1
|
Nachev M, Hohenadler M, Bröckers N, Grabner D, Sures B. Suitability of invasive gobies as paratenic hosts for acanthocephalans of the genus Pomphorhynchus sp. Parasitology 2024:1-8. [PMID: 39529353 DOI: 10.1017/s0031182024001197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ponto-Caspian gobies became highly abundant in many regions outside their native distribution range (e.g. in the Rhine River system). In the newly invaded habitats, the parasite communities of the invasive gobies are characterized by a lower species richness compared to their native range. Interestingly, acanthocephalans of the genus Pomphorhynchus are highly abundant, although they do not become mature and mostly remain encapsulated in the abdominal cavity as preadults. Thus, gobiids could either represent a dead-end host for Pomphorhynchus sp. declining its population (dilution effect) or act as a paratenic host that could increase the infection pressure if the infected gobies are preyed upon by appropriate definitive hosts (spill back). To determine which of the 2 scenarios the gobiids contribute to, we conducted 2 infection experiments using smaller and larger individuals of the definitive host chub (Squalius cephalus), infected with preadults of Pomphorhynchus sp. collected from the abdominal cavity of Neogobius melanostomus. The results showed that preadults were able to complete their development and mature in the definitive host with mean recovery rates of 17.9% in smaller and 27.0% in larger chubs. Successful infections were observed in 62.0% and 80.0% of the smaller and larger chubs, respectively. Our study demonstrated that gobies can theoretically serve as a paratenic host for acanthocephalans of the genus Pomphorhynchus, and that infection might spill back into the local fish community if infected gobies are preyed upon by suitable definitive hosts of Pomphorhynchus sp. such as large barbel or chub.
Collapse
Affiliation(s)
- Milen Nachev
- Department of Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Michael Hohenadler
- Department of Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Nicklas Bröckers
- Department of Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Daniel Grabner
- Department of Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Bernd Sures
- Department of Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Kochmann J, Laier M, Klimpel S, Wick A, Kunkel U, Oehlmann J, Jourdan J. Infection with acanthocephalans increases tolerance of Gammarus roeselii (Crustacea: Amphipoda) to pyrethroid insecticide deltamethrin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55582-55595. [PMID: 36897452 PMCID: PMC10121498 DOI: 10.1007/s11356-023-26193-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/23/2023] [Indexed: 06/09/2023]
Abstract
Crustacean amphipods serve as intermediate hosts for parasites and are at the same time sensitive indicators of environmental pollution in aquatic ecosystems. The extent to which interaction with the parasite influences their persistence in polluted ecosystems is poorly understood. Here, we compared infections of Gammarus roeselii with two species of Acanthocephala, Pomphorhynchus laevis, and Polymorphus minutus, along a pollution gradient in the Rhine-Main metropolitan region of Frankfurt am Main, Germany. Prevalence of P. laevis was very low at the unpolluted upstream reaches (P ≤ 3%), while higher prevalence (P ≤ 73%) and intensities of up to 9 individuals were found further downstream-close to an effluent of a large wastewater treatment plant (WWTP). Co-infections of P. minutus and P. laevis occurred in 11 individuals. Highest prevalence of P. minutus was P ≤ 9% and one parasite per amphipod host was the maximum intensity recorded. In order to assess whether the infection affects survival in the polluted habitats, we tested the sensitivity of infected and uninfected amphipods towards the pyrethroide insecticide deltamethrin. We found an infection-dependent difference in sensitivity within the first 72 h, with an effect concentration (24 h EC50) of 49.8 ng/l and 26.6 ng/l for infected and uninfected G. roeselii, respectively. Whereas final host abundance might partially explain the high prevalence of P. laevis in G. roeselii, the results of the acute toxicity test suggest a beneficial effect of acanthocephalan infection for G. roeselii at polluted sites. A strong accumulation of pollutants in the parasite could serve as a sink for pesticide exposure of the host. Due to the lack of a co-evolutionary history between parasite and host and a lack of behavioral manipulation (unlike in co-evolved gammarids), the predation risk by fish remains the same, explaining high local prevalence. Thus, our study exemplifies how organismic interaction can favor the persistence of a species under chemical pollution.
