1
|
Nguyen PN, Samad-Zada F, Chau KD, Rehan SM. Microbiome and floral associations of a wild bee using biodiversity survey collections. Environ Microbiol 2024; 26:e16657. [PMID: 38817079 DOI: 10.1111/1462-2920.16657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
The health of bees can be assessed through their microbiome, which serves as a biomarker indicating the presence of both beneficial and harmful microorganisms within a bee community. This study presents the characterisation of the bacterial, fungal, and plant composition on the cuticle of adult bicoloured sweat bees (Agapostemon virescens). These bees were collected using various methods such as pan traps, blue vane traps and sweep netting across the northern extent of their habitat range. Non-destructive methods were employed to extract DNA from the whole pinned specimens of these wild bees. Metabarcoding of the 16S rRNA, ITS and rbcL regions was then performed. The study found that the method of collection influenced the detection of certain microbial and plant taxa. Among the collection methods, sweep net samples showed the lowest fungal alpha diversity. However, minor differences in bacterial or fungal beta diversity suggest that no single method is significantly superior to others. Therefore, a combination of techniques can cater to a broader spectrum of microbial detection. The study also revealed regional variations in bacterial, fungal and plant diversity. The core microbiome of A. virescens comprises two bacteria, three fungi and a plant association, all of which are commonly detected in other wild bees. These core microbes remained consistent across different collection methods and locations. Further extensive studies of wild bee microbiomes across various species and landscapes will help uncover crucial relationships between pollinator health and their environment.
Collapse
Affiliation(s)
- Phuong N Nguyen
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | - Katherine D Chau
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Wood TJ, Müller A, Praz C, Michez D. Elevated rates of dietary generalization in eusocial lineages of the secondarily herbivorous bees. BMC Ecol Evol 2023; 23:67. [PMID: 37986035 PMCID: PMC10662511 DOI: 10.1186/s12862-023-02175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Within the Hymenoptera, bees are notable for their relationship with flowering plants, being almost entirely dependent on plant pollen and nectar. Though functionally herbivorous, as a result of their role as pollinators, bees have received comparatively little attention as models for insect herbivory. Bees often display dietary specialization, but quantitative comparison against other herbivorous insects has not previously been conducted. RESULTS In the most comprehensive analysis to date for 860 bee species, dietary specialization amounted to 50.1% of studied species collecting pollen from between 1 and 2 botanical families with a relatively long tail of dietary generalists, with 11.1% of species collecting from more than 10 botanical families. This distribution deviated from the truncated Pareto distribution of dietary breadth seen in other herbivorous insect lineages. However, this deviation was predominantly due to eusocial bee lineages, which show a range of dietary breadths that conformed to a normal distribution, while solitary bees show a typical truncated distribution not strongly different from other herbivorous insects. We hypothesize that the relatively low level of dietary specialization in bees as a whole reflects the relaxation of the constraints typically observed in herbivorous insects with a comparatively reduced importance of plant chemistry and comparatively increased importance of phenology and foraging efficiency. The long flight periods of eusocial bees that are necessary to allow overlapping generations both allows and necessitates the use of multiple flowering resources, whereas solitary bees with short flight periods have more limited access to varied resources within a constrained activity period. CONCLUSIONS Collectively, solitary bees show slightly lower specialization compared to other herbivorous insects, possibly due to their balanced relationship with plants, rather than direct antagonism such as seen in the direct consumption of plant tissues. An additional factor may be the mediocre diversity of bees at low latitudes combined with low levels of dietary specialization, whereas these areas typically display a high rate of specialization by herbivorous insects in general. Though the most important factors structuring dietary specialization in bees appear to differ from many other herbivorous insects, solitary bees show a surprisingly similar overall pattern of dietary specialization.
Collapse
Affiliation(s)
- T J Wood
- University of Mons, Research Institute for Biosciences, Laboratory of Zoology, Place du parc 20, 7000, Mons, Belgium.
