1
|
Zhou Y, Zhang Y, Xie H, Wu Z, Shi B, Lin LL, Ye J. In Vivo Surface-Enhanced Transmission Raman Spectroscopy and Impact of Frozen Biological Tissues on Lesion Depth Prediction. ACS NANO 2024. [PMID: 39681525 DOI: 10.1021/acsnano.4c12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Plasmonic surface-enhanced transmission Raman spectroscopy (SETRS) has emerged as a promising optical technique for detecting and predicting the depths of deep-seated lesions in biological tissues. However, in vivo studies using SETRS are scarce and typically show shallow penetration depths. Moreover, the optical parameters used in the prediction process are often derived from frozen samples and there is limited understanding of how freezing affects the optical properties of biological tissues and the accuracy of depth prediction in living models. In this work, we conduct in vivo SETRS measurements on thick abdominal tissue region of the live rats to investigate the impact of freezing on the measured optical properties for the purpose of depth prediction. First, we fabricated ultrahigh bright surface-enhanced Raman spectroscopy (SERS) nanotags and utilized a custom transmission Raman system. We then measured the change of optical attenuation at two different wavelengths (Δμ) for four types of rat tissues (including skin, fat, muscle, and liver) following freezing. The freezing process dramatically affects Δμ values, even after only 1 day of freezing. In contrast, Δμ values obtained from fresh samples enable precise localization of SERS lesion phantoms in the live rat with only 5% deviation. The total thickness of the live rat is 2.6 cm, which, to the best of our knowledge, is the highest value of in vivo SETRS studies so far. This work helps to fill the gap in the SERS field of tissue localization and optical coefficient studies in highly heterogeneous tissues, and demonstrates the potential of the SETRS technique to achieve precise clinical localization of deep lesions.
Collapse
Affiliation(s)
- Yutong Zhou
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yumin Zhang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Haoqiang Xie
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Bowen Shi
- Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Linley Li Lin
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, China
| |
Collapse
|
2
|
Liu Y, Huang W, Saladin RJ, Hsu JC, Cai W, Kang L. Trop2-Targeted Molecular Imaging in Solid Tumors: Current Advances and Future Outlook. Mol Pharm 2024; 21:5909-5928. [PMID: 39537365 DOI: 10.1021/acs.molpharmaceut.4c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Trophoblast cell surface antigen 2 (Trop2), a transmembrane glycoprotein, plays a dual role in physiological and pathological processes. In healthy tissues, Trop2 facilitates development and orchestrates intracellular calcium signaling. However, its overexpression in numerous solid tumors shifts its function toward driving cell proliferation and metastasis, thus leading to a poor prognosis. The clinical relevance of Trop2 is underscored by its utility as both a biomarker for diagnostic imaging and a target for therapy. Notably, the U.S. Food and Drug Administration (FDA) has approved sacituzumab govitecan (SG), a novel Trop2-targeted agent, for treating triple-negative breast cancer (TNBC) and refractory urothelial cancer, highlighting the significance of Trop2 in clinical oncology. Molecular imaging, a powerful tool for visualizing and quantifying biological phenomena at the molecular and cellular levels, has emerged as a critical technique for studying Trop2. This approach encompasses various modalities, including optical imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and targeted antibodies labeled with radioactive isotopes. Incorporating Trop2-targeted molecular imaging into clinical practice is vital for the early detection, prognostic assessment, and treatment planning of a broad spectrum of solid tumors. Our review captures the latest progress in Trop2-targeted molecular imaging, focusing on both diagnostic and therapeutic applications across diverse tumor types, including lung, breast, gastric, pancreatic, prostate, and cervical cancers, as well as salivary gland carcinomas. We critically evaluate the current state by examining the relevant applications, diagnostic accuracy, therapeutic efficacy, and inherent limitations. Finally, we analyze the challenges impeding widespread clinical application and offer insights into strategies for advancing the field, thereby guiding future research endeavors.
