1
|
Jue W, Lulu L, Yan Z, Gu S. Expression levels and diagnostic value of serum GDNF, CEA and CA199 in patients with colorectal carcinoma. J Med Biochem 2024; 43:250-256. [PMID: 38699694 PMCID: PMC11062338 DOI: 10.5937/jomb0-44745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/18/2023] [Indexed: 05/05/2024] Open
Abstract
Background To investigate the expression levels and diagnostic value of glial cell line-derived neurotrophic factor (GDNF), carcinoembryonic antigen (CEA) and carbohydrate antigen199 (CA199) in patients with colorectal carcinoma (CRC). Methods 50 CRC patients at our hospital from Feb. 2020 to Feb. 2021 were chosen as the malignant group, another 50 patients with benign colonic diseases were chosen as the benign group, and 50 healthy people who came to our hospital for physical examination during the same period were considered as the control group. Fasting peripheral venous blood was taken from all research subjects in the morning and tested by a fully-automated electrochemiluminometer to determine the GDNF, CEA and CA199 levels. The sensitivity and specificity of the combined detection of the three indexes for CRC were analyzed, and the receiver operating characteristic (ROC) curve was plotted to record the area under the curve (AUC). Results The malignant group had remarkably higher CEA and CA199 levels (P<0.001) and a lower GDNF level (P<0.001) when compared with the benign and control groups. The sensitivity, specificity, positive predictive value and negative predictive value of the combined detection were 96.0%, 94.0%, 88.9% and 97.9%, respectively. Under combined detection, AUC (95% CI) = 0.950 (0.909-0.991), standard error = 0.021, and P<0.001. Conclusions The combined diagnosis of serum GDNF, CEA and CA199 is a reliable method to improve the diagnostic accuracy of CRC, and this strategy can effectively reduce the missed diagnosis rate and has high application value in clinic.
Collapse
Affiliation(s)
- Wang Jue
- The First Affiliated Hospital of Chongqing Medical University, Department of Gastroenterology, Chongqing, China
| | - Liu Lulu
- The First Affiliated Hospital of Chongqing Medical University, Department of Gastroenterology, Chongqing, China
| | - Zheng Yan
- The First Affiliated Hospital of Chongqing Medical University, Department of Gastroenterology, Chongqing, China
| | - Sai Gu
- The First Affiliated Hospital of Chongqing Medical University, Department of Gastroenterology, Chongqing, China
| |
Collapse
|
2
|
Sun J, Yang R, Wu H, Li L, Gu Y. Prognostic value of preoperative combined with postoperative systemic immune-inflammation index for disease-free survival after radical rectal cancer surgery: a retrospective cohort study. Transl Cancer Res 2024; 13:371-380. [PMID: 38410202 PMCID: PMC10894347 DOI: 10.21037/tcr-23-1289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/17/2023] [Indexed: 02/28/2024]
Abstract
Background Colorectal cancer (CRC) ranks highly in malignant tumor incidence and mortality rates, severely affecting human health. The predictive value of the systemic immune-inflammation index (SII) in CRC prognosis is gaining attention, but there is limited research on the combined preoperative and postoperative SII. This study aims to explore the prognostic value of combined SII on disease-free survival (DFS) in patients undergoing radical surgery for rectal cancer. Methods We enrolled 292 patients with rectal cancer who underwent radical resection at the Affiliated Hospital of Xuzhou Medical University from May 2018 to September 2020, along with regular follow-ups to document the DFS. Patients' complete blood cell counts were assessed before surgery and between 21-56 days postoperatively. Calculating preoperative and postoperative SII, patients were categorized into four groups based on the optimal cutoff values: (I) low-low group (preoperative SII <449.325 and postoperative SII <568.13); (II) high-low group (preoperative SII ≥449.325 and postoperative SII <568.13); (III) low-high group (preoperative SII <449.325 and postoperative SII ≥568.13); and (IV) high-high group (preoperative SII ≥449.325 and postoperative SII ≥568.13). The receiver operating characteristic (ROC) curve analysis evaluated the prediction efficacy of preoperative, postoperative, and combined SII. Kaplan-Meier analysis generated DFS curves, and Cox regression analysis determined prognostic factors. Results With a median follow-up of 41 months, 65.4% (191/292) patients reached DFS. The clinical pathological features between the four groups are balanced and comparable (P>0.05). The area under the ROC curve for preoperative, postoperative, and combined SII was 0.668 [95% confidence interval (CI): 0.6-0.737], 0.696 (95%CI: 0.63-0.763), and 0.741 (95% CI: 0.681-0.802), respectively. After adjusting for confounding factors such as adjuvant therapy, differentiation, vascular invasion, neural invasion, tumor-node-metastasis (TNM) stage, carcinoembryonic antigen (CEA), and carbohydrate antigen 19-9 (CA19-9), significant differences were observed between the high-low group [hazard ratio (HR) =2.403; 95% CI: 1.255-4.602; P=0.008], low-high group (HR =5.058; 95% CI: 2.389-10.71; P<0.001), and high-high group (HR =6.214; 95% CI: 3.474-11.115; P<0.001) compared to the low-low group, with higher risks of adverse outcomes. Conclusions Combined SII has better predictive efficacy than monitoring preoperative or postoperative SII alone in rectal cancer patients undergoing radical surgery.