| | - A Müller
- ETH Zurich, Institute of Agricultural Sciences, Biocommunication and Entomology, Schmelzbergstrasse 9/LFO, 8092, Zurich, Switzerland
| | - C Praz
- University of Neuchâtel, Institute of Biology, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- InfoFauna - Swiss Zoological Records Center, Avenue de Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - D Michez
- University of Mons, Research Institute for Biosciences, Laboratory of Zoology, Place du parc 20, 7000, Mons, Belgium
| |
Collapse
|
3
|
Gérard M, Marchand J, Zanutto J, Baird E. Resilience of bumblebee foraging behavior despite colony size reduction. FRONTIERS IN INSECT SCIENCE 2023; 2:1073380. [PMID: 38468768 PMCID: PMC10926374 DOI: 10.3389/finsc.2022.1073380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/14/2022] [Indexed: 03/13/2024]
Abstract
Foraging behavior is driven by diverse factors, notably life history traits. Foraging strategies are particularly complex among eusocial species such as bumblebees, because they depend primarily on the needs of the colony, rather than on individual's needs. Colony size, i.e. the number of workers in a colony vary a lot among eusocial insects. While a large colony can be adaptive, several drivers can strongly decrease colony size, like pesticides or high temperatures. In this study, we used the bumblebee Bombus terrestris to assess if workers adapted their foraging behavior to such rapid decreases in colony size. We conducted the foraging experiments with two plant species commonly used by bumblebees: Borago officinalis and Echium plantagineum. Several foraging parameters were measured: foraging time, number of foraging trips, number of workers foraging, handling time and visiting rate. Despite a drastic reduction in colony size, nearly all the foraging behavior parameters were unaffected by the colony size reduction. Colonies that were subject to a large decrease in workers instead displayed high resilience and behavioral plasticity by quickly increasing the proportion of foragers. Ultimately, further research should assess if this consistency in foraging behavior also allows bumblebee colonies to maintain both the efficiency of the resources collection and pollination.
Collapse
Affiliation(s)
- Maxence Gérard
- INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Justine Marchand
- INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Stockholm, Sweden
- Sorbonne Université, Faculté des Sciences et Ingénierie, Paris, France
| | - Jade Zanutto
- INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Stockholm, Sweden
- Sorbonne Université, Faculté des Sciences et Ingénierie, Paris, France
| | - Emily Baird
- INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Franklin EL, Smith KE, Raine NE. How foraging preference and activity level of bumble bees contribute to colony flexibility under resource demand. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Nutritionally rich wildflower patches adjacent to nutritionally deficient crops significantly increase pollination services. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.109935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Jeanne RL, Loope KJ, Bouwma AM, Nordheim EV, Smith ML. Five decades of misunderstanding in the social Hymenoptera: a review and meta-analysis of Michener's paradox. Biol Rev Camb Philos Soc 2022; 97:1559-1611. [PMID: 35338566 PMCID: PMC9546470 DOI: 10.1111/brv.12854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022]
Abstract
In a much-cited 1964 paper entitled "Reproductive efficiency in relation to colony size in hymenopterous societies," Charles Michener investigated the correlation between a colony's size and its reproductive efficiency - the ability of its adult females to produce reproductives, measured as per-capita output. Based on his analysis of published data from destructively sampled colonies in 18 species, he reported that in most of these species efficiency decreased with increasing colony size. His conclusion that efficiency is higher in smaller groups has since gained widespread acceptance. But it created a seeming paradox: how can natural selection maintain social behaviour when a female apparently enjoys her highest per-capita output by working alone? Here we treat Michener's pattern as a hypothesis and perform the first large-scale test of its prediction across the eusocial Hymenoptera. Because data on actual output of reproductives were not available for most species, Michener used various proxies, such as nest size, numbers of brood, or amounts of stored food. We show that for each of Michener's data sets the reported decline in per-capita productivity can be explained by factors other than decreasing efficiency, calling into question his conclusion that declining efficiency is the cause of the pattern. The most prominent cause of bias is the failure of the proxy to capture all forms of output in which the colony invests during the course of its ontogeny. Other biasing factors include seasonal effects and a variety of methodological flaws in the data sets he used. We then summarize the results of 215 data sets drawn from post-1964 studies of 80 species in 33 genera that better control for these factors. Of these, 163 data sets are included in two meta-analyses that statistically synthesize the available data on the relationship between colony size and efficiency, accounting for variable sample sizes and non-independence among the data sets. The overall effect, and those for most taxonomic subgroups, indicates no loss of efficiency with increasing colony size. Two exceptional taxa, the halictid bees and independent-founding paper wasps, show negative trends consistent with the Michener hypothesis in some species. We conclude that in most species, particularly those with large colony sizes, the hypothesis of decreasing efficiency with increasing colony size is not supported. Finally, we explore potential mechanisms through which the level of efficiency can decrease, be maintained, or even increase, as colonies increase in size.