Collapse
Affiliation(s)
- Yongshun Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Rachel J Saladin
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
3
|
Verma N, Setia A, Mehata AK, Randhave N, Badgujar P, Malik AK, Muthu MS. Recent Advancement of Indocyanine Green Based Nanotheranostics for Imaging and Therapy of Coronary Atherosclerosis. Mol Pharm 2024; 21:4804-4826. [PMID: 39225111 DOI: 10.1021/acs.molpharmaceut.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Atherosclerosis is a vascular intima condition in which any part of the circulatory system is affected, including the aorta and coronary arteries. Indocyanine green (ICG), a theranostic compound approved by the FDA, has shown promise in the treatment of coronary atherosclerosis after incorporation into nanoplatforms. By integration of ICG with targeting agents such as peptides or antibodies, it is feasible to increase its concentration in damaged arteries, hence increasing atherosclerosis detection. Nanotheranostics offers cutting-edge techniques for the clinical diagnosis and therapy of atherosclerotic plaques. Combining the optical properties of ICG with those of nanocarriers enables the improved imaging of atherosclerotic plaques and targeted therapeutic interventions. Several ICG-based nanotheranostics platforms have been developed such as polymeric nanoparticles, iron oxide nanoparticles, biomimetic systems, liposomes, peptide-based systems, etc. Theranostics for atherosclerosis diagnosis use magnetic resonance imaging (MRI), computed tomography (CT), near-infrared fluorescence (NIRF) imaging, photoacoustic/ultrasound imaging, positron emission tomography (PET), and single photon emission computed tomography (SPECT) imaging techniques. In addition to imaging, there is growing interest in employing ICG to treat atherosclerosis. In this review, we provide a conceptual explanation of ICG-based nanotheranostics for the imaging and therapy of coronary atherosclerosis. Moreover, advancements in imaging modalities such as MRI, CT, PET, SPECT, and ultrasound/photoacoustic have been discussed. Furthermore, we highlight the applications of ICG for coronary atherosclerosis.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nandini Randhave
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Paresh Badgujar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
4
|
Liu N, O'Connor P, Gujrati V, Shelar D, Ma X, Anzenhofer P, Klemm U, Su X, Huang Y, Kleigrewe K, Feuchtinger A, Walch A, Sattler M, Plettenburg O, Ntziachristos V. Tuning the photophysical properties of cyanine by barbiturate functionalization and nanoformulation for efficient optoacoustics- guided phototherapy. J Control Release 2024; 372:522-530. [PMID: 38897293 DOI: 10.1016/j.jconrel.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Cyanine derivatives are organic dyes widely used for optical imaging. However, their potential in longitudinal optoacoustic imaging and photothermal therapy remains limited due to challenges such as poor chemical stability, poor photostability, and low photothermal conversion. In this study, we present a new structural modification for cyanine dyes by introducing a strongly electron-withdrawing group (barbiturate), resulting in a new series of barbiturate-cyanine dyes (BC810, BC885, and BC1010) with suppressed fluorescence and enhanced stability. Furthermore, the introduction of BC1010 into block copolymers (PEG114-b-PCL60) induces aggregation-caused quenching, further boosting the photothermal performance. The photophysical properties of nanoparticles (BC1010-NPs) include their remarkably broad absorption range from 900 to 1200 nm for optoacoustic imaging, allowing imaging applications in NIR-I and NIR-II windows. The combined effect of these strategies, including improved photostability, enhanced nonradiative relaxation, and aggregation-caused quenching, enables the detection of optoacoustic signals with high sensitivity and effective photothermal treatment of in vivo tumor models when BC1010-NPs are administered before irradiation with a 1064 nm laser. This research introduces a barbiturate-functionalized cyanine derivative with optimal properties for efficient optoacoustics-guided theranostic applications. This new compound holds significant potential for biomedical use, facilitating advancements in optoacoustic-guided diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Nian Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Patrick O'Connor
- Institute of Medicinal Chemistry, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; Institute of Structural Biology, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - Vipul Gujrati
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany.
| | - Divyesh Shelar
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan 250061, China
| | - Pia Anzenhofer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Uwe Klemm
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuanhui Huang
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising 85354, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; Bavarian NMR Center, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; Center for Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz Universität Hannover, Hannover 30167, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany.