Collapse
Affiliation(s)
- Jiayi Sun
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ruiling Yang
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Huimin Wu
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lei Li
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuming Gu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Zhan Q, Liu B, Situ X, Luo Y, Fu T, Wang Y, Xie Z, Ren L, Zhu Y, He W, Ke Z. New insights into the correlations between circulating tumor cells and target organ metastasis. Signal Transduct Target Ther 2023; 8:465. [PMID: 38129401 PMCID: PMC10739776 DOI: 10.1038/s41392-023-01725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Organ-specific metastasis is the primary cause of cancer patient death. The distant metastasis of tumor cells to specific organs depends on both the intrinsic characteristics of the tumor cells and extrinsic factors in their microenvironment. During an intermediate stage of metastasis, circulating tumor cells (CTCs) are released into the bloodstream from primary and metastatic tumors. CTCs harboring aggressive or metastatic features can extravasate to remote sites for continuous colonizing growth, leading to further lesions. In the past decade, numerous studies demonstrated that CTCs exhibited huge clinical value including predicting distant metastasis, assessing prognosis and monitoring treatment response et al. Furthermore, increasingly numerous experiments are dedicated to identifying the key molecules on or inside CTCs and exploring how they mediate CTC-related organ-specific metastasis. Based on the above molecules, more and more inhibitors are being developed to target CTCs and being utilized to completely clean CTCs, which should provide promising prospects to administer advanced tumor. Recently, the application of various nanomaterials and microfluidic technologies in CTCs enrichment technology has assisted to improve our deep insights into the phenotypic characteristics and biological functions of CTCs as a potential therapy target, which may pave the way for us to make practical clinical strategies. In the present review, we mainly focus on the role of CTCs being involved in targeted organ metastasis, especially the latest molecular mechanism research and clinical intervention strategies related to CTCs.
Collapse
Affiliation(s)
- Qinru Zhan
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Bixia Liu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Xiaohua Situ
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Yuting Luo
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Tongze Fu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Yanxia Wang
- Zhongshan School of Medicine, Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Zhongpeng Xie
- Zhongshan School of Medicine, Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Lijuan Ren
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Ying Zhu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China.
| | - Weiling He
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
- School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, 361000, Xiamen, Fujian, P.R. China.
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China.