Collapse
Affiliation(s)
- Robert L Jeanne
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI, 53706, U.S.A
| | - Kevin J Loope
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University (Virginia Tech), Cheatham Hall, 310 W. Campus Drive, Blacksburg, VA, 24060, U.S.A
| | - Andrew M Bouwma
- Department of Integrative Biology, Oregon State University, Cordley Hall, 3029, 2701 SW Campus Way, Corvallis, OR, 97331, U.S.A
| | - Erik V Nordheim
- Department of Statistics, University of Wisconsin, 1300 University Avenue, Madison, WI, 53706, U.S.A
| | - Michael L Smith
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, U.S.A
| |
Collapse
|
7
|
Anderson AR. An exploratory study of bumble bee ( Bombus) phenologies and plant interactions in agricultural landscapes in central Georgia, USA. J NAT HIST 2022. [DOI: 10.1080/00222933.2022.2095940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- A. R. Anderson
- Independent Researcher (University of Georgia), Asheville, NC, USA
| |
Collapse
|
8
|
Fisher K, Sarro E, Miranda CK, Guillen BM, Woodard SH. Worker task organization in incipient bumble bee nests. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Silva FDS, Carvalheiro LG, Aguirre-Gutiérrez J, Lucotte M, Guidoni-Martins K, Mertens F. Virtual pollination trade uncovers global dependence on biodiversity of developing countries. SCIENCE ADVANCES 2021; 7:eabe6636. [PMID: 33692110 PMCID: PMC7946370 DOI: 10.1126/sciadv.abe6636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/25/2021] [Indexed: 05/04/2023]
Abstract
Nations' food consumption patterns are increasingly globalized and trade dependent. Natural resources used for agriculture (e.g., water, pollinators) are hence being virtually exchanged across countries. Inspired by the virtual water concept, we, herein, propose the concept of virtual biotic pollination flow as an indicator of countries' mutual dependence on biodiversity-based ecosystem services and provide an online tool to visualize trade flow. Using information on 55 pollinator-dependent crop markets (2001-2015), we show that countries with higher development level demand high levels of biodiversity-based services to sustain their consumption patterns. Such patterns are supported by importation of virtual biotic pollination (up to 40% of national imports of pollinator-dependent crops) from developing countries, stimulating cropland expansion. Quantifying virtual pollination flow can help develop new global socioeconomic policies to meet the interconnected challenges of biodiversity loss, ecosystem health, and social justice.
Collapse
Affiliation(s)
- F D S Silva
- Federal Institute of Education, Science and Technology of Mato Grosso (IFMT)-Campus Barra do Garças, Barra do Garças-MT, 78600-000, Brazil.
| | - L G Carvalheiro
- Department of Ecology, Federal University of Goiás, Goiânia-GO, 74690-900, Brazil.
- Center for Ecology, Evolution and Environmental Change (CE3C), University of Lisbon, Lisbon, Portugal
| | - J Aguirre-Gutiérrez
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Biodiversity Dynamics, Naturalis Biodiversity Center, Leiden, Netherlands
| | - M Lucotte
- GEOTOP and Institute of Environmental Sciences, Université du Quebec à Montreal, Montreal, Canada
| | - K Guidoni-Martins
- Graduate Program in Ecology and Evolution, Federal University of Goiás, Goiânia-GO, 74690-900, Brazil
| | - F Mertens
- Center of Sustainable Development, University of Brasília (UnB-Campus Darcy Ribeiro, Asa Norte, Brasília-DF, 70910-900, Brazil
| |
Collapse
|
10
|
Costa CP, Fisher K, Guillén BM, Yamanaka N, Bloch G, Woodard SH. Care-giver identity impacts offspring development and performance in an annually social bumble bee. BMC Ecol Evol 2021; 21:20. [PMID: 33563224 PMCID: PMC7871553 DOI: 10.1186/s12862-021-01756-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The developmental fates of offspring have the potential to be influenced by the identity of their care-givers and by the nature of the care that they receive. In animals that exhibit both parental and alloparental care, such as the annually eusocial insects, the influence of care-giver identity can be directly assessed to yield mechanistic and evolutionary insights into the origins and elaboration of brood care. Here, we performed a comparative investigation of maternal and worker brood care in bumble bees, a pollinator group where mothers (queens) rear the first offspring in the nest, and then daughters (workers) assume this role upon their emergence. Specifically, we compared the effects of queen and worker brood care on offspring development and also offspring performance, for a set of traits related to sensory biology, learning, and stress resistance. RESULTS We found that queen-reared workers were smaller-bodied than worker-reared offspring, suggesting that bumble bee queens influence body size determination in their offspring. We also found that queen-reared workers were more resistant to starvation, which might be beneficial for early nesting success. These maternal influences could not be explained by feeding rate, given that we detected a similar offspring feeding frequency in both queens and workers. CONCLUSION Bumble bee queens have a unique influence on the development of the first offspring in the nest, which they rear, relative to worker-reared workers. We propose that bumble bee brood care has been shaped by a suite of evolutionary and ecological factors, which might include a maternal influence on traits that promote survival of incipient colonies.
