1
|
Rioux AV, Bergeron NA, Riopel J, Marcoux N, Thériault C, Gould PV, Garneau AP, Isenring P. The ever wider clinical spectrum of RMND1-related disorders and limitedness of phenotype-based classifications. J Mol Med (Berl) 2023; 101:1229-1236. [PMID: 37584739 PMCID: PMC10560146 DOI: 10.1007/s00109-023-02356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
RMND1 has been identified as a mitochondriopathy-associated gene less than 12 years ago. The most common phenotype related to this gene is an early onset, severe form of encephalomyopathy that leads to death in a medium time of three years after birth. However, milder and later onset presentations have been reported in some individuals, including two in whom the mitochondriopathy was identified at ~ 40 years of age, and the early onset presentations have been the object of no reports in those who survived beyond age 10. It is thus unclear how lethal RMND1-related conditions really are. We herein describe the oldest case to have been identified hitherto with this condition, i.e., that of a white female who was 61 at the time of diagnosis but was still active in her everyday life. The gene defect identified was nonetheless associated with many manifestations including ovarian insufficiency and sensorineural hearing loss (two features of what is currently designated as Perrault syndrome) as well as chronic renal failure, asymptomatic myopathy, leukopenia, and a few others. In our opinion, this case is of great translational interest for at least three reasons. First, it hints towards the possibility of near-normal life expectancies in some if not many individuals with RMND1 insufficiency. Second, it underlines the wide clinical spectrum associated with this gene. Third, it brings us to question the use of eponyms and syndromic features to identify the true etiology of multisystemic phenotypes. KEY MESSAGES: RMND1-related conditions typically manifest at an early age with a progressive and lethal form of encephalomyopathy. More benign presentations have been described with some being categorized as Perrault syndrome but none have been diagnosed after the age of 45. The clinical spectrum and presenting age of RMND1-related mitochondriopathies are probably much more varied than implied in the current literature. The case reported in this manuscript illustrates the limitedness of phenotype-based classifications of genetic disorders to identify the defect at cause.
Collapse
Affiliation(s)
- Alexis V Rioux
- CHU de Québec, Service of Nephrology, Faculty of Medicine, Université Laval, QC, G1R 2J6, Québec, Canada
| | - Nicolas Ad Bergeron
- CHU de Québec, Service of Nephrology, Faculty of Medicine, Université Laval, QC, G1R 2J6, Québec, Canada
| | - Julie Riopel
- CHU de Québec, Service of Pathology, Faculty of Medicine, Université Laval, Québec, QC, G1R 2J6, Canada
| | - Nicolas Marcoux
- CHU de Québec, Service of Hematology, Faculty of Medicine, Université Laval, Québec, QC, G1R 2J6, Canada
| | - Catherine Thériault
- CHU de Québec, Service of Pathology, Faculty of Medicine, Université Laval, Québec, QC, G1R 2J6, Canada
| | - Peter V Gould
- CHU de Québec, Service of Pathology, Faculty of Medicine, Université Laval, Québec, QC, G1R 2J6, Canada
| | - Alexandre P Garneau
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker‑Enfants Malades, AP‑HP, Inserm U1151, Université Paris Cité, rue de Sèvres, Paris, France
| | - Paul Isenring
- CHU de Québec, Service of Nephrology, Faculty of Medicine, Université Laval, QC, G1R 2J6, Québec, Canada.
| |
Collapse
|
2
|
Connaughton DM, Bhai P, Isenring P, Mahdi M, Sadikovic B, Schenkel LC. Genotypic analysis of a large cohort of patients with suspected atypical hemolytic uremic syndrome. J Mol Med (Berl) 2023; 101:1029-1040. [PMID: 37466676 PMCID: PMC10400659 DOI: 10.1007/s00109-023-02341-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/20/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal impairment. Complement and coagulation gene variants have been associated with aHUS susceptibility. We assessed the diagnostic yield of a next-generation sequencing (NGS) panel in a large cohort of Canadian patients with suspected aHUS. Molecular testing was performed on peripheral blood DNA samples from 167 patients, collected between May 2019 and December 2021, using a clinically validated NGS pipeline. Coding exons with 20 base pairs of flanking intronic regions for 21 aHUS-associated or candidate genes were enriched using a custom hybridization protocol. All sequence and copy number variants were assessed and classified following American College of Medical Genetics guidelines. Molecular diagnostic results were reported for four variants in three individuals (1.8%). Twenty-seven variants of unknown significance were identified in 25 (15%) patients, and 34 unique variants in candidate genes were identified in 28 individuals. An illustrative patient case describing two genetic alterations in complement genes is presented, highlighting that variable expressivity and incomplete penetrance must be considered when interpreting genetic data in patients with complement-mediated disease, alongside the potential additive effects of genetic variants on aHUS pathophysiology. In this cohort of patients with suspected aHUS, using clinical pipelines for genetic testing and variant classification, pathogenic/likely pathogenic variants occurred in a very small percentage of patients. Our results highlight the ongoing challenges in variant classification following NGS panel testing in patients with suspected aHUS, alongside the need for clear testing guidance in the clinical setting. KEY MESSAGES: • Clinical molecular testing for disease associated genes in aHUS is challenging. • Challenges include patient selection criteria, test validation, and interpretation. • Most variants were of uncertain significance (31.7% of patients; VUS + candidates). • Their clinical significance may be elucidated as more evidence becomes available. • Low molecular diagnostic rate (1.8%), perhaps due to strict classification criteria. • Case study identified two likely pathogenic variants; one each in MCP/CD46 and CFI.