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
4
|
Malkawi W, Lutfi A, Afghan MK, Shah LM, Costandy L, Ramirez AB, George TC, Toor F, Salem AK, Kasi PM. Circulating tumour cell enumeration, biomarker analyses, and kinetics in patients with colorectal cancer and other GI malignancies. Front Oncol 2023; 13:1305181. [PMID: 38044994 PMCID: PMC10693413 DOI: 10.3389/fonc.2023.1305181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Objective Most of the work in terms of liquid biopsies in patients with solid tumors is focused on circulating tumor DNA (ctDNA). Our aim was to evaluate the feasibility of using circulating tumor cells (CTCs) in peripheral blood samples from patients with advanced or metastatic gastrointestinal (GI) cancers. Methods In this prospective study, blood samples were collected from each patient in 2 AccuCyte® blood collection tubes and each tube underwent CTC analysis performed utilizing the RareCyte® platform. The results from both tubes were averaged and a total of 150 draws were done, with 281 unique reported results. The cadence of sampling was based on convenience sampling and piggybacked onto days of actual clinical follow-ups and treatment visits. The CTC results were correlated with patient- and tumor-related variables. Results Data from a total of 59 unique patients were included in this study. Patients had a median age of 58 years, with males representing 69% of the study population. More than 57% had received treatment prior to taking blood samples. The type of GI malignancy varied, with more than half the patients having colorectal cancer (CRC, 54%) followed by esophageal/gastric cancer (17%). The least common cancer was cholangiocarcinoma (9%). The greatest number of CTCs were found in patients with colorectal cancer (Mean: 15.8 per 7.5 ml; Median: 7.5 per 7.5 ml). In comparison, patients with pancreatic cancer (PC) had considerably fewer CTCs (Mean: 4.2 per 7.5 ml; Median: 3 per 7.5 ml). Additionally, we found that patients receiving treatment had significantly fewer CTCs than patients who were not receiving treatment (Median 2.7 versus 0.7). CTC numbers showed noteworthy disparities between patients with responding/stable disease in comparison to those with untreated/progressive disease (Median of 2.7 versus 0). When CTCs were present, biomarker analyses of the four markers human epidermal growth factor receptor 2 (HER2)/programmed death-ligand 1 (PD-L1)/Kiel 67 (Ki-67)/epidermal growth factor receptor (EGFR) was feasible. Single cell sequencing confirmed the tumor of origin. Conclusion Our study is one of the first prospective real-time studies evaluating CTCs in patients with GI malignancies. While ctDNA-based analyses are more common in clinical trials and practice, CTC analysis provides complementary information from a liquid biopsy perspective that is of value and worthy of continued research.
Collapse
Affiliation(s)
- Walla Malkawi
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa, Iowa, IA, United States
| | - Areeb Lutfi
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Maaz Khan Afghan
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Lamisha Mashiyat Shah
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, United States
| | | | | | | | - Fatima Toor
- Experimental Therapeutics Program, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa, IA, United States
- Department of Electrical and Computer Engineering, University of Iowa, Iowa, IA, United States
| | - Aliasger K. Salem
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa, Iowa, IA, United States
- Experimental Therapeutics Program, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa, IA, United States
| | - Pashtoon Murtaza Kasi
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
5
|
Kong M, Yu X, Guo W, Guo R. The bidirectional interplay between ncRNAs and methylation modifications in gastrointestinal tumors. Int J Biol Sci 2023; 19:4834-4848. [PMID: 37781524 PMCID: PMC10539694 DOI: 10.7150/ijbs.87028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/26/2023] [Indexed: 10/03/2023] Open
Abstract
The aberrant expression of methylation and ncRNAs, two crucial regulators of epigenetic modifications, has been widely demonstrated in cancer. The complex interplay between them is essential in promoting malignant phenotype, poor prognosis, and drug resistance in GI tumors (including esophageal, gastric, colorectal, liver, and pancreatic cancers). Therefore, we summarize the interrelation process between ncRNAs and methylation modifications in GI tumors, including the detailed mechanism of methylation enzyme regulation of ncRNAs, the molecular mechanism of ncRNAs regulation of methylation modifications, and the correlation between the interactions between ncRNAs and methylation modifications and clinical features of tumors. Finally, we discuss the potential value of ncRNAs and methylation modifications in clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Minyu Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Liver Transplantation Centre, China
- Henan Organ Transplantation Quality Control Centre, China
- Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Liver Transplantation Centre, China
- Henan Organ Transplantation Quality Control Centre, China
- Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Liver Transplantation Centre, China
- Henan Organ Transplantation Quality Control Centre, China
- Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Ran Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Liver Transplantation Centre, China
- Henan Organ Transplantation Quality Control Centre, China
- Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| |
Collapse
|
6
|
Kong X, Zhang Y, Xiang L, You Y, Duan Y, Zhao Y, Li S, Wu R, Zhang J, Zhou L, Duan L. Fusobacterium nucleatum-triggered neutrophil extracellular traps facilitate colorectal carcinoma progression. J Exp Clin Cancer Res 2023; 42:236. [PMID: 37684625 PMCID: PMC10492297 DOI: 10.1186/s13046-023-02817-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Fusobacterium nucleatum (Fn) acts as a procarcinogenic bacterium in colorectal carcinoma (CRC) by regulating the inflammatory tumor microenvironment (TME). Neutrophil extracellular traps (NETs), which can be generated by persistent inflammation, have been recently considered to be significant contributors in promoting cancer progression. However, whether NETs are implicated in Fn-related carcinogenesis is still poorly characterized. Here, we explored the role of NETs in Fn-related CRC as well as their potential clinical significance. METHODS Fn was measured in tissue specimens and feces samples from CRC patients. The expression of NET markers were also detected in tissue specimens, freshly isolated neutrophils and blood serum from CRC patients, and the correlation of circulating NETs levels with Fn was evaluated. Cell-based experiments were conducted to investigate the mechanism by which Fn modulates NETs formation. In addition, we clarified the functional mechanism of Fn-induced NETs on the growth and metastasis of CRC in vitro and in vivo experiments. RESULTS Tissue and blood samples from CRC patients, particularly those from Fn-infected CRC patients, exhibited greater neutrophil infiltration and higher NETs levels. Fn infection induced abundant NETs production in in vitro studies. Subsequently, we demonstrated that Fn-induced NETs indirectly accelerated malignant tumor growth through angiopoiesis, and facilitated tumor metastasis, as manifested by epithelial-mesenchymal transition (EMT)-related cell migration, matrix metalloproteinase (MMP)-mediated basement membrane protein degradation, and trapping of CRC cells. Mechanistically, the Toll-like receptor (TLR4)-reactive oxygen species (ROS) signaling pathway and NOD-like receptor (NOD1/2)-dependent signaling were responsible for Fn-stimulated NETs formation. More importantly, circulating NETs combined with carcinoembryonic antigen (CEA) could predict CRC occurrence and metastasis, with areas under the ROC curves (AUCs) of 0.92 and 0.85, respectively. CONCLUSIONS Our findings indicated that Fn-induced NETs abundance by activating TLR4-ROS and NOD1/2 signalings in neutrophils facilitated CRC progression. The combination of circulating NETs and CEA was identified as a novel screening strategy for predicting CRC occurrence and metastasis.
Collapse
Affiliation(s)
- Xuehua Kong
- Department of Laboratory Medicine, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China
| | - Yu Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China
| | - Linwei Xiang
- Department of Laboratory Medicine, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China
| | - Yan You
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yaqian Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China
| | - Yuqing Zhao
- Department of Laboratory Medicine, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Shue Li
- Department of Academic Research, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Rui Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chonqing Medical University, Chongqing, 400016, China
| | - Jiangbo Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lan Zhou
- Department of Laboratory Medicine, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China.
| |
Collapse
|
7
|
Zhou JS, Liu ZN, Chen YY, Liu YX, Shen H, Hou LJ, Ding Y. New advances in circulating tumor cell‑mediated metastasis of breast cancer (Review). Mol Clin Oncol 2023; 19:71. [PMID: 37614367 PMCID: PMC10442766 DOI: 10.3892/mco.2023.2667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/20/2023] [Indexed: 08/25/2023] Open
Abstract
Breast cancer stands as the most prevalent form of cancer affecting women, with metastasis serving as a leading cause of mortality among patients with breast cancer. Gaining a comprehensive understanding of the metastatic mechanism in breast cancer is essential for early detection and precision treatment of the disease. Circulating tumor cells (CTCs) play a vital role in this context, representing cancer cells that detach from tumor tissues and enter the bloodstream of cancer patients. These cells travel in the blood circulation as single cells or clusters. Recent research has shed light on the enhanced metastatic potential of CTC clusters compared to single CTCs, despite their limited occurrence. The aim of the present review was to explore recent findings on CTCs with a particular focus on the clustering phenomenon of CTCs observed in breast cancer. Additionally, the present review delved into the comparison between single CTCs and CTC clusters regarding their implications for the treatment and prognosis of patients diagnosed with metastatic breast cancer. By examining the role and mechanisms of CTCs in breast cancer metastasis, the present review provided an improved understanding of CTCs and their significance in early detection of breast cancer metastasis through peripheral blood analysis. Moreover, it contributed to the comprehension of cancer prognosis and prediction by highlighting the implications of CTCs in these aspects. Ultimately, the present study seeks to advance knowledge in the field and pave the way for improved approaches to breast cancer management.