Collapse
Affiliation(s)
| | - Kaleigh Fisher
- Department of Entomology, University of California, Riverside, CA, USA
| | - Blanca M Guillén
- Department of Entomology, University of California, Riverside, CA, USA
| | - Naoki Yamanaka
- Department of Entomology, University of California, Riverside, CA, USA
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, CA, USA.
| |
Collapse
|
11
|
Foraging strategies are maintained despite workforce reduction: A multidisciplinary survey on the pollen collected by a social pollinator. PLoS One 2019; 14:e0224037. [PMID: 31693676 PMCID: PMC6834249 DOI: 10.1371/journal.pone.0224037] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/03/2019] [Indexed: 01/13/2023] Open
Abstract
The way pollinators gather resources may play a key role for buffering their population declines. Social pollinators like bumblebees could adjust their foraging after significant workforce reductions to keep provisions to the colony optimal, especially in terms of pollen diversity and quantity. To test what effects a workforce reduction causes on the foraging for pollen, commercially-acquired colonies of the bumblebee Bombus terrestris were allowed to forage in the field and they were experimentally manipulated by removing half the number of workers. For each bumblebee, the pollen pellets were taxonomically identified with DNA metabarcoding of the ITS2 region followed by a statistical filtering based on ROC curves to filter out underrepresented OTUs. Video cameras and network analyses were employed to investigate changes in foraging strategies and behaviour. After filtering out the false-positives, HTS metabarcoding yielded a high plant diversity in the pollen pellets; for plant identity and pollen quantity traits no differences emerged between samples from treated and from control colonies, suggesting that plant choice was influenced mainly by external factors such as the plant phenology. The colonies responded to the removal of 50% of their workers by increasing the foraging activity of the remaining workers, while only negligible changes were found in diet breadth and indices describing the structure of the pollen transport network. Therefore, a consistency in the bumblebees’ feeding strategies emerges in the short term despite the lowered workforce.
Collapse
|
12
|
Hendriksma HP, Toth AL, Shafir S. Individual and Colony Level Foraging Decisions of Bumble Bees and Honey Bees in Relation to Balancing of Nutrient Needs. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00177] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
13
|
Santos ATF, Leal LC. My plant, my rules: bodyguard ants of plants with extrafloral nectaries affect patterns of pollinator visits but not pollination success. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna Thiciane F Santos
- Programa de Pós-graduação em Ecologia e Evolução, Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Laura C Leal
- Programa de Pós-graduação em Ecologia e Evolução, Universidade Estadual de Feira de Santana, Bahia, Brazil
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
14
|
Guo Y, Fu B, Qin G, Song H, Wu W, Shao Y, Altaye SZ, Yu L. Proteome analysis reveals a strong correlation between olfaction and pollen foraging preference in honeybees. Int J Biol Macromol 2018; 121:1264-1275. [PMID: 30352230 DOI: 10.1016/j.ijbiomac.2018.10.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
To gain a deeper understanding of the molecular basis of pollen foraging preference, we characterized the proteomes of antennae and brains of bees foraging on pear and rapeseed flowers, and the volatile compounds from nectar, anther, and inflorescence of both plants. Bees foraging on the pollen of the two plants have shaped the distinct proteome arsenals in the antenna and brain to drive olfactory and brain function. In antennae, bees foraging on pear (PA) pollen pathways associated with protein metabolism were induced to synthesize new proteins for modulation of synaptic structures via stabilizing and consolidating specific memory traces. Whereas, bees foraging on rapeseed (BA) pollen pathways implicated in energy metabolism were activated to provide metabolic fuels critical for neural activity. These findings suggest that the distinct biochemical route is functionally enhanced to consolidate the divergent olfaction in PA and BA. In brain, although the uniquely induced pathways in bees forging on both plants are likely to cement selective roles in learning and memory, pollen foraging preference in bees is mainly drived by olfaction. Furthermore, both plants have shaped different repertoires of signal odors and food rewards to attract pollinators. The suggested markers are potentially useful for selection of bees to improve their olfaction for better pollination of the plants.
Collapse
Affiliation(s)
- Yuan Guo
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China.
| | - Baochun Fu
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
| | - Guojie Qin
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
| | - Huailei Song
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
| | - Wenqing Wu
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
| | - Youquan Shao
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
| | - Solomon Zewdu Altaye
- Ethiopian Institute of Agricultural Research, PO Box 2003, Addis Ababa, Ethiopia
| | - Linsheng Yu
- Anhui Agricultural University, Anhui 230036, China.