| |
Collapse
|
5
|
Zhou N, Sun Y, Ren X, Wang Y, Gao X, Li L, Ma Y, Hao Y, Wang Y. Intradermal injection of Cutibacterium acnes and staphylococcus: A pustular acne-like murine model. J Cosmet Dermatol 2024; 23:2478-2489. [PMID: 38581133 DOI: 10.1111/jocd.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/04/2024] [Accepted: 03/05/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Skin 16S microbiome diversity analysis indicates that the Staphylococcus genus, especially Staphylococcus aureus (S. aureus), plays a crucial role in the inflammatory lesions of acne. However, current animal models for acne do not fully replicate human diseases, especially pustular acne, which limits the development of anti-acne medications. AIMS The aim is to develop a mouse model for acne, establishing an animal model that more closely mimics the clinical presentation of pustular acne. This will provide a new research platform for screening anti-acne drugs and evaluating the efficacy of clinical anti-acne experimental treatments. METHODS Building upon the existing combination of acne-associated Cutibacterium acnes (C. acnes) with artificial sebum, we will inject a mixture of S. aureus and C. acnes locally into the dermis in a 3:7 ratio. RESULTS We found that the acne animal model with mixed bacterial infection better replicates the dynamic evolution process of human pustular acne. Compared to the infection with C. acnes alone, mixed bacterial infection resulted in pustules with a distinct yellowish appearance, resembling pustular acne morphology. The lesions exhibited redness, vascular dilation, and noticeable congestion, along with evident infiltration of inflammatory cells. This induced higher levels of inflammation, as indicated by a significant increase in the secretion of inflammatory factors such as IL-1β and TNF-α. CONCLUSION This model can reflect the clinical symptoms and development of human pustular acne, overcoming the limitations of animal models commonly used in basic research to study this situation. It provides support for foundational research and the development of new acne medications.
Collapse
Affiliation(s)
- Na Zhou
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Ren
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunong Wang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xinyu Gao
- Shenyang Pharmaceutical University, Shenyang, China
| | - Lishuang Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuman Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Hao
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Sun T, Zhao H, Hu L, Shao X, Lu Z, Wang Y, Ling P, Li Y, Zeng K, Chen Q. Enhanced optical imaging and fluorescent labeling for visualizing drug molecules within living organisms. Acta Pharm Sin B 2024; 14:2428-2446. [PMID: 38828150 PMCID: PMC11143489 DOI: 10.1016/j.apsb.2024.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 06/05/2024] Open
Abstract
The visualization of drugs in living systems has become key techniques in modern therapeutics. Recent advancements in optical imaging technologies and molecular design strategies have revolutionized drug visualization. At the subcellular level, super-resolution microscopy has allowed exploration of the molecular landscape within individual cells and the cellular response to drugs. Moving beyond subcellular imaging, researchers have integrated multiple modes, like optical near-infrared II imaging, to study the complex spatiotemporal interactions between drugs and their surroundings. By combining these visualization approaches, researchers gain supplementary information on physiological parameters, metabolic activity, and tissue composition, leading to a comprehensive understanding of drug behavior. This review focuses on cutting-edge technologies in drug visualization, particularly fluorescence imaging, and the main types of fluorescent molecules used. Additionally, we discuss current challenges and prospects in targeted drug research, emphasizing the importance of multidisciplinary cooperation in advancing drug visualization. With the integration of advanced imaging technology and molecular design, drug visualization has the potential to redefine our understanding of pharmacology, enabling the analysis of drug micro-dynamics in subcellular environments from new perspectives and deepening pharmacological research to the levels of the cell and organelles.