Collapse
Affiliation(s)
- Jiang-Shan Zhou
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zi-Ning Liu
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yuan-Yuan Chen
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yu-Xi Liu
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Hua Shen
- Department of Mathematics and Statistics, University of Calgary, Alberta T2N 1N4, Canada
| | - Li-Jun Hou
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
- Key Laboratory of Applied Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yi Ding
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
- Key Laboratory of Applied Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
8
|
He Y, He X, Zhou Y, Luo S. Clinical value of circulating tumor cells and hematological parameters in 617 Chinese patients with colorectal cancer: retrospective analysis. BMC Cancer 2023; 23:707. [PMID: 37507669 PMCID: PMC10375612 DOI: 10.1186/s12885-023-11204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) have been a non-invasive technique which allows investigation of tumor characteristics. The purpose of this study was to investigate the relationship between circulating tumor cells and colorectal cancer. METHODS The clinical data of 617 patients with colorectal cancer from October 2019 to March 2022 were retrospectively collected to analyze the correlation between CTCs and clinicopathologic characteristics. RESULTS The CTCs value increased with the progression of Tumor(T) stage,Metastasis(M) stage and Tumor Node Metastasis(TNM) stage (P < 0.05), but not with Node (N) stage (P > 0.05). Binary logistic regression analysis showed that CTCs, CEA, CA125 and CA199 were independent risk factors for CRC metastasis. Compared with CTCs, CEA, CA125 and CA199, the Logistic model had the highest AUC (AUC = 0.778,95%CI: 0.732-0.824), and the specificity and sensitivity were 82.9% and 63.2%, respectively. After operation, chemo-radiotherapy and other treatment for CRC, CTCs and CEA were significantly decreased compared with before treatment (P < 0.05). In addition, Spearman Correlation showed significant correlation between CTCs and IgG (P = 0.000). CONCLUSION CTCs, CEA, CA125 and CA199 were independent risk factors for CRC metastasis.CTCs can be used for the prediction of tumur metastasis, and the evaluation of therapeutic effect.
Collapse
Affiliation(s)
- Yuhao He
- Department of Comprehensive Internal Medicine, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xinxin He
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Department of Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China
| | - Yubo Zhou
- Department of Geriatrics, Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanshan Luo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.
- Department of Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China.
| |
Collapse
|
9
|
Mirza S, Bhadresha K, Mughal MJ, McCabe M, Shahbazi R, Ruff P, Penny C. Liquid biopsy approaches and immunotherapy in colorectal cancer for precision medicine: Are we there yet? Front Oncol 2023; 12:1023565. [PMID: 36686736 PMCID: PMC9853908 DOI: 10.3389/fonc.2022.1023565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths globally, with nearly half of patients detected in the advanced stages. This is due to the fact that symptoms associated with CRC often do not appear until the cancer has reached an advanced stage. This suggests that CRC is a cancer with a slow progression, making it curable and preventive if detected in its early stage. Therefore, there is an urgent clinical need to improve CRC early detection and personalize therapy for patients with this cancer. Recently, liquid biopsy as a non-invasive or nominally invasive approach has attracted considerable interest for its real-time disease monitoring capability through repeated sample analysis. Several studies in CRC have revealed the potential for liquid biopsy application in a real clinical setting using circulating RNA/miRNA, circulating tumor cells (CTCs), exosomes, etc. However, Liquid biopsy still remains a challenge since there are currently no promising results with high specificity and specificity that might be employed as optimal circulatory biomarkers. Therefore, in this review, we conferred the plausible role of less explored liquid biopsy components like mitochondrial DNA (mtDNA), organoid model of CTCs, and circulating cancer-associated fibroblasts (cCAFs); which may allow researchers to develop improved strategies to unravel unfulfilled clinical requirements in CRC patients. Moreover, we have also discussed immunotherapy approaches to improve the prognosis of MSI (Microsatellite Instability) CRC patients using neoantigens and immune cells in the tumor microenvironment (TME) as a liquid biopsy approach in detail.