| |
Collapse
|
15
|
Vaudo AD, Farrell LM, Patch HM, Grozinger CM, Tooker JF. Consistent pollen nutritional intake drives bumble bee ( Bombus impatiens) colony growth and reproduction across different habitats. Ecol Evol 2018; 8:5765-5776. [PMID: 29938091 PMCID: PMC6010792 DOI: 10.1002/ece3.4115] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/26/2018] [Accepted: 03/29/2018] [Indexed: 11/16/2022] Open
Abstract
Foraging behavior is a critical adaptation by insects to obtain appropriate nutrients from the environment for development and fitness. Bumble bees (Bombus spp.) form annual colonies which must rapidly increase their worker populations to support rearing reproductive individuals before the end of the season. Therefore, colony growth and reproduction should be dependent on the quality and quantity of pollen resources in the surrounding landscape. Our previous research found that B. impatiens foraging preferences to different plant species were shaped by pollen protein:lipid nutritional ratios (P:L), with foragers preferring pollen species with a ~5:1 P:L ratio. In this study, we placed B. impatiens colonies in three different habitats (forest, forest edge, and valley) to determine whether pollen nutritional quality collected by the colonies differed between areas that may differ in resource abundance and diversity. We found that habitat did not influence the collected pollen nutritional quality, with colonies in all three habitats collecting pollen averaging a 4:1 P:L ratio. Furthermore, there was no difference in the nutritional quality of the pollen collected by colonies that successfully reared reproductives and those that did not. We found however, that "nutritional intake," calculated as the colony-level intake rate of nutrient quantities (protein, lipid, and sugar), was strongly related to colony growth and reproductive output. Therefore, we conclude that B. impatiens colony performance is a function of the abundance of nutritionally appropriate floral resources in the surrounding landscape. Because we did not comprehensively evaluate the nutrition provided by the plant communities in each habitat, it remains to be determined how B. impatiens polylectic foraging strategies helps them select among the available pollen nutritional landscape in a variety of plant communities to obtain a balance of key macronutrients.
Collapse
Affiliation(s)
- Anthony D. Vaudo
- Department of EntomologyCenter for Pollinator ResearchThe Pennsylvania State UniversityUniversity ParkPennsylvania
| | - Liam M. Farrell
- Department of EntomologyCenter for Pollinator ResearchThe Pennsylvania State UniversityUniversity ParkPennsylvania
| | - Harland M. Patch
- Department of EntomologyCenter for Pollinator ResearchThe Pennsylvania State UniversityUniversity ParkPennsylvania
| | - Christina M. Grozinger
- Department of EntomologyCenter for Pollinator ResearchThe Pennsylvania State UniversityUniversity ParkPennsylvania
| | - John F. Tooker
- Department of EntomologyCenter for Pollinator ResearchThe Pennsylvania State UniversityUniversity ParkPennsylvania
| |
Collapse
|
16
|
Simons MA, Smith AR. Ovary activation does not correlate with pollen and nectar foraging specialization in the bumblebee Bombus impatiens. PeerJ 2018; 6:e4415. [PMID: 29479503 PMCID: PMC5824676 DOI: 10.7717/peerj.4415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/05/2018] [Indexed: 11/20/2022] Open
Abstract
Social insect foragers may specialize on certain resource types. Specialization on pollen or nectar among honeybee foragers is hypothesized to result from associations between reproductive physiology and sensory tuning that evolved in ancestral solitary bees (the Reproductive Ground-Plan Hypothesis; RGPH). However, the two non-honeybee species studied showed no association between specialization and ovary activation. Here we investigate the bumblebee B. impatiens because it has the most extensively studied pollen/nectar specialization of any bumblebee. We show that ovary size does not differ between pollen specialist, nectar specialist, and generalist foragers, contrary to the predictions of the RGPH. However, we also found mixed support for the second prediction of the RGPH, that sensory sensitivity, measured through proboscis extension response (PER), is greater among pollen foragers. We also found a correlation between foraging activity and ovary size, and foraging activity and relative nectar preference, but no correlation between ovary size and nectar preference. In one colony non-foragers had larger ovaries than foragers, supporting the reproductive conflict and work hypothesis, but in the other colony they did not.
Collapse
Affiliation(s)
- Meagan A Simons
- Department of Biological Sciences, George Washington University, Washington, D.C., United States of America
| | - Adam R Smith
- Department of Biological Sciences, George Washington University, Washington, D.C., United States of America
| |
Collapse
|
17
|
Bailes EJ, Pattrick JG, Glover BJ. An analysis of the energetic reward offered by field bean ( Vicia faba) flowers: Nectar, pollen, and operative force. Ecol Evol 2018; 8:3161-3171. [PMID: 29607015 PMCID: PMC5869266 DOI: 10.1002/ece3.3851] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023] Open
Abstract
Global consumption of crops with a yield that is dependent on animal pollinators is growing, with greater areas planted each year. However, the floral traits that influence pollinator visitation are not usually the focus of breeding programmes, and therefore, it is likely that yield improvements may be made by optimizing floral traits to enhance pollinator visitation rates. We investigated the variation present in the floral reward of the bee-pollinated crop Vicia faba (field bean). We examined the genetic potential for breeding flowers with a greater reward into current commercial varieties and used bee behavioral experiments to gain insight into the optimal nectar concentration to maximize bee preference. There was a large range of variation in the amount of pollen and nectar reward of flowers in the genotypes investigated. Bee behavioral experiments using nectar sugar concentrations found in V. faba lines suggest that Bombus terrestris prefers 55% w/w sugar solution over 40% w/w, but has no preference between 55% w/w and 68% w/w sugar solution. We provide a first indication of the force required to open V. faba flowers. Our results provide a valuable starting point toward breeding for varieties with optimized floral reward. Field studies are now needed to verify whether the genetic potential for breeding more rewarding flowers can translate into higher yield and yield stability.
