1
|
Park TYS. Trilobite hypostome as a fusion of anterior sclerite and labrum. ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 77:101308. [PMID: 37832459 DOI: 10.1016/j.asd.2023.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
The trilobite hypostome is a biomineralized ventral plate that covers the mouth, but its evolutionary origin remains controversial. The labrum is a lobe-like structure that can take on variety of shapes in front of the mouth in arthropods, while the anterior sclerite refers to a cuticular plate articulated to the anterior margin of the head in some Cambrian arthropods. Here I present a perspective that views the trilobite hypostome as a fusion of the anterior sclerite and the labrum based on anatomical, topological, and developmental evidence. According to this perspective, the anterior lobe of the hypostome originated from the anterior sclerite, while the posterior lobe reflects a remnant of the sclerotized cover of the labrum. The convex anterior lobe housed the root of the eye stalks, represented by the palpebral ridges and the hypostomal wing, and the posterior lobe occasionally developed a pair of posterolateral extensions, as do the labra. The position of the antennal insertion was located in front of the posterior lobe, displaying a similar topology to the Cambrian arthropods with the labrum. The hypostome was present in many artiopodans except for the Conciliterga, in which the anterior sclerite was separate from the labrum.
Collapse
Affiliation(s)
- Tae-Yoon S Park
- Division of Earth Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea; Polar Science, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, 34113, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Dzik J. Protaspis larva of an aglaspidid-like arthropod from the Ordovician of Siberia and its habitat. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 61:101026. [PMID: 33508709 DOI: 10.1016/j.asd.2020.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
A fossil larva lacking segmentation of the calcified carapace, closely resembling the trilobite protaspis, has been found associated with other skeletal elements of an angarocaridid Girardevia species in the mid Darriwilian of central Siberia. The presence of protaspis larvae in the angarocaridids, generally believed to represent a branch of the Aglaspidida, supports their proximity to trilobites and proves a low position on the arthropod phylogenetic tree but does not necessarily contradict the chelicerate affinity. The cephalic appendages of angarocaridids bore massive gnathobases with detachable spines, closely similar to those known in extant xiphosurans and in their probable Cambrian relatives. The stratigraphic succession of the angarocaridids, their phosphatized cuticle pieces being abundant in the Ordovician strata of Siberia, shows a gradual improvement of mechanical resistance of their carapaces, eventually resulting in a honeycomb structure. The associated benthic mollusc assemblage is dominated with the bellerophontids showing high mortality at metamorphosis and only the limpet-like Pterotheca, infaunal bivalves, and scaphopods being able to survive this in a substantial number. This suggests a strong selective pressure from predators equipped with well-skeletonised oral apparatuses able to crush mineralized body covers of their prey. Possibly, these were some of the associated conodonts of appropriate size and co-evolving towards their ability to crush more and more resistant cuticle. Less likely candidates for durophagy are endoceratid or orthoceratid cephalopods. Also the angarocaridids themselves, equipped with robust gnathobases of cephalic appendages, apparently predated on benthic shelly animals.
Collapse
Affiliation(s)
- Jerzy Dzik
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland; Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre (CNBCh UW), University of Warsaw, Warszawa, 02-089 Żwirki i Wigury 101, Poland.
| |
Collapse
|
3
|
Bicknell RDC, Holmes JD, Edgecombe GD, Losso SR, Ortega-Hernández J, Wroe S, Paterson JR. Biomechanical analyses of Cambrian euarthropod limbs reveal their effectiveness in mastication and durophagy. Proc Biol Sci 2021; 288:20202075. [PMID: 33499790 DOI: 10.1098/rspb.2020.2075] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Durophagy arose in the Cambrian and greatly influenced the diversification of biomineralized defensive structures throughout the Phanerozoic. Spinose gnathobases on protopodites of Cambrian euarthropod limbs are considered key innovations for shell-crushing, yet few studies have demonstrated their effectiveness with biomechanical models. Here we present finite-element analysis models of two Cambrian trilobites with prominent gnathobases-Redlichia rex and Olenoides serratus-and compare these to the protopodites of the Cambrian euarthropod Sidneyia inexpectans and the modern American horseshoe crab, Limulus polyphemus. Results show that L. polyphemus, S. inexpectans and R. rex have broadly similar microstrain patterns, reflecting effective durophagous abilities. Conversely, low microstrain values across the O. serratus protopodite suggest that the elongate gnathobasic spines transferred minimal strain, implying that this species was less well-adapted to masticate hard prey. These results confirm that Cambrian euarthropods with transversely elongate protopodites bearing short, robust gnathobasic spines were likely durophages. Comparatively, taxa with shorter protopodites armed with long spines, such as O. serratus, were more likely restricted to a soft food diet. The prevalence of Cambrian gnathobase-bearing euarthropods and their various feeding specializations may have accelerated the development of complex trophic relationships within early animal ecosystems, especially the 'arms race' between predators and biomineralized prey.