Collapse
Affiliation(s)
- Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kinjal Bhadresha
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Muhammed Jameel Mughal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, The George Washington University, Washington, DC, United States
| | - Michelle McCabe
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Reza Shahbazi
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Paul Ruff
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,*Correspondence: Clement Penny,
| |
Collapse
|
10
|
Huang CS, Terng HJ, Hwang YT. Gene-Function-Based Clusters Explore Intricate Networks of Gene Expression of Circulating Tumor Cells in Patients with Colorectal Cancer. Biomedicines 2023; 11:biomedicines11010145. [PMID: 36672653 PMCID: PMC9855519 DOI: 10.3390/biomedicines11010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer (CRC) is a complex disease characterized by dynamically deregulated gene expression and crosstalk between signaling pathways. In this study, a new approach based on gene-function-based clusters was introduced to explore the CRC-associated networks of gene expression. Each cluster contained genes involved in coordinated regulatory activity, such as RAS signaling, the cell cycle process, transcription, or translation. A retrospective case-control study was conducted with the inclusion of 119 patients with histologically confirmed colorectal cancer and 308 controls. The quantitative expression data of 15 genes were obtained from the peripheral blood samples of all participants to investigate cluster-gene and gene-gene interactions. DUSP6, MDM2, and EIF2S3 were consistently selected as CRC-associated factors with high significance in all logistic models. CPEB4 became an insignificant factor only when combined with the clusters for cell cycle processes and for transcription. The CPEB4/DUSP6 complex was a prerequisite for the significance of MMD, whereas EXT2, RNF4, ZNF264, WEE1, and MCM4 were affected by more than two clusters. Intricate networks among MMD, RAS signaling factors (DUSP6, GRB2, and NF1), and translation factors (EIF2S3, CPEB4, and EXT2) were also revealed. Our results suggest that limited G1/S transition, uncontrolled DNA replication, and the cap-independent initiation of translation may be dominant and concurrent scenarios in circulating tumor cells derived from colorectal cancer. This gene-function-based cluster approach is simple and useful for revealing intricate CRC-associated gene expression networks. These findings may provide clues to the metastatic mechanisms of circulating tumor cells in patients with colorectal cancer.
Collapse
Affiliation(s)
- Chi-Shuan Huang
- Division of Colorectal Surgery, Cheng Hsin General Hospital, Taipei 11220, Taiwan
| | | | - Yi-Ting Hwang
- Department of Statistics, National Taipei University, New Taipei City 22102, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Couto-Cunha A, Jerónimo C, Henrique R. Circulating Tumor Cells as Biomarkers for Renal Cell Carcinoma: Ready for Prime Time? Cancers (Basel) 2022; 15:cancers15010287. [PMID: 36612281 PMCID: PMC9818240 DOI: 10.3390/cancers15010287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Renal cell carcinoma (RCC) is among the 15 most common cancers worldwide, with rising incidence. In most cases, this is a silent disease until it reaches advance stages, demanding new effective biomarkers in all domains, from detection to post-therapy monitoring. Circulating tumor cells (CTC) have the potential to provide minimally invasive information to guide assessment of the disease's aggressiveness and therapeutic strategy, representing a special pool of neoplastic cells which bear metastatic potential. In some tumor models, CTCs' enumeration has been associated with prognosis, but there is a largely unexplored potential for clinical applicability encompassing screening, diagnosis, early detection of metastases, prognosis, response to therapy and monitoring. Nonetheless, lack of standardization and high cost hinder the translation into clinical practice. Thus, new methods for collection and analysis (genomic, proteomic, transcriptomic, epigenomic and metabolomic) are needed to ascertain the role of CTC as a RCC biomarker. Herein, we provide a critical overview of the most recently published data on the role and clinical potential of CTCs in RCC, addressing their biology and the molecular characterization of this remarkable set of tumor cells. Furthermore, we highlight the existing and emerging techniques for CTC enrichment and detection, exploring clinical applications in RCC. Notwithstanding the notable progress in recent years, the use of CTCs in a routine clinical scenario of RCC patients requires further research and technological development, enabling multimodal analysis to take advantage of the wealth of information they provide.