Collapse
Affiliation(s)
- Emily J Bailes
- School of Biological Sciences Royal Holloway University of London Egham UK.,Department of Plant Sciences University of Cambridge Cambridge UK.,National Institute of Agricultural Botany Cambridge UK
| | - Jonathan G Pattrick
- Department of Plant Sciences University of Cambridge Cambridge UK.,Department of Zoology University of Cambridge Cambridge UK
| | | |
Collapse
|
18
|
Muth F, Papaj DR, Leonard AS. Multiple rewards have asymmetric effects on learning in bumblebees. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Patterns of pollen and nectar foraging specialization by bumblebees over multiple timescales using RFID. Sci Rep 2017; 7:42448. [PMID: 28181584 PMCID: PMC5299450 DOI: 10.1038/srep42448] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/09/2017] [Indexed: 02/08/2023] Open
Abstract
The ecological success of social insects is frequently ascribed to improvements in task performance due to division of labour amongst workers. While much research has focused on improvements associated with lifetime task specialization, members of colonies can specialize on a given task over shorter time periods. Eusocial bees in particular must collect pollen and nectar rewards to survive, but most workers appear to mix collection of both rewards over their lifetimes. We asked whether bumblebees specialize over timescales shorter than their lifetime. We also explored factors that govern such patterns, and asked whether reward specialists made more foraging bouts than generalists. In particular, we described antennal morphology and size of all foragers in a single colony and related these factors to each forager’s complete foraging history, obtained using radio frequency identification (RFID). Only a small proportion of foragers were lifetime specialists; nevertheless, >50% of foragers specialized daily on a given reward. Contrary to expectations, daily and lifetime reward specialists were not better foragers (being neither larger nor making more bouts); larger bees with more antennal olfactory sensilla made more bouts, but were not more specialized. We discuss causes and functions of short and long-term patterns of specialization for bumblebee colonies.
Collapse
|
20
|
Affiliation(s)
| | - Natalie Hempel de Ibarra
- Centre for Research in Animal Behaviour Psychology University of Exeter Perry Road Exeter EX4 4QG UK
| |
Collapse
|
21
|
Smith AR, Graystock P, Hughes WOH. Specialization on pollen or nectar in bumblebee foragers is not associated with ovary size, lipid reserves or sensory tuning. PeerJ 2016; 4:e2599. [PMID: 27812411 PMCID: PMC5088620 DOI: 10.7717/peerj.2599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/23/2016] [Indexed: 11/20/2022] Open
Abstract
Foraging specialization allows social insects to more efficiently exploit resources in their environment. Recent research on honeybees suggests that specialization on pollen or nectar among foragers is linked to reproductive physiology and sensory tuning (the Reproductive Ground-Plan Hypothesis; RGPH). However, our understanding of the underlying physiological relationships in non-Apis bees is still limited. Here we show that the bumblebee Bombus terrestris has specialist pollen and nectar foragers, and test whether foraging specialization in B. terrestris is linked to reproductive physiology, measured as ovarian activation. We show that neither ovary size, sensory sensitivity, measured through proboscis extension response (PER), or whole-body lipid stores differed between pollen foragers, nectar foragers, or generalist foragers. Body size also did not differ between any of these three forager groups. Non-foragers had significantly larger ovaries than foragers. This suggests that potentially reproductive individuals avoid foraging.
Collapse
Affiliation(s)
- Adam R Smith
- Department of Biological Sciences, George Washington University , Washington , DC , United States
| | - Peter Graystock
- Department of Entomology, University of California, Riverside , Riverside , CA , United States
| | - William O H Hughes
- School of Life Sciences, University of Sussex , Brighton , United Kingdom
| |
Collapse
|
22
|
Stanley DA, Raine NE. Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants. Funct Ecol 2016; 30:1132-1139. [PMID: 27512241 PMCID: PMC4950133 DOI: 10.1111/1365-2435.12644] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/21/2016] [Indexed: 11/29/2022]
Abstract
Insect pollinators are essential for both the production of a large proportion of world crops and the health of natural ecosystems. As important pollinators, bumblebees must learn to forage on flowers to feed both themselves and provision their colonies.Increased use of pesticides has caused concern over sublethal effects on bees, such as impacts on reproduction or learning ability. However, little is known about how sublethal exposure to field-realistic levels of pesticide might affect the ability of bees to visit and manipulate flowers.We observed the behaviour of individual bumblebees from colonies chronically exposed to a neonicotinoid pesticide (10 ppb thiamethoxam) or control solutions foraging for the first time on an array of morphologically complex wildflowers (Lotus corniculatus and Trifolium repens) in an outdoor flight arena.We found that more bees released from pesticide-treated colonies became foragers, and that they visited more L. corniculatus flowers than controls. Interestingly, bees exposed to pesticide collected pollen more often than controls, but control bees learnt to handle flowers efficiently after fewer learning visits than bees exposed to pesticide. There were also different initial floral preferences of our treatment groups; control bees visited a higher proportion of T. repens flowers, and bees exposed to pesticide were more likely to choose L. corniculatus on their first visit.Our results suggest that the foraging behaviour of bumblebees on real flowers can be altered by sublethal exposure to field-realistic levels of pesticide. This has implications for the foraging success and persistence of bumblebee colonies, but perhaps more importantly for the interactions between wild plants and flower-visiting insects and ability of bees to deliver the crucial pollination services to plants necessary for ecosystem functioning.
