1
|
Jiao H, Zhang M, Xu W, Pan T, Luan J, Zhao Y, Zhang Z. Chlorogenic acid alleviate kidney fibrosis through regulating TLR4/NF-қB mediated oxidative stress and inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118693. [PMID: 39142620 DOI: 10.1016/j.jep.2024.118693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chlorogenic acid (CGA), a phenolic acid produced by the interaction of Caffeic acid and Quinic acid, is considered to be the main active ingredient in many heat-clearing and detoxifying Chinese medicines, such as honeysuckle, Houttuynia, Artemisia annua, Gardenia, etc. CGA has anti-inflammatory, antioxidant, anticancer, antibacterial and other properties. However, the effect and process of CGA in kidney fibrosis remain unknown. AIM OF THE STUDY To investigate the therapeutic effects of CGA on alleviating kidney fibrosis and the underlying mechanisms. MATERIALS AND METHODS C57BL/6 mouse kidney fibrosis model was established by unilateral uretera obstruction (UUO), followed by treatment with CGA (40, 80 mg/kg/d) for 10 days. The serum and kidney tissue were collected. Network pharmacology, molecular docking and transcriptomic analysis were conducted to explore the possible mechanisms. The HK-2 cells were cultured and treated with TGF-β1(10 ng/mL) and CGA (50, 100 μM), to examine the role of TLR4/NF-қB signaling pathway in the therapeutic effect of CGA on kidney fibrosis. RESULTS CGA significantly alleviated kidney injury, inflammation, oxidative stress and fibrosis in UUO models. CGA also effectively inhibited the expression of inflammatory factors and the process of oxidative stress both in vivo and in vitro fibrosis models. Further, transcriptomic analysis, molecular docking, and network pharmacology results indicated that the therapeutic effect of CGA on fibrosis was through the regulation of TLR4/NF-қB signaling pathway. CONCLUSION CGA might provide benefits for the regulation of inflammatory response, oxidative stress and fibrogenesis by modulating TLR4/NF-қB signaling pathway on kidney fibrosis. Hence, CGA is an attractive agent for treating kidney fibrosis. The present study provided a basis for further research on the therapeutic strategies of kidney fibrosis.
Collapse
Affiliation(s)
- Hao Jiao
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui Province, China
| | - Meijuan Zhang
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wuqin Xu
- Department of Pathology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui Province, China
| | - Tongshuai Pan
- Department of Pharmacy, Wannan Medical College, Wuhu, 241001, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui Province, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Zhirui Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui Province, China.
| |
Collapse
|
2
|
Kim WJ, Bae J, Lee EH, Kim J, Kim PJ, Ma PX, Woo KM. Long noncoding RNA MALAT1 mediates fibrous topography-driven pathologic calcification through trans-differentiation of myoblasts. Mater Today Bio 2024; 28:101182. [PMID: 39205874 PMCID: PMC11357808 DOI: 10.1016/j.mtbio.2024.101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/14/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Prosthesis-induced pathological calcification is a significant challenge in biomaterial applications and is often associated with various reconstructive medical procedures. It is uncertain whether the fibrous extracellular matrix (ECM) adjacent to biomaterials directly triggers osteogenic trans-differentiation in nearby cells. To investigate this possibility, we engineered a heterogeneous polystyrene fibrous matrix (PSF) designed to mimic the ECM. Our findings revealed that the myoblasts grown on this PSF acquired osteogenic properties, resulting in mineralization both in vitro and in vivo. Transcriptomic analyses indicated a notable upregulation in the expression of the long noncoding RNA metastsis-associated lung adenocarcinoma transcript 1 (Malat1) in the C2C12 myoblasts cultured on PSF. Intriguingly, silencing Malat1 curtailed the PSF-induced mineralization and downregulated the expression of bone morphogenetic proteins (Bmps) and osteogenic markers. Further, we found that PSF prompted the activation of Yap1 signaling and epigenetic modifications in the Malat1 promoter, crucial for the expression of Malat1. These results indicate that the fibrous matrix adjacent to biomaterials can instigate Malat1 upregulation, subsequently driving osteogenic trans-differentiation in myoblasts and ectopic calcification through its transcriptional regulation of osteogenic genes, including Bmps. Our findings point to a novel therapeutic avenue for mitigating prosthesis-induced pathological calcification, heralding new possibilities in the field of biomaterial-based therapies.