Collapse
Affiliation(s)
- Russell D C Bicknell
- Palaeoscience Research Centre, School of Environmental & Rural Science University of New England, Armidale, NSW 2351, Australia.,Function, Evolution and Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - James D Holmes
- School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Sarah R Losso
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Stephen Wroe
- Palaeoscience Research Centre, School of Environmental & Rural Science University of New England, Armidale, NSW 2351, Australia.,Function, Evolution and Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - John R Paterson
- Palaeoscience Research Centre, School of Environmental & Rural Science University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
4
|
Abstract
Recent discoveries of fossil nervous tissue in Cambrian fossils have allowed researchers to trace the origin and evolution of the complex arthropod head and brain based on stem groups close to the origin of the clade, rather than on extant, highly derived members. Here we show that Kerygmachela from Sirius Passet, North Greenland, a primitive stem-group euarthropod, exhibits a diminutive (protocerebral) brain that innervates both the eyes and frontal appendages. It has been surmised, based on developmental evidence, that the ancestor of vertebrates and arthropods had a tripartite brain, which is refuted by the fossil evidence presented here. Furthermore, based on the discovery of eyes in Kerygmachela, we suggest that the complex compound eyes in arthropods evolved from simple ocelli, present in onychophorans and tardigrades, rather than through the incorporation of a set of modified limbs. The arthropod head is complex and its evolution has been difficult to reconstruct. Here, Park et al. describe new specimens of the Cambrian stem-group euarthropod Kerygmachela that preserve evidence of primitive compound eyes and a unipartite brain, providing insight into the structure of the early arthropod head.
Collapse
|
5
|
Aria C, Caron JB. Mandibulate convergence in an armoured Cambrian stem chelicerate. BMC Evol Biol 2017; 17:261. [PMID: 29262772 PMCID: PMC5738823 DOI: 10.1186/s12862-017-1088-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chelicerata represents a vast clade of mostly predatory arthropods united by a distinctive body plan throughout the Phanerozoic. Their origins, however, with respect to both their ancestral morphological features and their related ecologies, are still poorly understood. In particular, it remains unclear whether their major diagnostic characters were acquired early on, and their anatomical organization rapidly constrained, or if they emerged from a stem lineage encompassing an array of structural variations, based on a more labile "panchelicerate" body plan. RESULTS In this study, we reinvestigated the problematic middle Cambrian arthropod Habelia optata Walcott from the Burgess Shale, and found that it was a close relative of Sanctacaris uncata Briggs and Collins (in Habeliida, ord. nov.), both retrieved in our Bayesian phylogeny as stem chelicerates. Habelia possesses an exoskeleton covered in numerous spines and a bipartite telson as long as the rest of the body. Segments are arranged into three tagmata. The prosoma includes a reduced appendage possibly precursor to the chelicera, raptorial endopods connected to five pairs of outstandingly large and overlapping gnathobasic basipods, antennule-like exopods seemingly dissociated from the main limb axis, and, posteriorly, a pair of appendages morphologically similar to thoracic ones. While the head configuration of habeliidans anchors a seven-segmented prosoma as the chelicerate ground pattern, the peculiar size and arrangement of gnathobases and the presence of sensory/tactile appendages also point to an early convergence with the masticatory head of mandibulates. CONCLUSIONS Although habeliidans illustrate the early appearance of some diagnostic chelicerate features in the evolution of euarthropods, the unique convergence of their cephalons with mandibulate anatomies suggests that these traits retained an unusual variability in these taxa. The common involvement of strong gnathal appendages across non-megacheirans Cambrian taxa also illustrates that the specialization of the head as the dedicated food-processing tagma was critical to the emergence of both lineages of extant euarthropods-Chelicerata and Mandibulata-and implies that this diversification was facilitated by the expansion of durophagous niches.
Collapse
Affiliation(s)
- Cédric Aria
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S3B2, Canada.