Collapse
Affiliation(s)
- Dara A Stanley
- School of Biological Sciences Royal Holloway University of London Egham TW20 0EX UK; Botany and Plant Science School of Natural Sciences and Ryan Institute National University of Ireland Galway Ireland
| | - Nigel E Raine
- School of Biological Sciences Royal Holloway University of London Egham TW20 0EX UK; School of Environmental Sciences University of Guelph Guelph ON N1G 2W1 Canada
| |
Collapse
|
23
|
Varroa destructor Macula-like virus, Lake Sinai virus and other new RNA viruses in wild bumblebee hosts ( Bombus pascuorum , Bombus lapidarius and Bombus pratorum ). J Invertebr Pathol 2016; 134:6-11. [DOI: 10.1016/j.jip.2015.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/03/2015] [Accepted: 12/07/2015] [Indexed: 11/30/2022]
|
24
|
Francis JS, Muth F, Papaj DR, Leonard AS. Nutritional complexity and the structure of bee foraging bouts. Behav Ecol 2016. [DOI: 10.1093/beheco/arv229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Stanley DA, Smith KE, Raine NE. Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Sci Rep 2015; 5:16508. [PMID: 26568480 PMCID: PMC4644970 DOI: 10.1038/srep16508] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 10/14/2015] [Indexed: 02/07/2023] Open
Abstract
Bumblebees are exposed to pesticides applied for crop protection while foraging on treated plants, with increasing evidence suggesting that this sublethal exposure has implications for pollinator declines. The challenges of navigating and learning to manipulate many different flowers underline the critical role learning plays for the foraging success and survival of bees. We assessed the impacts of both acute and chronic exposure to field-realistic levels of a widely applied neonicotinoid insecticide, thiamethoxam, on bumblebee odour learning and memory. Although bees exposed to acute doses showed conditioned responses less frequently than controls, we found no difference in the number of individuals able to learn at field-realistic exposure levels. However, following chronic pesticide exposure, bees exposed to field-realistic levels learnt more slowly and their short-term memory was significantly impaired following exposure to 2.4 ppb pesticide. These results indicate that field-realistic pesticide exposure can have appreciable impacts on learning and memory, with potential implications for essential individual behaviour and colony fitness.
Collapse
Affiliation(s)
- Dara A Stanley
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Karen E Smith
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Nigel E Raine
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.,School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
26
|
High-altitude multi-taskers: bumble bee food plant use broadens along an altitudinal productivity gradient. Oecologia 2014; 176:1033-45. [PMID: 25199658 DOI: 10.1007/s00442-014-3066-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/22/2014] [Indexed: 12/30/2022]
Abstract
We use an extensive historical data set on bumble bee host choice collected almost 50 years ago by L. W. Macior (Melanderia 15:1-59, 1974) to examine how resource partitioning by bumble bees varies over a 2,700-m altitudinal gradient at four hierarchical scales: individual, colony, species and community. Bumble bee behavior, resource overlap between castes, and plant-bumble bee networks change with altitude in accordance with tightening temporal constraints on flowering and colony growth in alpine habitats. Individual bees were more likely to collect pollen from multiple sources at high altitude. Between-caste foraging niche overlap increased with altitude. Similarly, alpine forager networks were more highly nested than either subalpine or montane networks due to increased asymmetric specialization. However, interspecific resource partitioning showed a more complex spatial pattern with low niche overlap at intermediate altitude (subalpine) compared to montane (disturbed) and alpine (unproductive) sites. Results suggest that spatial variation in interspecific resource partitioning is driven by a shift in the behavior of long-tongued bumble bees. Long-tongued bumble bees specialized in the subalpine but generalized in montane and alpine zones. Our reanalysis of Macior's data shows that bumble bee behavior varies substantially with altitude influencing plant-bumble bee interaction networks. Results imply that pollination services to alpine host plants will change dramatically as subalpine species with unique foraging strategies move upward under global warming.