Collapse
Affiliation(s)
- Ting Sun
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huanxin Zhao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Luyao Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xintian Shao
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- School of Life Sciences, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Zhiyuan Lu
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yuli Wang
- Tianjin Pharmaceutical DA REN TANG Group Corporation Limited Traditional Chinese Pharmacy Research Institute, Tianjin 300457, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemistry Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Peixue Ling
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kewu Zeng
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qixin Chen
- School of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| |
Collapse
|
7
|
Chen X, Ma X, Yang G, Huang G, Dai H, Yu J, Liu N. Chalcogen Atom-Modulated Croconaine for Efficient NIR-II Photothermal Theranostics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12332-12338. [PMID: 38426453 DOI: 10.1021/acsami.4c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Organic dye-based agents with near-infrared (NIR)-II absorption have great potential for cancer theranostics because of the deeper tissue penetration and good biocompatibility. However, proper design is required to develop NIR-II-absorbing dyes with good optical properties. We proposed to construct chalcogen atom-modulated croconaine for NIR-II light-triggered photothermal theranostics. By introducing different chalcogen atoms (O, S, Se, or Te) into the structure of croconaine, the light absorption of croconaine can be precisely regulated from the NIR-I to the NIR-II range due to the heavy-atom effect. Especially, Te-substituted croconaine (CRTe) and its nanoformulations exhibit superior NIR-II responsiveness, a high photothermal conversion efficiency (70.6%), and good photostability. With their favorable tumor accumulation, CRTe-NPs from tumor regions can be visualized by NIR-II optoacoustic systems with high resolution and high contrast; meanwhile, their superior photothermal performance also contributes to efficient cell killing and tumor elimination upon 1064 nm laser irradiation. Therefore, this work provides an efficient strategy for the molecular design of NIR-II organic photothermal agents.
Collapse
Affiliation(s)
- Xiao Chen
- Longgang Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan 250061, China
| | - Gui Yang
- Longgang Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Guan Huang
- Longgang Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Haibing Dai
- Longgang Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Jianbo Yu
- Longgang Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Nian Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
8
|
Liu W, Li K, Yu S, Wang Z, Li H, Liu X. Alterations in the sequence and bioactivity of food-derived oligopeptides during simulated gastrointestinal digestion and absorption: a review. Int J Food Sci Nutr 2024; 75:134-147. [PMID: 38185901 DOI: 10.1080/09637486.2023.2295224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
Food-derived oligopeptides (FOPs) exhibit various bioactivities. However, little was known about their sequence changes in the gastrointestinal tract and the effect of changes on bioactivities. FOPs' sequence features, changes and effects on bioactivities have been summarised. The sequence length of FOPs decreases with increased exposure of hydrophobic and basic amino acids at the terminal during simulated gastrointestinal digestion. A decrease in bioactivities after simulated intestinal absorption has correlated with a decrease of Leu, Ile, Arg, Tyr, Gln and Pro. The sequence of FOPs that pass readily through the intestinal epithelium corresponds to transport modes, and FOPs whose sequences remain unchanged after transport are the most bioactive. These include mainly dipeptides to tetrapeptides, consisting of numerous hydrophobic and basic amino acids, found mostly at the end of the peptide chain, especially at the C-terminal. This review aims to provide a foundation for applications of FOPs in nutritional supplements and functional foods.
Collapse
Affiliation(s)
- Wanlu Liu
- China Food Flavor and Nutrition Health Innovation Center, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing, China
| | - Kexin Li
- China Food Flavor and Nutrition Health Innovation Center, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing, China
| | - Shengjuan Yu
- China Food Flavor and Nutrition Health Innovation Center, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing, China
| | - Zhen Wang
- Jinhe Tibetan Medicine (Shandong) Health Industry Co., Ltd, Jinan, China
| | - He Li
- China Food Flavor and Nutrition Health Innovation Center, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xinqi Liu
- China Food Flavor and Nutrition Health Innovation Center, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
9
|
Li D, Sun Y, Ren X, Zhou N, Li L, He G, Ma S, Wang Y. Dynamic evaluation of pathological changes in a mouse acne model by optical imaging technology. Exp Dermatol 2023; 32:1350-1360. [PMID: 37183301 DOI: 10.1111/exd.14826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023]
Abstract
Acne vulgaris is a disorder of the pilosebaceous unit that is primarily caused by hyperseborrhoea, colonization with Propionibacterium acnes, hyperkeratosis and an inflammatory response. Existing pharmacodynamic assessment methods primarily focus on a single causative factor at a certain time point, making it difficult to assess multiple factors simultaneously in real time. Therefore, it is crucial to establish a dynamic and nondestructive method for the assessment of acne in vivo. This study utilized four-dimensional optical imaging techniques to assess the pathogenic factors and pathological progression of acne. LSCI was employed to measure blood flow; TPEF was used to observe inflammatory changes (NAD(P)H) in epidermal granular layer cells and structural changes in collagen fibres in the dermal layer. Additionally, the dermatoscope was used to investigate the micro-characterization of the lesions. We observed that the epidermis in the lesion area was thickened, hair follicles were keratinized, and there was obvious inflammation and blood flow aggregation by optical imaging technology. Based on these findings, the pathological progression of this acne model could be divided into the inflammation phase, accompanied by bacterial colonization, and the reparative phase. These results provide a new perspective for the assessment of acne and offer an experimental basis for the selection of precise drugs for clinical use.