Collapse
Affiliation(s)
- Woo-Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jieun Bae
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Hye Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaehyung Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pil-Jong Kim
- Biomedical Knowledge Engineering Laboratory, Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Peter X. Ma
- Department of Biologic and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kyung Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Pharmacology & Dental Therapeutics, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
Wei M, Liu J, Wang X, Liu X, Jiang L, Jiang Y, Ma Y, Wang J, Yuan H, An X, Song Y, Zhang L. Multi-omics analysis of kidney tissue metabolome and proteome reveals the protective effect of sheep milk against adenine-induced chronic kidney disease in mice. Food Funct 2024; 15:7046-7062. [PMID: 38864415 DOI: 10.1039/d4fo00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Chronic kidney disease (CKD) is characterized by impaired renal function and is associated with inflammation, oxidative stress, and fibrosis. Sheep milk contains several bioactive molecules with protective effects against inflammation and oxidative stress. In the current study, we investigated the potential renoprotective effects of sheep milk and the associated mechanisms of action in an adenine-induced CKD murine model. Sheep milk delayed renal chronic inflammation (e.g., significant reduction in levels of inflammatory factors Vcam1, Icam1, Il6, and Tnfa), fibrosis (significant reduction in levels of fibrosis factors Col1a1, Fn1, and Tgfb), oxidative stress (significant increase in levels of antioxidants and decrease in oxidative markers), mineral disorders, and renal injury in adenine-treated mice (e.g. reduced levels of kidney injury markers NGAL and KIM-1). The combined proteomics and metabolomics analyses showed that sheep milk may affect the metabolic processes of several compounds, including proteins, lipids, minerals, and hormones in mice with adenine-induced chronic kidney disease. In addition, it may regulate the expression of fibrosis-related factors and inflammatory factors through the JAK1/STAT3/HIF-1α signaling pathway, thus exerting its renoprotective effects. Therefore, sheep milk may be beneficial for patients with CKD and should be evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Mengyao Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Jiaxin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Xiaofei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Xiaorui Liu
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyao Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Yue Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Yingtian Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Jiangang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Hao Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi 712100, China.
| |
Collapse
|
4
|
Marstrand-Jørgensen AB, Sembach FE, Bak ST, Ougaard M, Christensen-Dalsgaard M, Rønn Madsen M, Jensen DM, Secher T, Heimbürger SMN, Fink LN, Hansen D, Hansen HH, Østergaard MV, Christensen M, Dalbøge LS. Shared and Distinct Renal Transcriptome Signatures in 3 Standard Mouse Models of Chronic Kidney Disease. Nephron Clin Pract 2024; 148:487-502. [PMID: 38354720 DOI: 10.1159/000535918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/04/2023] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Several mouse models with diverse disease etiologies are used in preclinical research for chronic kidney disease (CKD). Here, we performed a head-to-head comparison of renal transcriptome signatures in standard mouse models of CKD to assess shared and distinct molecular changes in three mouse models commonly employed in preclinical CKD research and drug discovery. METHODS All experiments were conducted on male C57BL/6J mice. Mice underwent sham, unilateral ureter obstruction (UUO), or unilateral ischemic-reperfusion injury (uIRI) surgery and were terminated two- and 6-weeks post-surgery, respectively. The adenine-supplemented diet-induced (ADI) model of CKD was established by feeding with adenine diet for 6 weeks and compared to control diet feeding. For all models, endpoints included plasma biochemistry, kidney histology, and RNA sequencing. RESULTS All models displayed increased macrophage infiltration (F4/80 IHC) and fibrosis (collagen 1a1 IHC). Compared to corresponding controls, all models were characterized by an extensive number of renal differentially expressed genes (≥11,000), with a notable overlap in transcriptomic signatures across models. Gene expression markers of fibrosis, inflammation, and kidney injury supported histological findings. Interestingly, model-specific transcriptome signatures included several genes representing current drug targets for CKD, emphasizing advantages and limitations of the three CKD models in preclinical target and drug discovery. CONCLUSION The UUO, uIRI, and ADI mouse models of CKD have significant commonalities in their renal global transcriptome profile. Model-specific renal transcriptional signatures should be considered when selecting the specific model in preclinical target and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thomas Secher