Collapse
Affiliation(s)
- Anabela Couto-Cunha
- Integrated Master in Medicine, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Department of Pathology & Cancer Biology & Epigenetics Group—Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (P.CCC Raquel Seruca), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Department of Pathology & Cancer Biology & Epigenetics Group—Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (P.CCC Raquel Seruca), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Correspondence: or
| |
Collapse
|
12
|
Wang Q, Huang X, Zhou S, Ding Y, Wang H, Jiang W, Xu M. IL1RN and PRRX1 as a Prognostic Biomarker Correlated with Immune Infiltrates in Colorectal Cancer: Evidence from Bioinformatic Analysis. Int J Genomics 2022; 2022:2723264. [PMID: 36483329 PMCID: PMC9726255 DOI: 10.1155/2022/2723264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 09/01/2023] Open
Abstract
The extensive morbidity of colorectal cancer (CRC) and the inferior prognosis of terminal CRC urgently call for reliable prognostic biomarkers. For this, we identified 704 differentially expressed genes (DEGs) by intersecting three datasets, GSE41328, GSE37364, and GSE15960 from Gene Expression Omnibus database, to maximize the accuracy of the results. Preliminary analysis of the DEGs was then performed using online gene analysis datasets, such as DAVID, UCSC Cancer Genome Browser, CBioPortal, STRING, and UCSC Cancer Genome Browser. Cytoscape was utilized to visualize the protein perception interaction network of DEGs, and the bubble map of GO and KEGG enrichment function was demonstrated using the R package. The Molecular Complex Detection (MCODE), Biological Network Gene Oncology (BiNGO) plug-in in Cytoscape, was applied to further screen the DEGs to obtain 15 seed genes, which were IL1RN, GALNT12, ADH6, SCN7A, CXCL1, FGF18, SOX9, ACACB, PRRX1, MZB1, SLC22A3, CNNM4, LY6E, IFITM2, and GDPD3. Among them, IL1RN, ADH6, SCN7A, ACACB, MZB1, and GDPD3 exhibited statistically significant survival differences, whereas limited studies were conducted in CRC. Based on the enrichment results of the "Gene Ontology"(GO) and "Kyoto Encyclopedia of Genes and genomes "(KEGG) as well as documented findings of key genes, we further emphasized the potential of IL1RN and PRRX1 as markers of immune infiltrates in CRC and confirmed our hypothesis by compiling data from the UALCAN, Tumor Immune Estimation Resource, and TISIDB databases for these two genes. The above-mentioned genes might offer a valuable insight into the diagnosis, immunotherapeutic targets, and prognosis of CRC.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Shujing Zhou
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Yuntao Ding
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Huizhi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Weiye Jiang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Petrik J, Verbanac D, Fabijanec M, Hulina-Tomašković A, Čeri A, Somborac-Bačura A, Petlevski R, Grdić Rajković M, Rumora L, Krušlin B, Štefanović M, Ljubičić N, Baršić N, Hanžek A, Bočkor L, Ćelap I, Demirović A, Barišić K. Circulating Tumor Cells in Colorectal Cancer: Detection Systems and Clinical Utility. Int J Mol Sci 2022; 23:13582. [PMID: 36362369 PMCID: PMC9654465 DOI: 10.3390/ijms232113582] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. The high mortality from CRC is mainly related to metastasis affecting distant organs and their function. Dissemination of tumor cells from the primary tumor and hematogeneous spread are considered crucial in the formation of tumor metastases. The analysis of circulating tumor cells (CTCs) and CTC clusters in the blood can be used for the early detection of invasive cancer. Moreover, CTCs have a prognostic significance in the monitoring of a malignant disease or the response to chemotherapy. This work presents an overview of the research conducted on CTCs with the aim of finding suitable detection systems and assessing the possibility of clinical applications in patients with CRC.
Collapse
Affiliation(s)
- József Petrik
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Donatella Verbanac
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Marija Fabijanec
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Andrea Hulina-Tomašković
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Andrea Čeri
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Anita Somborac-Bačura
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Roberta Petlevski
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Marija Grdić Rajković
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Lada Rumora
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Božo Krušlin
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
- Department of Pathology and Cytology “Ljudevit Jurak”, University Hospital Centre “Sestre milosrdnice”, University of Zagreb, Vinogradska 29, 10000 Zagreb, Croatia
| | - Mario Štefanović
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
- Department of Clinical Chemistry, University Hospital Centre “Sestre milosrdnice”, University of Zagreb, Vinogradska 29, 10000 Zagreb, Croatia
| | - Neven Ljubičić
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
- Department of Internal Medicine, University Hospital Centre “Sestre milosrdnice”, Division of Gastroenterology and Hepatology, University of Zagreb, Vinogradska 29, 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, Gundulićeva 5, 10000 Zagreb, Croatia
| | - Neven Baršić
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
- Department of Internal Medicine, University Hospital Centre “Sestre milosrdnice”, Division of Gastroenterology and Hepatology, University of Zagreb, Vinogradska 29, 10000 Zagreb, Croatia
| | - Antonija Hanžek
- UPR CHROME, University of Nimes, 7 Place Gabriel Peri, 30000 Nîmes, France
| | - Luka Bočkor
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia
| | - Ivana Ćelap
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Alma Demirović
- Department of Pathology and Cytology “Ljudevit Jurak”, University Hospital Centre “Sestre milosrdnice”, University of Zagreb, Vinogradska 29, 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, Gundulićeva 5, 10000 Zagreb, Croatia
| | - Karmela Barišić
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| |
Collapse
|