Collapse
Affiliation(s)
- Dongying Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Ren
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Na Zhou
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gaiying He
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuhua Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Chen X, Ma X, Yang G, Huang G, Dai H, Liu N, Yu J. Squaraine nanoparticles for optoacoustic imaging-guided synergistic cancer phototherapy. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:3645-3652. [PMID: 39635347 PMCID: PMC11501745 DOI: 10.1515/nanoph-2023-0358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/14/2023] [Indexed: 12/07/2024]
Abstract
The unique optical properties of squaraine dyes make them promising for cancer phototheranostics, but the reported squaraines for in vivo treatments mainly rely on their photothermal effect, where monotherapy cannot achieve the desired therapeutic effect. Here we generated a type of squaraine capable of killing tumors through both photothermal and photodynamic effects. We optimized squaraine structure with selenium modulation and formulated it into nanoparticles that showed strong absorption of infrared light, negligible fluorescence, good photothermal conversion (66.6 %), and strong photodynamic effects even after several irradiation cycles. In addition, the nanoparticles could be tracked through their strong optoacoustic signal. In mice, the nanoparticles effectively accumulated in tumors and eliminated them upon irradiation, without causing adverse effects. Our work demonstrates the potential of selenium modulation of squaraine for precise cancer diagnosis and treatment through synergistic photothermal and photodynamic effects.
Collapse
Affiliation(s)
- Xiao Chen
- Longgang Central Hospital of Shenzhen, Shenzhen518116, China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan250061, China
| | - Gui Yang
- Longgang Central Hospital of Shenzhen, Shenzhen518116, China
| | - Guan Huang
- Longgang Central Hospital of Shenzhen, Shenzhen518116, China
| | - Haibing Dai
- Longgang Central Hospital of Shenzhen, Shenzhen518116, China
| | - Nian Liu
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Jianbo Yu
- Longgang Central Hospital of Shenzhen, Shenzhen518116, China
| |
Collapse
|
11
|
Wei J, Liu C, Liang W, Yang X, Han S. Advances in optical molecular imaging for neural visualization. Front Bioeng Biotechnol 2023; 11:1250594. [PMID: 37671191 PMCID: PMC10475611 DOI: 10.3389/fbioe.2023.1250594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Iatrogenic nerve injury is a significant complication in surgery, which can negatively impact patients' quality of life. Currently, the main clinical neuroimaging methods, such as computed tomography, magnetic resonance imaging, and high-resolution ultrasonography, do not offer precise real-time positioning images for doctors during surgery. The clinical application of optical molecular imaging technology has led to the emergence of new concepts such as optical molecular imaging surgery, targeted surgery, and molecular-guided surgery. These advancements have made it possible to directly visualize surgical target areas, thereby providing a novel method for real-time identification of nerves during surgery planning. Unlike traditional white light imaging, optical molecular imaging technology enables precise positioning and identifies the cation of intraoperative nerves through the presentation of color images. Although a large number of experiments and data support its development, there are few reports on its actual clinical application. This paper summarizes the research results of optical molecular imaging technology and its ability to realize neural visualization. Additionally, it discusses the challenges neural visualization recognition faces and future development opportunities.
Collapse
Affiliation(s)
- Jinzheng Wei
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Chao Liu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenkai Liang
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Yang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shufeng Han
- Department of Orthopaedics, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Functionally modified halloysite nanotubes for personalized bioapplications. Adv Colloid Interface Sci 2023; 311:102812. [PMID: 36427464 DOI: 10.1016/j.cis.2022.102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/05/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Halloysite nanotubes (HNTs) are naturally aluminosilicate clay minerals that have the benefits of large surface areas, high mechanical properties, easy functionalization, and high biocompatibility, HNTs have been developed as multifunctional nanoplatforms for various bioapplications. Although some reviews have summarized the properties and bioapplications of HNTs, it remains unclear how to functionalize the modifications of HNTs for their personalized bioapplications. In this review, based on the physicochemical properties of HNTs, we summarized the methods of functionalized modifications (surface modification and structure modification) on HNTs. Also, we highlighted their personalized bioapplications (anti-bacterial, anti-inflammatory, wound healing, cancer theranostics, bone regenerative, and biosensing) by stressing on the main roles of HNTs. Finally, we provide perspectives on the future of functionalized modifications of HNTs for docking specific biological applications.