Collapse
Affiliation(s)
- Judith Kochmann
- Department of Integrative Parasitology and Zoophysiology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
- Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch Weg 15, 55128 Mainz, Germany
| | - Melanie Laier
- Department of Integrative Parasitology and Zoophysiology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
- Department Aquatic Ecotoxicology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Sven Klimpel
- Department of Integrative Parasitology and Zoophysiology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Uwe Kunkel
- Federal Institute of Hydrology, Am Mainzer Tor 1, D-56068 Koblenz, Germany
- Present Address: Bavarian Environment Agency, Specific Analysis for Environmental Monitoring, Bürgermeister-Ulrich-Str. 160, D-86179 Augsburg, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Jonas Jourdan
- Department Aquatic Ecotoxicology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Alternative transmission pathways for guinea worm in dogs: implications for outbreak risk and control. Int J Parasitol 2021; 51:1027-1034. [PMID: 34246634 DOI: 10.1016/j.ijpara.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
Guinea worm (Dracunculus medinensis) has exerted a high human health burden in parts of Africa. Complete eradication of Guinea worm disease (dracunculiasis) may be delayed by the circulation of the parasite in domestic dogs. As with humans, dogs acquire the parasite by directly ingesting infected copepods, and recent evidence suggests that consuming frogs that ingested infected copepods as tadpoles may be a viable transmission route (paratenic route). To understand the relative contributions of direct and paratenic transmission routes, we developed a mathematical model that describes transmission of Guinea worm between dogs, copepods and frogs. We explored how the parasite basic reproductive number (R0) depends on parameters amenable to actionable interventions under three scenarios: frogs/tadpoles do not consume copepods; tadpoles consume copepods but frogs do not contribute to transmission; and frogs are paratenic hosts. We found a non-monotonic relationship between the number of dogs and R0. Generally, frogs can contribute to disease control by removing infected copepods from the waterbody even when paratenic transmission can occur. However, paratenic transmission could play an important role in maintaining the parasite when direct transmission is reduced by interventions focused on reducing copepod ingestion by dogs. Together, these suggest that the most effective intervention strategies may be those which focus on the reduction of copepods, as this reduces outbreak potential irrespective of the importance of the paratenic route.
Collapse
|
4
|
Kondzior E, Kowalczyk R, Tokarska M, Borowik T, Zalewski A, Kołodziej-Sobocińska M. Multispecies reservoir of Spirometra erinaceieuropaei (Cestoda: Diphyllobothridae) in carnivore communities in north-eastern Poland. Parasit Vectors 2020; 13:560. [PMID: 33168087 PMCID: PMC7654582 DOI: 10.1186/s13071-020-04431-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/16/2020] [Indexed: 01/29/2023] Open
Abstract
Background Spirometra erinaceieuropaei is a diphylobothriid tapeworm with a complex life-cycle including definitive, intermediate and paratenic (transport) hosts. Multiple routes of parasite transmission often make it impossible to determine what type of host a specific infected animal is considered to be. Spargana larvae cause sparganosis, a severe food- and water-borne disease mainly found in Asia. In Poland, Spirometra sp. was reported in large carnivores in Białowieża Primeval Forest for the first time in the 1940s and was recently confirmed as S. erinaceieuropaei in several mammals and snakes using molecular methods. Methods In total, 583 carcasses of 9 carnivore species were necropsied between 2013 and 2019 in north-eastern (NE) Poland. The larvae of S. erinaceieuropaei (spargana) were isolated from subcutaneous tissue, counted, and preserved for genetic analyses. We calculated the prevalence and intensity of infection. To assess spatial variation in S. erinaceieuropaei infection probability in NE Poland, we applied a generalized additive model (GAM) with binomial error distribution. To confirm the species affiliation of isolated larvae, we amplified a partial fragment of the 18S rRNA gene (240 bp in length). Results Spirometra larvae were found in the subcutaneous tissue of 172 animals of 7 species and confirmed genetically as S. erinaceieuropaei. The overall prevalence in all studied hosts was 29.5% with a mean infection intensity of 14.1 ± 33.8 larvae per individual. Native European badgers and invasive raccoon dogs were characterized by the highest prevalence. An analysis of parasite spread showed a spatially diversified probability of infection with the highest values occurring in the biodiversity hot spot, Białowieża Primeval Forest. Conclusions Our study revealed that various mammal species (both native and non-native) can serve as S. erinaceieuropaei reservoirs. The frequency and level of infection may differ between selected hosts and likely depend on host diversity and habitat structure in a given area. Further studies are needed to assess the distribution of the parasite throughout Europe and the environmental and biological factors influencing infection severity in wild mammals.![]()
Collapse
Affiliation(s)
- Eliza Kondzior
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland. .,Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland.