- Present address: State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Jean-Bernard Caron
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S3B2, Canada
- Department of Natural History (Palaeobiology Section), Royal Ontario Museum, Toronto, ON, M5S2C6, Canada
- Department of Earth Sciences, University of Toronto, Toronto, ON, M5S3B1, Canada
| |
Collapse
|
6
|
Bicknell RDC, Paterson JR. Reappraising the early evidence of durophagy and drilling predation in the fossil record: implications for escalation and the Cambrian Explosion. Biol Rev Camb Philos Soc 2017; 93:754-784. [DOI: 10.1111/brv.12365] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Russell D. C. Bicknell
- Palaeoscience Research Centre, School of Environmental and Rural Science; University of New England; Armidale New South Wales 2351 Australia
| | - John R. Paterson
- Palaeoscience Research Centre, School of Environmental and Rural Science; University of New England; Armidale New South Wales 2351 Australia
| |
Collapse
|
7
|
Lerosey-Aubril R, Zhu X, Ortega-Hernández J. The Vicissicaudata revisited - insights from a new aglaspidid arthropod with caudal appendages from the Furongian of China. Sci Rep 2017; 7:11117. [PMID: 28894246 PMCID: PMC5593897 DOI: 10.1038/s41598-017-11610-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/25/2017] [Indexed: 11/09/2022] Open
Abstract
Cambrian marine ecosystems were dominated by arthropods, and more specifically artiopods. Aglaspidids represent an atypical group amongst them, not the least because they evolved and rapidly diversified during the late Cambrian, a time interval between the two diversification events of the Early Palaeozoic. Recent phylogenetic analyses have retrieved aglaspidids within the Vicissicaudata, a potentially important, but difficult to define clade of artiopods. Here we describe a new aglaspidid from the Furongian Guole Konservat-Lagerstätte of South China. This taxon displays a pretelsonic segment bearing non-walking appendages, features as-yet known in all vicissicaudatans, but aglaspidids. A new comprehensive phylogenetic analysis provides strong support for the legitimacy of a monophyletic clade Vicissicaudata, and demonstrates the pertinence of new characters to define Aglaspidida. It also motivates important changes to the systematics of the phylum, including the elevation of Artiopoda to the rank of subphylum, and the establishment of a new superclass Vicissicaudata and a new aglaspidid family Tremaglaspididae. Two diversification pulses can be recognized in the early history of artiopods - one in the early Cambrian (trilobitomorphs) and the other in the late Cambrian (vicissicaudatans). The discrepancy between this pattern and that traditionally depicted for marine invertebrates in the Early Palaeozoic is discussed.
Collapse
Affiliation(s)
- Rudy Lerosey-Aubril
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Xuejian Zhu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | | |
Collapse
|
8
|
Ortega-Hernández J, Janssen R, Budd GE. Origin and evolution of the panarthropod head - A palaeobiological and developmental perspective. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:354-379. [PMID: 27989966 DOI: 10.1016/j.asd.2016.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/15/2016] [Accepted: 10/25/2016] [Indexed: 05/14/2023]
Abstract
The panarthropod head represents a complex body region that has evolved through the integration and functional specialization of the anterior appendage-bearing segments. Advances in the developmental biology of diverse extant organisms have led to a substantial clarity regarding the relationships of segmental homology between Onychophora (velvet worms), Tardigrada (water bears), and Euarthropoda (e.g. arachnids, myriapods, crustaceans, hexapods). The improved understanding of the segmental organization in panarthropods offers a novel perspective for interpreting the ubiquitous Cambrian fossil record of these successful animals. A combined palaeobiological and developmental approach to the study of the panarthropod head through deep time leads us to propose a consensus hypothesis for the intricate evolutionary history of this important tagma. The contribution of exceptionally preserved brains in Cambrian fossils - together with the recognition of segmentally informative morphological characters - illuminate the polarity for major anatomical features. The euarthropod stem-lineage provides a detailed view of the step-wise acquisition of critical characters, including the origin of a multiappendicular head formed by the fusion of several segments, and the transformation of the ancestral protocerebral limb pair into the labrum, following the postero-ventral migration of the mouth opening. Stem-group onychophorans demonstrate an independent ventral migration of the mouth and development of a multisegmented head, as well as the differentiation of the deutocerebral limbs as expressed in extant representatives. The anterior organization of crown-group Tardigrada retains several ancestral features, such as an anterior-facing mouth and one-segmented head. The proposed model aims to clarify contentious issues on the evolution of the panarthropod head, and lays the foundation from which to further address this complex subject in the future.
