1
|
Powell DL, Moran B, Kim B, Banerjee SM, Aguillon SM, Fascinetto-Zago P, Langdon Q, Schumer M. Two new hybrid populations expand the swordtail hybridization model system. Evolution 2021; 75:2524-2539. [PMID: 34460102 PMCID: PMC8659863 DOI: 10.1111/evo.14337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022]
Abstract
Natural hybridization events provide unique windows into the barriers that keep species apart as well as the consequences of their breakdown. Here, we characterize hybrid populations formed between the northern swordtail fish Xiphophorus cortezi and Xiphophorus birchmanni from collection sites on two rivers. We use simulations and new genetic reference panels to develop sensitive and accurate local ancestry calling in this novel system. Strikingly, we find that hybrid populations on both rivers consist of two genetically distinct subpopulations: a cluster of pure X. birchmanni individuals and one of phenotypically intermediate hybrids that derive ∼85-90% of their genome from X. cortezi. Simulations suggest that initial hybridization occurred ∼150 generations ago at both sites, with little evidence for contemporary gene flow between subpopulations. This population structure is consistent with strong assortative mating between individuals of similar ancestry. The patterns of population structure uncovered here mirror those seen in hybridization between X. birchmanni and its sister species, Xiphophorus malinche, indicating an important role for assortative mating in the evolution of hybrid populations. Future comparisons will provide a window into the shared mechanisms driving the outcomes of hybridization not only among independent hybridization events between the same species but also across distinct species pairs.
Collapse
Affiliation(s)
- Daniel L. Powell
- Department of Biology, Stanford University,Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C.,Correspondence to: and
| | - Ben Moran
- Department of Biology, Stanford University,Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | | | - Shreya M. Banerjee
- Department of Biology, Stanford University,Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Stepfanie M. Aguillon
- Department of Biology, Stanford University,Department of Ecology and Evolutionary Biology, Cornell University
| | - Paola Fascinetto-Zago
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C.,Department of Biology, Texas A&M University
| | - Quinn Langdon
- Department of Biology, Stanford University,Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Molly Schumer
- Department of Biology, Stanford University,Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C.,Hanna H. Gray Fellow, Howard Hughes Medical Institutes,Correspondence to: and
| |
Collapse
|
2
|
Powell DL, García-Olazábal M, Keegan M, Reilly P, Du K, Díaz-Loyo AP, Banerjee S, Blakkan D, Reich D, Andolfatto P, Rosenthal GG, Schartl M, Schumer M. Natural hybridization reveals incompatible alleles that cause melanoma in swordtail fish. Science 2020; 368:731-736. [PMID: 32409469 PMCID: PMC8074799 DOI: 10.1126/science.aba5216] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
Abstract
The establishment of reproductive barriers between populations can fuel the evolution of new species. A genetic framework for this process posits that "incompatible" interactions between genes can evolve that result in reduced survival or reproduction in hybrids. However, progress has been slow in identifying individual genes that underlie hybrid incompatibilities. We used a combination of approaches to map the genes that drive the development of an incompatibility that causes melanoma in swordtail fish hybrids. One of the genes involved in this incompatibility also causes melanoma in hybrids between distantly related species. Moreover, this melanoma reduces survival in the wild, likely because of progressive degradation of the fin. This work identifies genes underlying a vertebrate hybrid incompatibility and provides a glimpse into the action of these genes in natural hybrid populations.
Collapse
Affiliation(s)
- Daniel L Powell
- Department of Biology, Stanford University and Howard Hughes Medical Institute, Stanford, CA, USA.
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, Mexico
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Mateo García-Olazábal
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, Mexico
- Department of Biology, Texas A&M University, College Station, TX, USA
| | | | - Patrick Reilly
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kang Du
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Bavaria, Germany
| | - Alejandra P Díaz-Loyo
- Laboratorio de Ecología de la Conducta, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Shreya Banerjee
- Department of Biology, Stanford University and Howard Hughes Medical Institute, Stanford, CA, USA
| | - Danielle Blakkan
- Department of Biology, Stanford University and Howard Hughes Medical Institute, Stanford, CA, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, and the Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gil G Rosenthal
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, Mexico
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Manfred Schartl
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, Mexico
- Department of Biology, Texas A&M University, College Station, TX, USA
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Bavaria, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
- Xiphophorus Genetic Stock Center, Texas State University San Marcos, San Marcos, TX, USA
| | - Molly Schumer
- Department of Biology, Stanford University and Howard Hughes Medical Institute, Stanford, CA, USA.
| |
Collapse
|
3
|
Maestri R, Fornel R, Galiano D, de Freitas TRO. Niche suitability affects development: skull asymmetry increases in less suitable areas. PLoS One 2015; 10:e0122412. [PMID: 25874364 PMCID: PMC4398368 DOI: 10.1371/journal.pone.0122412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/20/2015] [Indexed: 11/19/2022] Open
Abstract
For conservation purposes, it is important to take into account the suitability of a species to particular habitats; this information may predict the long-term survival of a species. In this sense, morphological measures of developmental stress, such as fluctuating asymmetry, can be proxies for an individual’s performance in different regions. In this study, we conducted tests to determine whether areas with different levels of suitability for a species (generated by ecological niche models) were congruent with morphological markers that reflect environmental stress and morphological variance. We generated a Maxent niche model and compared the suitability assessments of several areas with the skull morphology data (fluctuating asymmetry and morphological disparity) of populations of the Atlantic forest endemic to Brazil rodent Akodon cursor. Our analyses showed a significant negative relationship between suitability levels and fluctuating asymmetry levels, which indicates that in less suitable areas, the individuals experience numerous disturbances during skull ontogeny. We have not found an association between morphological variance and environmental suitability. As expected, these results suggest that in environments with a lower suitability, developmental stress is increased. Such information is helpful in the understanding of the species evolution and in the selection of priority areas for the conservation of species.
Collapse
Affiliation(s)
- Renan Maestri
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- * E-mail:
| | - Rodrigo Fornel
- Programa de Pós-Graduação em Ecologia, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - Daniel Galiano
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Thales R. O. de Freitas
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|