releasing factor, HRF) is a highly conserved protein present in essentially all eukaryotic organisms and involved in many fundamental cell biological and disease processes. It was first discovered about 35 years ago, and it took an extended period of time for its multiple functions to be revealed, and even today we do not yet fully understand all the details. Having witnessed most of this history, in this chapter, I give a brief overview and review the current knowledge on the structure, biological functions, disease involvements and cellular regulation of this protein.TCTP is able to interact with a large number of other proteins and is therefore involved in many core cell biological processes, predominantly in the response to cellular stresses, such as oxidative stress, heat shock, genotoxic stress, imbalance of ion metabolism as well as other conditions. Mechanistically, TCTP acts as an anti-apoptotic protein, and it is involved in DNA-damage repair and in cellular autophagy. Thus, broadly speaking, TCTP can be considered a cytoprotective protein. In addition, TCTP facilitates cell division through stabilising the mitotic spindle and cell growth through modulating growth signalling pathways and through its interaction with the proteosynthetic machinery of the cell. Due to its activities, both as an anti-apoptotic protein and in promoting cell growth and division, TCTP is also essential in the early development of both animals and plants.Apart from its involvement in various biological processes at the cellular level, TCTP can also act as an extracellular protein and as such has been involved in modulating whole-body defence processes, namely in the mammalian immune system. Extracellular TCTP, typically in its dimerised form, is able to induce the release of cytokines and other signalling molecules from various types of immune cells. There are also several examples, where TCTP was shown to be involved in antiviral/antibacterial defence in lower animals. In plants, the protein appears to have a protective effect against phytotoxic stresses, such as flooding, draught, too high or low temperature, salt stress or exposure to heavy metals. The finding for the latter stress condition is corroborated by earlier reports that TCTP levels are considerably up-regulated upon exposure of earthworms to high levels of heavy metals.Given the involvement of TCTP in many biological processes aimed at maintaining cellular or whole-body homeostasis, it is not surprising that dysregulation of TCTP levels may promote a range of disease processes, foremost cancer. Indeed a large body of evidence now supports a role of TCTP in at least the most predominant types of human cancers. Typically, this can be ascribed to both the anti-apoptotic activity of the protein and to its function in promoting cell growth and division. However, TCTP also appears to be involved in the later stages of cancer progression, such as invasion and metastasis. Hence, high TCTP levels in tumour tissues are often associated with a poor patient outcome. Due to its multiple roles in cancer progression, TCTP has been proposed as a potential target for the development of new anti-cancer strategies in recent pilot studies. Apart from its role in cancer, TCTP dysregulation has been reported to contribute to certain processes in the development of diabetes, as well as in diseases associated with the cardiovascular system.Since cellular TCTP levels are highly regulated, e.g. in response to cell stress or to growth signalling, and because deregulation of this protein contributes to many disease processes, a detailed understanding of regulatory processes that impinge on TCTP levels is required. The last section of this chapter summarises our current knowledge on the mechanisms that may be involved in the regulation of TCTP levels. Essentially, expression of the TPT1 gene is regulated at both the transcriptional and the translational level, the latter being particularly advantageous when a rapid adjustment of cellular TCTP levels is required, for example in cell stress responses. Other regulatory mechanisms, such as protein stability regulation, may also contribute to the regulation of overall TCTP levels.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- School of Medicine, Graduate Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
13
|
Acunzo J, Baylot V, So A, Rocchi P. TCTP as therapeutic target in cancers. Cancer Treat Rev 2014; 40:760-9. [PMID: 24650927 DOI: 10.1016/j.ctrv.2014.02.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 01/07/2023]
Abstract
The translationally controlled tumor protein (TCTP) is a highly conserved protein present in eukaryotic organisms. This protein, located both in the cytoplasmic and the nucleus, is expressed in various tissues and is regulated in response to a wide range of extracellular stimuli. TCTP interacts with itself and other protein including MCL1 and p53. TCTP has been shown to play an important role in physiological events, such as cell proliferation, cell death and immune responses but also in stress response and tumor reversion. Moreover, TCTP expression is associated with malignancy and chemoresistance. In this review, we will evaluate pathways regulated by TCTP and current inhibitory strategy to target TCTP in cancerous diseases.