Collapse
Affiliation(s)
- Dervla M Connaughton
- Schulich School of Medicine & Dentistry, University of Western, London, ON, Canada
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, 339 Windermere Road, London, ON, Canada
| | - Pratibha Bhai
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre (LHSC), London, ON, Canada
| | - Paul Isenring
- Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | | | - Bekim Sadikovic
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre (LHSC), London, ON, Canada
- Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Laila C Schenkel
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre (LHSC), London, ON, Canada.
- Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| |
Collapse
|
3
|
de Boer ECW, Thielen AJF, Langereis JD, Kamp A, Brouwer MC, Oskam N, Jongsma ML, Baral AJ, Spaapen RM, Zeerleder S, Vidarsson G, Rispens T, Wouters D, Pouw RB, Jongerius I. The contribution of the alternative pathway in complement activation on cell surfaces depends on the strength of classical pathway initiation. Clin Transl Immunology 2023; 12:e1436. [PMID: 36721662 PMCID: PMC9881211 DOI: 10.1002/cti2.1436] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 01/28/2023] Open
Abstract
Objectives The complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for complement activation. However, the role of the AP in classical pathway (CP) activation has only been studied in ELISA settings. Here, we investigated its contribution on physiologically relevant surfaces of human cells and bacterial pathogens and in antibody-mediated complement activation, including in autoimmune haemolytic anaemia (AIHA) setting with autoantibodies against red blood cells (RBCs). Methods We evaluated the contribution of the AP to complement responses initiated through the CP on human RBCs by serum of AIHA patients and recombinant antibodies. Moreover, we studied complement activation on Neisseria meningitidis and Escherichia coli. The effect of the AP was examined using either AP-depleted sera or antibodies against factor B and factor D. Results We show that the amplification loop is redundant when efficient CP activation takes place. This is independent of the presence of membrane-bound complement regulators. The role of the AP may become significant when insufficient CP complement activation occurs, but this depends on antibody levels and (sub)class. Our data indicate that therapeutic intervention in the amplification loop will most likely not be effective to treat antibody-mediated diseases. Conclusion The AP can be bypassed through efficient CP activation. The AP amplification loop has a role in complement activation during conditions of modest activation via the CP, when it can allow for efficient complement-mediated killing.
Collapse
Affiliation(s)
- Esther CW de Boer
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's HospitalAmsterdam University Medical CentreAmsterdamThe Netherlands
| | - Astrid JF Thielen
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Jeroen D Langereis
- Laboratory of Medical Immunology, Radboud Institute for Molecular Life SciencesRadboudumcNijmegenThe Netherlands,Radboud Center for Infectious Diseases, RadboudumcNijmegenThe Netherlands
| | - Angela Kamp
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Mieke C Brouwer
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Nienke Oskam
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Marlieke L Jongsma
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - April J Baral
- Translational and Clinical Research InstituteNewcastle upon TyneUK
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands,Department of Hematology, Luzerner KantonsspitalLuzern and University of BernBernSwitzerland,Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner LaboratoryAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands,Centre for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Richard B Pouw
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands,Sanquin Health SolutionsAmsterdamThe Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's HospitalAmsterdam University Medical CentreAmsterdamThe Netherlands
| |
Collapse
|
4
|
Patriquin CJ, Pavenski K, Garland J, Girard LP, Isenring P. Complement-Amplifying Conditions in Atypical Hemolytic Uremic Syndrome: A Canadian Case Series. Can J Kidney Health Dis 2022; 9:20543581221100288. [PMID: 35615072 PMCID: PMC9125052 DOI: 10.1177/20543581221100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/31/2022] [Indexed: 11/24/2022] Open
Abstract
Rationale Thrombotic microangiopathies (TMAs) are systemic disorders that often affect the kidneys and encompass a heterogeneous group of conditions, including atypical hemolytic uremic syndrome (aHUS). The complement pathway is thought to play a crucial role in the pathogenesis of aHUS, and a favorable response can be obtained through complement C5 inhibition. There is emerging evidence to suggest that the same is also true for several other forms of TMA. Objective The purpose of this series is to report cases of aHUS in which both an innate defect of the alternative complement pathway and a complement-amplifying condition were suspected. Methods This case series describes 8 patients who were managed in Canadian tertiary centers for aHUS and who presented initially with complement-amplifying conditions. Results In all cases, aHUS was associated with organ dysfunction and in some, with an innate defect of the alternative complement pathway. The complement-amplifying conditions identified were diverse including immune disorders, pregnancy, and a Shiga toxin infection. Patients improved rapidly when treated with eculizumab or plasma exchange. Conclusions These observations illustrate the seriousness of secondary aHUS. They also add to existing lines of evidence that the complement pathway is potentially involved in this condition and that it should be considered as a therapeutic target of interest under such circumstances.
Collapse
Affiliation(s)
| | - Katerina Pavenski
- St. Michael’s Hospital, Unity Health Toronto, University of Toronto, ON, Canada
| | - Jocelyn Garland
- Division of Nephrology, Department of Medicine, Queen’s University, Kingston, ON, Canada
| | | | - Paul Isenring
- Nephrology Research Group, Department of Medicine, L’Hôtel-Dieu de Québec Institution, Laval University, Québec, QC, Canada
| |
Collapse
|