Collapse
Affiliation(s)
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala SE-752 36, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala SE-752 36, Sweden
| |
Collapse
|
9
|
Dunlop JA, Lamsdell JC. Segmentation and tagmosis in Chelicerata. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:395-418. [PMID: 27240897 DOI: 10.1016/j.asd.2016.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 05/16/2023]
Abstract
Patterns of segmentation and tagmosis are reviewed for Chelicerata. Depending on the outgroup, chelicerate origins are either among taxa with an anterior tagma of six somites, or taxa in which the appendages of somite I became increasingly raptorial. All Chelicerata have appendage I as a chelate or clasp-knife chelicera. The basic trend has obviously been to consolidate food-gathering and walking limbs as a prosoma and respiratory appendages on the opisthosoma. However, the boundary of the prosoma is debatable in that some taxa have functionally incorporated somite VII and/or its appendages into the prosoma. Euchelicerata can be defined on having plate-like opisthosomal appendages, further modified within Arachnida. Total somite counts for Chelicerata range from a maximum of nineteen in groups like Scorpiones and the extinct Eurypterida down to seven in modern Pycnogonida. Mites may also show reduced somite counts, but reconstructing segmentation in these animals remains challenging. Several innovations relating to tagmosis or the appendages borne on particular somites are summarised here as putative apomorphies of individual higher taxa. We also present our observations within the concept of pseudotagma, whereby the true tagmata - the prosoma and opisthosoma - can be defined on a fundamental change in the limb series while pseudotagmata, such as the cephalosoma/proterosoma, are expressed as divisions in sclerites covering the body without an accompanying change in the appendages.
Collapse
Affiliation(s)
- Jason A Dunlop
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115 Berlin, Germany.
| | - James C Lamsdell
- American Museum of Natural History, Division of Paleontology, Central Park West at 79th St, New York, NY 10024, USA.
| |
Collapse
|
10
|
Ortega-Hernández J, Budd GE. The nature of non-appendicular anterior paired projections in Palaeozoic total-group Euarthropoda. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:185-199. [PMID: 26802876 DOI: 10.1016/j.asd.2016.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 05/14/2023]
Abstract
Recent studies have clarified the segmental organization of appendicular and exoskeletal structures in the anterior region of Cambrian stem-group Euarthropoda, and thus led to better understanding of the deep evolutionary origins of the head region in this successful animal group. However, there are aspects of the anterior organization of Palaeozoic euarthropods that remain problematic, such as the morphological identity and significance of minute limb-like projections on the anterior region in stem and crown-group representatives. Here, we draw attention to topological and morphological similarities between the frontal filaments of extant Crustacea and the embryonic frontal processes of Onychophora, and distinctive anterior paired projections observed in several extinct total-group Euarthropoda. Anterior paired projections are redescribed in temporally and phylogenetically distant fossil taxa, including the gilled lobopodians Kerygmachela kierkegaardi and Pambdelurion whittingtoni, the bivalved stem-euarthropod Canadaspis perfecta, the larval pycnogonid Cambropycnogon klausmuelleri, and the mandibulate Tanazios dokeron. Developmental data supporting the homology of the 'primary antennae' of Onychophora, the 'frontal appendages' of lower-stem Euarthropoda, and the hypostome/labrum complex of Deuteropoda, argue against the morphological identity of the anterior paired projections of extant and extinct panarthropods as a pair of pre-ocular appendages. Instead, we regard the paired projections of fossil total-group euarthropods as non-appendicular evaginations with a likely protocerebral segmental association, and a possible sensorial function. The widespread occurrence of pre-ocular paired projections among extant and extinct taxa suggests their potential homology as fundamentally ancestral features of the anterior body organization in Panarthropoda. Non-appendicular paired projections with a sensorial function may reflect a critical--yet previously overlooked--component of the panarthropod ground pattern.