| | - Rafał Kowalczyk
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland
| | - Małgorzata Tokarska
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland
| | - Tomasz Borowik
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland
| | - Andrzej Zalewski
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland
| | | |
Collapse
|
5
|
Tierney PA, Caffrey JM, Vogel S, Matthews SM, Costantini E, Holland CV. Invasive freshwater fish (Leuciscus leuciscus) acts as a sink for a parasite of native brown trout Salmo trutta. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02253-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Distribution ofPomphorhynchus laevis s.l.(Acanthocephala) among fish species at a local scale: importance of fish biomass density. J Helminthol 2019; 94:e99. [DOI: 10.1017/s0022149x1900097x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractParasite distribution among hosts is a fundamental aspect of host–parasite interactions. Aggregated parasite distributions within and across host species are commonly reported and potentially influenced by many factors, whether host or parasite specific, or related to host–parasite encounter and compatibility. Yet, the respective role of each in observed parasite distributions are often unclear. Here, we documented the distribution of the acanthocephalan parasitePomphorhynchus laevis sensu lato(s.l.) in two replicate fish host populations. Aggregated distributions were observed in both populations, within and across fish host species. We found a positive abundance–prevalence relationship across fish species, suggesting that resource availability (fish host biomass density) was the main driver ofP. laevis s.l.distribution. This was supported by further positive associations between mean parasite load and fish biomass density. We found little evidence for intensity-dependent regulation within host (i.e. intra-host competition among co-infecting parasites). Furthermore,P. laevis s.l.infection had no detectable effect on fish condition indices, except on the body condition of female barbel (Barbus barbus). Therefore,P. laevis s.l.tended to accumulate with size/age within fish species, and with fish biomass density among fish species, with apparently negligible limitations due to intra-host intensity-dependent regulation of parasite, or to parasite-induced morbidity in fish. The relative availability of final hosts for trophic transmission thus appears to be the main driver ofP. laevis s.l.distribution among fish.
Collapse
|
7
|
Galipaud M, Bollache L, Lagrue C. Acanthocephalan infection patterns in amphipods: a reappraisal in the light of recently discovered host cryptic diversity. DISEASES OF AQUATIC ORGANISMS 2019; 136:107-121. [PMID: 31575838 DOI: 10.3354/dao03379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amphipods are model species in studies of pervasive biological patterns such as sexual selection, size assortative pairing and parasite infection patterns. Cryptic diversity (i.e. morphologically identical but genetically divergent lineages) has recently been detected in several species. Potential effects of such hidden diversity on biological patterns remain unclear, but potentially significant, and beg the question of whether we have missed part of the picture by involuntarily overlooking the occurrence and effects of cryptic diversity on biological patterns documented by previous studies. Here we tested for potential effects of cryptic diversity on parasite infection patterns in amphipod populations and discuss the implications of our results in the context of previously documented host-parasite infection patterns, especially amphipod-acanthocephalan associations. We assessed infection levels (prevalence and abundance) of 3 acanthocephalan species (Pomphorhynchus laevis, P. tereticollis and Polymorphus minutus) among cryptic lineages of the Gammarus pulex/G. fossarum species complex and G. roeseli from sampling sites where they occur in sympatry. We also evaluated potential differences in parasite-induced mortality among host molecular operational taxonomic units (MOTUs)-parasite species combinations. Acanthocephalan prevalence, abundance and parasite-induced mortality varied widely among cryptic MOTUs and parasite species; infection patterns were more variable among MOTUs than sampling sites. Overall, cryptic diversity in amphipods strongly influenced apparent infection levels and parasite-induced mortality. Future research on species with cryptic diversity should account for potential effects on documented biological patterns. Results from previous studies may also need to be reassessed in light of cryptic diversity and its pervasive effects.