Collapse
|
13
|
Pan J, Chen Y, Hu Y, Wang H, Chen W, Zhou Q. Molecular imaging research in atherosclerosis: A 23-year scientometric and visual analysis. Front Bioeng Biotechnol 2023; 11:1152067. [PMID: 37122864 PMCID: PMC10133554 DOI: 10.3389/fbioe.2023.1152067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Background: Cardiovascular and cerebrovascular diseases are major global health problems, and the main cause is atherosclerosis. Recently, molecular imaging has been widely employed in the diagnosis and therapeutic applications of a variety of diseases, including atherosclerosis. Substantive facts have announced that molecular imaging has broad prospects in the early diagnosis and targeted treatment of atherosclerosis. Objective: We conducted a scientometric analysis of the scientific publications over the past 23 years on molecular imaging research in atherosclerosis, so as to identify the key progress, hotspots, and emerging trends. Methods: Original research and reviews regarding molecular imaging in atherosclerosis were retrieved from the Web of Science Core Collection database. Microsoft Excel 2021 was used to analyze the main findings. CiteSpace, VOSviewer, and a scientometric online platform were used to perform visualization analysis of the co-citation of journals and references, co-occurrence of keywords, and collaboration between countries/regions, institutions, and authors. Results: A total of 1755 publications were finally included, which were published by 795 authors in 443 institutions from 59 countries/regions. The United States was the top country in terms of the number and centrality of publications in this domain, with 810 papers and a centrality of 0.38, and Harvard University published the largest number of articles (182). Fayad, ZA was the most productive author, with 73 papers, while LIBBY P had the most co-citations (493). CIRCULATION was the top co-cited journal with a frequency of 1,411, followed by ARTERIOSCL THROM VAS (1,128). The co-citation references analysis identified eight clusters with a well-structured network (Q = 0.6439) and highly convincing clustering (S = 0.8865). All the studies calculated by keyword co-occurrence were divided into five clusters: "nanoparticle," "magnetic resonance imaging," "inflammation," "positron emission tomography," and "ultrasonography". Hot topics mainly focused on cardiovascular disease, contrast media, macrophage, vulnerable plaque, and microbubbles. Sodium fluoride ⁃PET, targeted drug delivery, OCT, photoacoustic imaging, ROS, and oxidative stress were identified as the potential trends. Conclusion: Molecular imaging research in atherosclerosis has attracted extensive attention in academia, while the challenges of clinical transformation faced in this field have been described in this review. The findings of the present research can inform funding agencies and researchers toward future directions.
Collapse
|
14
|
Liu N, O’Connor P, Gujrati V, Anzenhofer P, Klemm U, Kleigrewe K, Sattler M, Plettenburg O, Ntziachristos V. Multifunctional croconaine nanoparticles for efficient optoacoustic imaging of deep tumors and photothermal therapy. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4637-4647. [PMID: 39634732 PMCID: PMC11501461 DOI: 10.1515/nanoph-2022-0469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 12/07/2024]
Abstract
The proper design of near-infrared light-absorbing agents enables efficient optoacoustic imaging-guided phototherapy. In particular, several croconaine-based organic agents with excellent optical properties have been recently reported for this purpose. However, most of them absorb light below 800 nm, limiting deep-tissue imaging applications. To this end, we utilized a recently described novel croconaine derivative (CR880) to develop CR880-based nanoparticles (CR880-NPs) for effective in vivo delivery, deep tissue optoacoustic imaging and photothermal therapy applications. Radicals and strong π-π stacking in CR880 result in an 880 nm absorption peak with no blue-shift upon condensing to the solid phase. DSPE-PEG2000-formulated CR880-NPs exhibited high optoacoustic generation efficiency and photostability, and could be visualized in the tumors of three different mouse tumor models (breast, brain, and colon tumor) with high image contrast. The high photothermal conversion efficiency of CR880-NPs (∼58%) subsequently enabled efficient in vivo tumor elimination using a low energy laser, while remaining biocompatible and well-tolerated. This work introduces a promising novel agent for cancer theranostics of challenging deep-seated tumors.