Collapse
Affiliation(s)
- Javier Ortega-Hernández
- Department of Earth Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EQ, UK.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Norbyvägen 22, Uppsala SE 752 36, Sweden
| |
Collapse
|
11
|
Zacaï A, Vannier J, Lerosey-Aubril R. Reconstructing the diet of a 505-million-year-old arthropod: Sidneyia inexpectans from the Burgess Shale fauna. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:200-220. [PMID: 26410799 DOI: 10.1016/j.asd.2015.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/07/2015] [Accepted: 09/14/2015] [Indexed: 05/14/2023]
Abstract
The feeding ecology of the 505-million-year-old arthropod Sidneyia inexpectans from the middle Cambrian (Series 3, Stage 5) Burgess Shale fauna (British Columbia, Canada) is revealed by three lines of evidence: the structure of its digestive system, the fossilized contents of its gut and the functional anatomy of its appendages. The digestive tract of Sidneyia is straight, tubular and relatively narrow in the trunk region. It is enlarged into a pear-shaped area in the cephalic region and stretches notably to form a large pocket in the abdomen. The mouth is ventral, posteriorly directed and leads to the midgut via a short tubular structure interpreted as the oesophagus. Anteriorly, three pairs of glands with internal, branching tubular structures open into the digestive tract. These glands have equivalents in various Cambrian arthropod taxa (e.g. naraoiids) and modern arthropods. Their primary function was most likely to digest and assimilate food. The abdominal pocket of Sidneyia concentrates undigested skeletal elements and various residues. It is interpreted here as the functional analogue of the stercoral pocket of some extant terrestrial arachnids (e.g. Araneae, Solifugae), whose primary function is to store food residuals and excretory material until defecation. Analysis of the gut contents indicates that Sidneyia fed largely on small ptychopariid trilobites, brachiopods, possibly agnostids, worms and other undetermined animals. Sidneyia was primarily a durophagous carnivore with predatory and/or scavenging habits, feeding on small invertebrates that lived at the water-sediment interface. There is no evidence for selective feeding. Its food items (e.g. living prey or dead material) were grasped and manipulated ventrally by its anterior appendages, then macerated into ingestible fragments and conveyed to the mouth via the converging action of strong molar-like gnathobases. Digestion probably took place within the anterior midgut via enzymes secreted in the glands. Residues were transported through the digestive tract into the abdominal pocket. The storage of faeces suggests infrequent feeding. The early diagenetic three-dimensional preservation of the digestive glands and abdominal pocket may be due to the capacity of Sidneyia to store Phosphorus and Calcium (e.g. spherites) in its digestive tissues during life as do, for example, modern horseshoe crabs.
Collapse
Affiliation(s)
- Axelle Zacaï
- Université Claude Bernard Lyon 1, Laboratoire de géologie de Lyon: Terre, Planètes, Environnement, UMR 5276 du CNRS, Ecole Normale Supérieure de Lyon, Villeurbanne, France; Univ. Bourgogne Franche-Comté, Biogéosciences, UMR 6282 du CNRS, Dijon, France
| | - Jean Vannier
- Université Claude Bernard Lyon 1, Laboratoire de géologie de Lyon: Terre, Planètes, Environnement, UMR 5276 du CNRS, Ecole Normale Supérieure de Lyon, Villeurbanne, France.
| | - Rudy Lerosey-Aubril
- Université Claude Bernard Lyon 1, Laboratoire de géologie de Lyon: Terre, Planètes, Environnement, UMR 5276 du CNRS, Ecole Normale Supérieure de Lyon, Villeurbanne, France; University of New England, Division of Earth Sciences, School of Environmental and Rural Science, Armidale, New South Wales, Australia
| |
Collapse
|
12
|
Lamsdell JC, Briggs DEG, Liu HP, Witzke BJ, McKay RM. A new Ordovician arthropod from the Winneshiek Lagerstätte of Iowa (USA) reveals the ground plan of eurypterids and chasmataspidids. Naturwissenschaften 2015; 102:63. [DOI: 10.1007/s00114-015-1312-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 11/24/2022]
|
13
|
Lamsdell JC, Briggs DEG, Liu HP, Witzke BJ, McKay RM. The oldest described eurypterid: a giant Middle Ordovician (Darriwilian) megalograptid from the Winneshiek Lagerstätte of Iowa. BMC Evol Biol 2015; 15:169. [PMID: 26324341 PMCID: PMC4556007 DOI: 10.1186/s12862-015-0443-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/30/2015] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Eurypterids are a diverse group of chelicerates known from ~250 species with a sparse Ordovician record currently comprising 11 species; the oldest fully documented example is from the Sandbian of Avalonia. The Middle Ordovician (Darriwilian) fauna of the Winneshiek Lagerstätte includes a new eurypterid species represented by more than 150 specimens, including some juveniles, preserved as carbonaceous cuticular remains. This taxon represents the oldest described eurypterid, extending the documented range of the group back some 9 million years. RESULTS The new eurypterid species is described as Pentecopterus decorahensis gen. et sp. nov.. Phylogenetic analysis places Pentecopterus at the base of the Megalograptidae, united with the two genera previously assigned to this family by the shared possession of two or more pairs of spines per podomere on prosomal appendage IV, a reduction of all spines except the pair on the penultimate podomere of appendage V, and an ornamentation of guttalate scales, including angular scales along the posterior margin of the dorsal tergites and in longitudinal rows along the tergites. The morphology of Pentecopterus reveals that the Megalograptidae are representatives of the derived carcinosomatoid clade and not basal eurypterids as previously interpreted. CONCLUSIONS The relatively derived position of megalograptids within the eurypterids indicates that most eurypterid clades were present by the Middle Ordovician. Eurypterids either underwent an explosive radiation soon after their origination, or earlier representatives, perhaps Cambrian in age, remain to be discovered. The available instars of Pentecopterus decorahensis suggest that eurypterids underwent extreme appendage differentiation during development, a potentially unique condition among chelicerates. The high degree of appendage specialization in eurypterids is only matched by arachnids within chelicerates, supporting a sister taxon relationship between them.