Collapse
Affiliation(s)
- Matthias Galipaud
- Laboratoire Biogéosciences, UMR CNRS 6282 , Université Bourgogne Franche-Comté, 21000 Dijon, France
| | | | | |
Collapse
|
8
|
Reier S, Sattmann H, Schwaha T, Harl J, Konecny R, Haring E. An integrative taxonomic approach to reveal the status of the genus Pomphorhynchus Monticelli, 1905 (Acanthocephala: Pomphorhynchidae) in Austria. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 8:145-155. [PMID: 30788212 PMCID: PMC6369135 DOI: 10.1016/j.ijppaw.2019.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/14/2022]
Abstract
Species of the genus Pomphorhynchus Monticelli, 1905 (Acanthocephala: Pomphorhynchidae) are obligate endoparasites infesting mostly freshwater fish. Morphological identification is challenging due to high intraspecific variations. The use of molecular analyses enabled new insights into the diversity and revealed high cryptic presence and unknown distribution patterns for various European species. In Austria only one species, Pomphorhynchus laevis (Müller, 1776), has been reported so far. We conduct an integrative analysis of Pomphorhynchus in Austria with a combination of morphological and molecular methods. Our results revealed the presence of three species of Pomphorhynchus in Austrian waters: Pomphorhynchus laevis, Pomphorhynchus tereticollis (Rudolphi, 1809) and Pomphorhynchus bosniacus Kiskároly and Čanković, 1967. While P. bosniacus was the predominant species in the Danube, P. laevis was recorded exclusively in Styria. Pomphorhynchus tereticollis occurred mainly in rivers of Styria except for one individual found in the Danube. We document the first occurrence of P. bosniacus and P. tereticollis in Austria. We found a high intraspecific haplotype variation in P. bosniacus suggesting that the species has a longer history in Central and Western Europe. It was previously misidentified as P. laevis, which is also true for P. tereticollis. A large number of hosts examined were infected with only juvenile and cystacanth stages suggesting paratenic infections. Our study highlights the importance of using an integrative taxonomic approach in the identification of species of Pomphorhynchus. First evidence of Pomphorhynchus tereticollis and Pomphorhynchus bosniacus in Austria. Pomphorhynchus tereticollis showed a wide host range in comparison to P. bosniacus and P. laevis. Presentation of an integrative taxonomic approach which should prevent misidentifications in future studies.
Collapse
Affiliation(s)
- Susanne Reier
- Natural History Museum Vienna, Central Research Laboratories, Burgring 7, 1010, Vienna, Austria
- Department of Integrative Zoology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
- Corresponding author. Central Research Laboratories, Burgring 7, 1010, Vienna, Austria.
| | - Helmut Sattmann
- Natural History Museum Vienna, 3rd Zoological Department, Burgring 7, 1010, Vienna, Austria
| | - Thomas Schwaha
- Department of Integrative Zoology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Josef Harl
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Robert Konecny
- Umweltbundesamt, Spittelauer Lände 5, 1090, Vienna, Austria
| | - Elisabeth Haring
- Natural History Museum Vienna, Central Research Laboratories, Burgring 7, 1010, Vienna, Austria
- Department of Integrative Zoology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| |
Collapse
|
9
|
Perrot-Minnot MJ, Guyonnet E, Bollache L, Lagrue C. Differential patterns of definitive host use by two fish acanthocephalans occurring in sympatry: Pomphorhynchus laevis and Pomphorhynchus tereticollis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 8:135-144. [PMID: 30792953 PMCID: PMC6370571 DOI: 10.1016/j.ijppaw.2019.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/18/2019] [Accepted: 01/30/2019] [Indexed: 01/27/2023]
Abstract
Parasites with complex life-cycles and trophic transmission are expected to show low specificity towards final hosts. However, testing this hypothesis may be hampered by low taxonomic resolution, particularly in helminths. We investigated this issue using two intestinal fish parasites with similar life-cycles and occurring in sympatry, Pomphorhynchus laevis and Pomphorhynchus tereticollis (Acanthocephala). We used species-specific ITS1 length polymorphism to discriminate parasite species from 910 adult acanthocephalans collected in 174 individual hosts from 12 fish species. Both P. laevis and P. tereticollis exhibited restricted host range within the community of available fish host species, and transmission bias compared to their relative abundance in intermediate hosts. The two parasites also exhibited low niche overlap, primarily due to their contrasting use of bentho-pelagic (P. laevis) and benthic (P. tereticollis) fish. Furthermore, parasite prevalence in intermediate hosts appeared to increase with taxonomic specificity in definitive host use. Comparison of P. laevis and P. tereticollis adult size in the two main definitive hosts, barbel and chub, suggested lower compatibility towards the fish species with the lowest parasite abundance, in particular in P. laevis. The determinants of low niche overlap between these two sympatric acanthocephalan species, and the contribution of definitive host range diversity to parasite transmission success, are discussed. The fish acanthocephalans P. laevis and P. tereticollis show moderate specificity and low niche overlap. Transmission bias from shared intermediate hosts towards either benthic or bentho-pelagic fish is evidenced. Decreased taxonomic specificity towards fish hosts matches with lower prevalence in intermediate hosts. Lower worm size in the host with the lowest abundance calls for further investigation of compatibility filter. Low taxonomic resolution within some parasite species complex hinders accurate estimate of host use pattern.