- Gubra A/S, Hørsholm, Denmark
- Cell Imaging and Pharmacology, Cell Therapy R&D, Novo Nordisk A/S, Måløv, Denmark
| | | | - Lisbeth N Fink
- Gubra A/S, Hørsholm, Denmark
- Biotherapeutics Screening, Ferring Pharmaceuticals A/S, Kastrup, Denmark
| | - Ditte Hansen
- Department of Nephrology, Herlev-Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
5
|
Huang A, Xu T, Lu X, Ma L, Ma H, Yu Y, Yao L. Shh-Gli2-Runx2 inhibits vascular calcification. Nephrol Dial Transplant 2024; 39:305-316. [PMID: 37451818 DOI: 10.1093/ndt/gfad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND In patients with chronic kidney disease (CKD), vascular calcification (VC) is common and is associated with a higher risk of all-cause mortality. Shh, one ligand for Hedgehog (Hh) signaling, participates in osteogenesis and several cardiovascular diseases. However, it remains unclear whether Shh is implicated in the development of VC. METHODS Inorganic phosphorus 2.6 mM was used to induce vascular smooth muscle cells (VSMCs) calcification. Mice were fed with adenine diet supplement with 1.2% phosphorus to induce VC. RESULTS Shh was decreased in VSMCs exposed to inorganic phosphorus, calcified arteries in mice fed with an adenine diet, as well as radial arteries from patients with CKD presenting VC. Overexpression of Shh inhibited VSMCs ostosteoblastic differentiation and calcification, whereas its silencing accelerated these processes. Likewise, mice treated with smoothened agonist (SAG; Hh signaling agonist) showed alleviated VC, and mice treated with cyclopamine (CPN; Hh signaling antagonist) exhibited severe VC. Additionally, overexpression of Gli2 significantly reversed the pro-calcification effect of Shh silencing on VSMCs, suggesting that Shh inhibited VC via Gli2. Mechanistically, Gli2 interacted with Runx2 and promoted its ubiquitin proteasomal degradation, therefore protecting against VC. Of interest, the pro-degradation effect of Gli2 on Runx2 was independent of Smurf1 and Cullin4B. CONCLUSIONS Our study provided deeper insight to the pathogenesis of VC, and Shh might be a novel potential target for VC treatment.
Collapse
Affiliation(s)
- Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Tianhua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaomei Lu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ling Ma
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Haiying Ma
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yanqiu Yu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Shenyang Engineering Technology R&D Center of Cell Therapy Co. Ltd, Shenyang, China
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Huang A, Li L, Liu X, Lian Q, Guo G, Xu T, Lu X, Ma L, Ma H, Yu Y, Yao L. Hedgehog signaling is a potential therapeutic target for vascular calcification. Gene 2023; 872:147457. [PMID: 37141952 DOI: 10.1016/j.gene.2023.147457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/07/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) suffered from vascular calcification (VC), one major contributor for their increased mortality rate. Hedgehog (Hh) signaling plays a crucial role in physiological bone mineralization and is associated with several cardiovascular diseases. However, the molecular changes underlying VC is ill defined and it remains unclear whether Hh signaling intervention affects VC. METHODS We constructed human primary vascular smooth muscle cell (VSMC) calcification model and performed RNA sequencing. Alizarin red staining and calcium content assay were conducted to identify the occurrence of VC. Three different R packages were applied to determine differentially expressed genes (DEGs). Enrichment analysis and protein-protein interaction (PPI) network analysis were carried out to explore the biological roles of DEGs. qRT-PCR assay was then applied to validate the expression of key genes. By using Connectivity Map (CMAP) analysis, several small molecular drugs targeting these key genes were obtained, including SAG (Hedgehog signaling activator) and cyclopamine (CPN) (Hedgehog signaling inhibitor), which were subsequently used to treat VSMC. RESULTS Obvious Alizarin red staining and increased calcium content identified the occurrence of VC. By integrating results from three R packages, we totally obtained 166 DEGs (86 up-regulated and 80 down-regulated), which were significantly enriched in ossification, osteoblast differentiation, and Hh signaling. PPI network analysis identified 10 key genes and CMAP analysis predicted several small molecular drugs targeting these key genes including chlorphenamine, isoeugenol, CPN and phenazopyridine. Notably, our in vitro experiment showed that SAG markedly alleviated VSMC calcification, whereas CPN significantly exacerbated VC. CONCLUSIONS Our research provided deeper insight to the pathogenesis of VC and indicated that targeting Hh signaling pathway may represent a potential and effective therapy for VC.