Collapse
Affiliation(s)
- Julie Acunzo
- (a)Inserm, U1068, CRCM, Marseille F-13009, France; (b)Institut Paoli-Calmettes, Marseille F-13009, France; (c)Aix-Marseille Univ., Marseille F-13284, France; (d)CNRS, UMR7258, Marseille F-13009, France
| | - Virginie Baylot
- (a)Inserm, U1068, CRCM, Marseille F-13009, France; (b)Institut Paoli-Calmettes, Marseille F-13009, France; (c)Aix-Marseille Univ., Marseille F-13284, France; (d)CNRS, UMR7258, Marseille F-13009, France
| | - Alan So
- (e)University of British Columbia, The Vancouver Prostate Centre 2660- Oak St Vancouver, BC V6H3Z6, Canada
| | - Palma Rocchi
- (a)Inserm, U1068, CRCM, Marseille F-13009, France; (b)Institut Paoli-Calmettes, Marseille F-13009, France; (c)Aix-Marseille Univ., Marseille F-13284, France; (d)CNRS, UMR7258, Marseille F-13009, France.
| |
Collapse
|
14
|
The novel fusion protein sTRAIL-TMTP1 exhibits a targeted inhibition of primary tumors and metastases. J Mol Med (Berl) 2013; 92:165-75. [DOI: 10.1007/s00109-013-1093-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 09/08/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
|
15
|
Dimerization of TCTP and its clinical implications for allergy. Biochimie 2013; 95:659-66. [DOI: 10.1016/j.biochi.2012.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/09/2012] [Indexed: 01/12/2023]
|
16
|
Kim M, Jin YB, Lee K, Lee YS. A new antiallergic agent that binds to dimerized translationally controlled tumor protein and inhibits allergic symptoms is nontoxic. Hum Exp Toxicol 2013; 32:1119-25. [PMID: 23536520 DOI: 10.1177/0960327113477873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dimerized translationally controlled tumor protein (dTCTP) plays a role in allergic diseases. A 7-mer peptide, dimerized translationally binding protein 2 (dTBP2), binds to dTCTP and inhibits dTCTP, suggesting that the 7-mer peptide may have therapeutic potential. We assessed the safety of dTBP2 by examining its cytotoxicity to both human bronchial epithelial cells and mice. dTBP2 did not cause cytotoxicity to the epithelial cells in concentrations up to 100 μg/ml. Also, dTBP2 caused no adverse effects upon repeated administration of 50 mg/kg over 24 h to mice. Hence, we conclude that dTBP2 is a safe candidate drug for use in the therapy of allergic diseases.
Collapse
Affiliation(s)
- M Kim
- 1College of Pharmacy, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | | | | | | |
Collapse
|
17
|
Kim DK, Nam BY, Li JJ, Park JT, Lee SH, Kim DH, Kim JY, Kang HY, Han SH, Yoo TH, Han DS, Kang SW. Translationally controlled tumour protein is associated with podocyte hypertrophy in a mouse model of type 1 diabetes. Diabetologia 2012; 55:1205-17. [PMID: 22311416 DOI: 10.1007/s00125-012-2467-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/31/2011] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Translationally controlled tumour protein (TCTP) is thought to be involved in cell growth by regulating mTOR complex 1 (mTORC1) signalling. As diabetes characteristically induces podocyte hypertrophy and mTORC1 has been implicated in this process, TCTP may have a role in the pathogenesis of diabetes-induced podocyte hypertrophy. METHODS We investigated the effects and molecular mechanisms of TCTP in diabetic mice and in high glucose-stimulated cultured podocytes. To characterise the role of TCTP, we conducted lentivirus-mediated gene silencing of TCTP both in vivo and in vitro. RESULTS Glomerular production of TCTP was significantly higher in streptozotocin induced-diabetic DBA/2J mice than in control animals. Double-immunofluorescence staining for TCTP and synaptopodin revealed that podocyte was the principal cell responsible for this increase. TCTP knockdown attenuated the activation of mTORC1 downstream effectors and the overproduction of cyclin-dependent kinase inhibitors (CKIs) in diabetic glomeruli, along with a reduction in proteinuria and a decrease in the sizes of podocytes as well as glomeruli. In addition, knockdown of TCTP in db/db mice prevented the development of diabetic nephropathy, as indicated by the amelioration of proteinuria, mesangial expansion, podocytopenia and glomerulosclerosis. In accordance with the in vivo data, TCTP inhibition abrogated high glucose-induced hypertrophy in cultured podocytes, which was accompanied by the downregulation of mTORC1 effectors and CKIs. CONCLUSIONS/INTERPRETATION These findings suggest that TCTP might play an important role in the process of podocyte hypertrophy under diabetic conditions via the regulation of mTORC1 activity and the induction of cell-cycle arrest.
Collapse
Affiliation(s)
- D K Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|