Collapse
|
27
|
A comparison of visual and olfactory learning performance in the bumblebee Bombus terrestris. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1765-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Ballesteros Y, Polidori C, Tormos J, Baños-Picón L, Asís JD. Complex-to-predict generational shift between nested and clustered organization of individual prey networks in digger wasps. PLoS One 2014; 9:e102325. [PMID: 25019164 PMCID: PMC4096507 DOI: 10.1371/journal.pone.0102325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 06/18/2014] [Indexed: 12/02/2022] Open
Abstract
Although diet has traditionally been considered to be a property of the species or populations as a whole, there is nowadays extensive knowledge that individual specialization is widespread among animal populations. Nevertheless, the factors determining the shape of interactions within food webs remain largely undiscovered, especially in predatory insects. We used an aggregation of the digger wasp Bembix merceti to 1) analyse patterns of individual prey use across three flying seasons in a network-based context; and 2) test the effect of four potential factors that might explain network topologies (wasp mass, nest spatial distribution, simultaneous nest-provisioning, prey availability). Inter-individual diet variation was found in all three years, under different predator-prey network topologies: Individuals arranged in dietary clusters and displayed a checkerboard pattern in 2009, but showed nestedness in 2008 and 2010. Network topologies were not fully explained by the tested factors. Larger females consumed a higher proportion of the total number of prey species captured by the population as a whole, in such a way that nested patterns may arise from mass-dependent prey spectrum width. Conversely, individuals with similar body mass didn't form clusters. Nested patterns seemed to be associated with a greater availability of the main prey species (a proxy for reduced intra-specific competition). Thus, according with theory, clusters seemed to appear when competition increased. On the other hand, the nests of the individuals belonging to a given cluster were not more closely located, and neither did individuals within a cluster provision their nests simultaneously. Thus, a female-female copying behaviour during foraging was unlikely. In conclusion, wasp populations can maintain a considerable individual variation across years under different food web organizations. The tested factors only partially accounted for the shift in network properties, and new analyses should be carried out to elucidate how diet network topologies arise in wasp populations.
Collapse
Affiliation(s)
- Yolanda Ballesteros
- Departamento de Zoología, Facultad de Biología, Universidad de Salamanca, Salamanca, Spain
| | - Carlo Polidori
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - José Tormos
- Departamento de Zoología, Facultad de Biología, Universidad de Salamanca, Salamanca, Spain
| | - Laura Baños-Picón
- Departamento de Zoología, Facultad de Biología, Universidad de Salamanca, Salamanca, Spain
| | - Josep Daniel Asís
- Departamento de Zoología, Facultad de Biología, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
29
|
Konzmann S, Lunau K. Divergent rules for pollen and nectar foraging bumblebees--a laboratory study with artificial flowers offering diluted nectar substitute and pollen surrogate. PLoS One 2014; 9:e91900. [PMID: 24637406 PMCID: PMC3956814 DOI: 10.1371/journal.pone.0091900] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/18/2014] [Indexed: 11/18/2022] Open
Abstract
Almost all bees collect nectar and pollen from flowers. Female bees collect pollen to provision their nest cells, whereas they use nectar for individual energy supply and nest cell provisioning. Bees fine-tune nectar foraging to the amount and to the concentration of nectar, but the individual bees' response to variability of amount and concentration of pollen reward has not yet been studied thoroughly in laboratory settings. We developed an experimental set-up in which bumblebees simultaneously collected sugar solution and pollen from artificial flowers; natural pollen was mixed with cellulose powder or glass powder as a pollen surrogate. Here we show that bumblebee (Bombus terrestris) workers do not specialise in nectar or pollen collection, but regularly collect both rewards on the same day. When offered a fixed pollen reward and varied amounts and concentrations of sugar solution, the bumblebees fine-tuned sugar solution foraging dependent on both the volume and concentration, with strong preferences for the highest concentration and the greatest volume. In the reciprocal tests, when offered a fixed sugar reward and varied amounts and concentrations of pollen mixed with a nutrient-free pollen surrogate, the bumblebees follow more an all-or-none rule for pollen, accepting all amounts and concentrations except pure surrogate. It is discussed how the bumblebees' ability to sense sugar, and their apparent inability to sense the pollen protein content, shaped their foraging behaviour. It is argued that the rarity of nectar mimicry and the frequency of pollen mimicry in natural flowers might be interpreted in the context of divergent abilities of nectar and pollen recognition in bees.
Collapse
Affiliation(s)
- Sabine Konzmann
- Institute of Sensory Ecology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Klaus Lunau
- Institute of Sensory Ecology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail: .
| |
Collapse
|