Collapse
Affiliation(s)
- Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Lu Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Xiaoxu Liu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Qiuting Lian
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Guangying Guo
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Tianhua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Xiaomei Lu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China
| | - Ling Ma
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China
| | - Haiying Ma
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China
| | - Yanqiu Yu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110013, China; Shenyang Engineering Technology R&D Center of Cell Therapy Co. LTD., Shenyang 110169, China.
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
7
|
Wang D, Yin L, Chen R, Tan W, Liang L, Xiang J, Zhang H, Zhou X, Deng H, Guo B, Wang Y. Senescent renal tubular epithelial cells activate fibroblasts by secreting Shh to promote the progression of diabetic kidney disease. Front Med (Lausanne) 2023; 9:1018298. [PMID: 36760880 PMCID: PMC9905119 DOI: 10.3389/fmed.2022.1018298] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/08/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Diabetic kidney disease (DKD) is one of the complications of diabetes; however, the pathogenesis is not yet clear. A recent study has shown that senescence is associated with the course of DKD. In the present study, we explored whether senescent renal tubular cells promote renal tubulointerstitial fibrosis by secreting Sonic hedgehog (Shh) which mediates fibroblast activation and proliferation in DKD. Methods A 36-week-old db/db mice model and the renal tubular epithelial cells were cultured in high glucose (HG, 60 mmol/L) medium for in vivo and in vitro experiments. Results Compared to db/m mice, blood glucose, microalbuminuria, serum creatinine, urea nitrogen, and UACR (microalbuminuria/urine creatinine) were markedly increased in db/db mice. Collagen III, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-alpha (TNF-α) were also increased in db/db mice kidneys, suggesting fibrosis and inflammation in the organ. Moreover, the detection of SA-β-galactosidase (SA-β-Gal) showed that the activity of SA-β-Gal in the cytoplasm of renal tubular epithelial cells increased, and the cell cycle inhibition of the expression of senescence-related gene cell cycle inhibitor p16 INK4A protein and p21 protein increased, indicating that renal fibrosis in db/db mice was accompanied by cell senescence. Furthermore, Shh is highly expressed in the injured renal tubules and in the kidney tissue of db/db mice, as detected by enzyme-linked immunosorbent assay (ELISA). The results of immunofluorescence staining showed increased positive staining for Shh in renal tubular epithelial cells of db/db mice and decreased positive staining for Lamin B1, but increased positive staining for γH2A.X in cells with high Shh expression; similar results were obtained in vitro. In addition, HG stimulated renal tubular epithelial cells to secrete Shh in the supernatant of the medium. D-gal treatment of renal tubular epithelial cells increased the protein levels of Shh and p21. We also found enhanced activation and proliferation of fibroblasts cultured with the supernatant of renal tubular epithelial cells stimulated by HG medium but the proliferative effect was significantly diminished when co-cultured with cyclopamine (CPN), an inhibitor of the Shh pathway. Discussion In conclusion, HG induces renal tubular epithelial cell senescence, and the secretion of senescence-associated proteins and Shh mediates inflammatory responses and fibroblast activation and proliferation, ultimately leading to renal fibrosis.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China,International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, China
| | - Ling Yin
- Division of Nephrology, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Rongyu Chen
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wanlin Tan
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Luqun Liang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiayi Xiang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huifang Zhang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xingcheng Zhou
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huaqing Deng
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bing Guo
- Guizhou Province Innovation Base of Common Major Chronic Disease Pathogenesis and Drug Development and Application, Guiyang, Guizhou, China,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China,Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Bing Guo, ; orcid.org/0000-0001-8998-2597
| | - Yuanyuan Wang