Collapse
Affiliation(s)
- Nian Liu
- Chair of Biological Imaging, School of Medicine, Technical University of Munich, Munich81675, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg85764, Germany
- Department of Nuclear Medicine, PET Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Patrick O’Connor
- Institute of Medicinal Chemistry, Helmholtz Zentrum München (GmbH), Neuherberg85764, Germany
- Institute of Structural Biology, Helmholtz Zentrum München (GmbH), Neuherberg85764, Germany
| | - Vipul Gujrati
- Chair of Biological Imaging, School of Medicine, Technical University of Munich, Munich81675, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg85764, Germany
| | - Pia Anzenhofer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg85764, Germany
| | - Uwe Klemm
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg85764, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising85354, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München (GmbH), Neuherberg85764, Germany
- Bavarian NMR Center and Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, Garching85747, Germany
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Helmholtz Zentrum München (GmbH), Neuherberg85764, Germany
- Center for Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz Universität Hannover, Hannover30167, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, School of Medicine, Technical University of Munich, Munich81675, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg85764, Germany
| |
Collapse
|
15
|
Liu N, Mishra K, Stiel AC, Gujrati V, Ntziachristos V. The sound of drug delivery: Optoacoustic imaging in pharmacology. Adv Drug Deliv Rev 2022; 189:114506. [PMID: 35998826 DOI: 10.1016/j.addr.2022.114506] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
Optoacoustic (photoacoustic) imaging offers unique opportunities for visualizing biological function in vivo by achieving high-resolution images of optical contrast much deeper than any other optical technique. The method detects ultrasound waves that are generated inside tissue by thermo-elastic expansion, i.e., the conversion of light absorption by tissue structures to ultrasound when the tissue is illuminated by the light of varying intensity. Listening instead of looking to light offers the major advantage of image formation with a resolution that obeys ultrasonic diffraction and not photon diffusion laws. While the technique has been widely used to explore contrast from endogenous photo-absorbing molecules, such as hemoglobin or melanin, the use of exogenous agents can extend applications to a larger range of biological and possible clinical applications, such as image-guided surgery, disease monitoring, and the evaluation of drug delivery, biodistribution, and kinetics. This review summarizes recent developments in optoacoustic agents, and highlights new functions visualized and potent pharmacology applications enabled with the use of external contrast agents.
Collapse
Affiliation(s)
- Nian Liu
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; PET Center, Department of Nuclear Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kanuj Mishra
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - Andre C Stiel
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - Vipul Gujrati
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich 80992, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
16
|
Cong W, Li M, Guo X, Wang G. Estimating optical parameters of biological tissues with photon-counting micro-CT. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:841-846. [PMID: 36215445 PMCID: PMC9552592 DOI: 10.1364/josaa.451319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/16/2022] [Indexed: 06/16/2023]
Abstract
Wavelength-dependent absorption and scattering properties determine the fluorescence photon transport in biological tissues and image resolution of optical molecular tomography. Currently, these parameters are computed from optically measured data. For small animal imaging, estimation of optical parameters is a large-scale optimization problem, which is highly ill-posed. In this paper, we propose a new, to the best of our knowledge, approach to estimate optical parameters of biological tissues with photon-counting micro-computed tomography (micro-CT). From photon-counting x-ray data, multi-energy micro-CT images can be reconstructed to perform multi-organ segmentation and material decomposition in terms of tissue constituents. The concentration and characteristics of major tissue constituents can be utilized to calculate the optical absorption and scattering coefficients of the involved tissues. In our study, we perform numerical simulation, phantom experiments, and in vivo animal studies to calculate the optical parameters using our proposed approach. The results show that our approach can estimate optical parameters of tissues with a relative error of <10%, accurately mapping the optical parameter distributions in a small animal.
Collapse
|