Collapse
Affiliation(s)
- Marie-Jeanne Perrot-Minnot
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Emilie Guyonnet
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Loïc Bollache
- Chrono-environnement, UMR 6249 CNRS, Université Bourgogne Franche-Comté, 16 Route de Gray, 25000, Besançon, France
| | - Clément Lagrue
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
10
|
Sures B, Nachev M, Grabner D. The Rhine as Hotspot of Parasite Invasions. PARASITOLOGY RESEARCH MONOGRAPHS 2019. [DOI: 10.1007/978-3-030-29061-0_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
A minimalist macroparasite diversity in the round goby of the Upper Rhine reduced to an exotic acanthocephalan lineage. Parasitology 2017; 145:1020-1026. [DOI: 10.1017/s0031182017002177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe round goby, Neogobius melanostomus, is a Ponto-Caspian fish considered as an invasive species in a wide range of aquatic ecosystems. To understand the role that parasites may play in its successful invasion across Western Europe, we investigated the parasitic diversity of the round goby along its invasion corridor, from the Danube to the Upper Rhine rivers, using data from literature and a molecular barcoding approach, respectively. Among 1666 parasites extracted from 179 gobies of the Upper Rhine, all of the 248 parasites barcoded on the c oxidase subunit I gene were identified as Pomphorhynchus laevis. This lack of macroparasite diversity was interpreted as a loss of parasites along its invasion corridor without spillback compensation. The genetic diversity of P. laevis was represented by 33 haplotypes corresponding to a haplotype diversity of 0·65 ± 0·032, but a weak nucleotide diversity of 0·0018 ± 0·00015. Eight of these haplotypes were found in 88·4% of the 248 parasites. These haplotypes belong to a single lineage so far restricted to the Danube, Vistula and Volga rivers (Eastern Europe). This result underlines the exotic status of this Ponto-Caspian lineage in the Upper Rhine, putatively disseminated by the round goby along its invasion corridor.
Collapse
|
12
|
Temporal changes in growth, condition and trophic niche in juvenile Cyprinus carpio infected with a non-native parasite. Parasitology 2015; 142:1579-87. [PMID: 26394706 DOI: 10.1017/s0031182015001237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In host-parasite relationships, parasite prevalence and abundance can vary over time, potentially impacting how hosts are affected by infection. Here, the pathology, growth, condition and diet of a juvenile Cyprinus carpio cohort infected with the non-native cestode Bothriocephalus acheilognathi was measured in October 2012 (end of their first summer of life), April 2013 (end of first winter) and October 2013 (end of second summer). Pathology revealed consistent impacts, including severe compression and architectural modification of the intestine. At the end of the first summer, there was no difference in lengths and condition of the infected and uninfected fish. However, at the end of the winter period, the condition of infected fish was significantly reduced and by the end of their second summer, the infected fish were significantly smaller and remained in significantly reduced condition. Their diets were significantly different over time; infected fish consumed significantly higher proportions of food items <53 µm than uninfected individuals, a likely consequence of impaired functional traits due to infection. Thus, the sub-lethal impacts of this parasite, namely changes in histopathology, growth and trophic niche were dependent on time and/or age of the fish.
Collapse
|
13
|
Abstract
Trophically transmitted parasites may use multiple intermediate hosts, some of which may be 'key-hosts', i.e. contributing significantly more to the completion of the parasite life cycle, while others may be 'sink hosts' with a poor contribution to parasite transmission. Gammarus fossarum and Gammarus roeseli are sympatric crustaceans used as intermediate hosts by the acanthocephalan Pomphorhynchus laevis. Gammarus roeseli suffers higher field prevalence and is less sensitive to parasite behavioural manipulation and to predation by definitive hosts. However, no data are available on between-host differences in susceptibility to P. laevis infection, making it difficult to untangle the relative contributions of these hosts to parasite transmission. Based on results from estimates of prevalence in gammarids exposed or protected from predation and laboratory infections, G. fossarum specimens were found to be more susceptible to P. laevis infection. As it is more susceptible to both parasite infection and manipulation, G. fossarum is therefore a key host for P. laevis transmission.
Collapse
|