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, China,Guizhou Province Innovation Base of Common Major Chronic Disease Pathogenesis and Drug Development and Application, Guiyang, Guizhou, China,Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China,Yuanyuan Wang, ; orcid.org/0000-0002-6693-643X
| |
Collapse
|
8
|
Yu J, Li C, Ma L, Zhai B, Xu A, Shao D. Transient receptor potential canonical 6 knockdown ameliorated diabetic kidney disease by inhibiting nuclear factor of activated T cells 2 expression in glomerular mesangial cells. Ren Fail 2022; 44:1780-1790. [DOI: 10.1080/0886022x.2022.2134796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Jian Yu
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| | - Chunchun Li
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| | - Lisha Ma
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| | - Bin Zhai
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| | - Aiping Xu
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| | - Decui Shao
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, China
| |
Collapse
|
9
|
Role of Collagen in Vascular Calcification. J Cardiovasc Pharmacol 2022; 80:769-778. [PMID: 35998017 DOI: 10.1097/fjc.0000000000001359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT Vascular calcification is a pathological process characterized by ectopic calcification of the vascular wall. Medial calcifications are most often associated with kidney disease, diabetes, hypertension, and advanced age. Intimal calcifications are associated with atherosclerosis. Collagen can regulate mineralization by binding to apatite minerals and promoting their deposition, binding to collagen receptors to initiate signal transduction, and inducing cell transdifferentiation. In the process of vascular calcification, type I collagen is not only the scaffold for mineral deposition but also a signal entity, guiding the distribution, aggregation, and nucleation of vesicles and promoting the transformation of vascular smooth muscle cells into osteochondral-like cells. In recent years, collagen has been shown to affect vascular calcification through collagen disc-domain receptors, matrix vesicles, and transdifferentiation of vascular smooth muscle cells.
Collapse
|
10
|
The application of 3D bioprinting in urological diseases. Mater Today Bio 2022; 16:100388. [PMID: 35967737 PMCID: PMC9364106 DOI: 10.1016/j.mtbio.2022.100388] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Urologic diseases are commonly diagnosed health problems affecting people around the world. More than 26 million people suffer from urologic diseases and the annual expenditure was more than 11 billion US dollars. The urologic cancers, like bladder cancer, prostate cancer and kidney cancer are always the leading causes of death worldwide, which account for approximately 22% and 10% of the new cancer cases and death, respectively. Organ transplantation is one of the major clinical treatments for urological diseases like end-stage renal disease and urethral stricture, albeit strongly limited by the availability of matching donor organs. Tissue engineering has been recognized as a highly promising strategy to solve the problems of organ donor shortage by the fabrication of artificial organs/tissue. This includes the prospective technology of three-dimensional (3D) bioprinting, which has been adapted to various cell types and biomaterials to replicate the heterogeneity of urological organs for the investigation of organ transplantation and disease progression. This review discusses various types of 3D bioprinting methodologies and commonly used biomaterials for urological diseases. The literature shows that advances in this field toward the development of functional urological organs or disease models have progressively increased. Although numerous challenges still need to be tackled, like the technical difficulties of replicating the heterogeneity of urologic organs and the limited biomaterial choices to recapitulate the complicated extracellular matrix components, it has been proved by numerous studies that 3D bioprinting has the potential to fabricate functional urological organs for clinical transplantation and in vitro disease models. Outline the advantages and characteristics of 3D printing compared with traditional methods for urological diseases. Guide the selection of 3D bioprinting technology and material in urological tissue engineering. Discuss the challenges and future perspectives of 3D bioprinting in urological diseases and clinical translation.
Collapse
|
11
|
Leifheit-Nestler M, Vogt I, Haffner D, Richter B. Phosphate Is a Cardiovascular Toxin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:107-134. [DOI: 10.1007/978-3-030-91623-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|