Collapse
Affiliation(s)
- James C Lamsdell
- Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT, 06511, USA.
| | - Derek E G Briggs
- Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT, 06511, USA.
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, 06511, USA.
| | - Huaibao P Liu
- Iowa Geological Survey, IIHR-Hydroscience & Engineering, University of Iowa, 340 Trowbridge Hall, Iowa City, IA, 52242, USA.
| | - Brian J Witzke
- Department of Earth and Environmental Sciences, University of Iowa, 121 Trowbridge Hall, Iowa City, IA, 52242, USA.
| | - Robert M McKay
- Iowa Geological Survey, IIHR-Hydroscience & Engineering, University of Iowa, 340 Trowbridge Hall, Iowa City, IA, 52242, USA.
| |
Collapse
|
14
|
Aria C, Caron JB. Cephalic and limb anatomy of a new Isoxyid from the Burgess Shale and the role of "stem bivalved arthropods" in the disparity of the frontalmost appendage. PLoS One 2015; 10:e0124979. [PMID: 26038846 PMCID: PMC4454494 DOI: 10.1371/journal.pone.0124979] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/19/2015] [Indexed: 12/21/2022] Open
Abstract
We herein describe Surusicaris elegans gen. et sp. nov. (in Isoxyidae, amended), a middle (Series 3, Stage 5) Cambrian bivalved arthropod from the new Burgess Shale deposit of Marble Canyon (Kootenay National Park, British Columbia). Surusicaris exhibits 12 simple, partly undivided biramous trunk limbs with long tripartite caeca, which may illustrate a plesiomorphic "fused" condition of exopod and endopod. We construe also that the head is made of five somites (= four segments), including two eyes, one pair of anomalocaridid-like frontalmost appendages, and three pairs of poorly sclerotized uniramous limbs. This fossil may therefore be a candidate for illustrating the origin of the plesiomorphic head condition in euarthropods, and questions the significance of the "two-segmented head" in, e.g., fuxianhuiids. The frontalmost appendage in isoxyids is intriguingly disparate, bearing similarities with both dinocaridids and euarthropods. In order to evaluate the relative importance of bivalved arthropods, such as Surusicaris, in the hypothetical structuro-functional transition between the dinocaridid frontal appendage and the pre-oral-arguably deutocerebral-appendage of euarthropods, we chose a phenetic approach and computed morphospace occupancy for the frontalmost appendages of 36 stem and crown taxa. Results show different levels of evolutionary decoupling between frontalmost appendage disparity and body plans. Variance is greatest in dinocaridids and "stem bivalved" arthropods, but these groups do not occupy the morphospace homogeneously. Rather, the diversity of frontalmost appendages in "stem bivalved" arthropods, distinct in its absence of clear clustering, is found to link the morphologies of "short great appendages," chelicerae and antennules. This find fits the hypothesis of an increase in disparity of the deutocerebral appendage prior to its diversification in euarthropods, and possibly corresponds to its original time of development. The analysis of this pattern, however, is sensitive to the-still unclear-extent of polyphyly of the "stem bivalved" taxa.
Collapse
Affiliation(s)
- Cédric Aria
- University of Toronto, Department of Ecology and Evolutionary Biology, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
- Royal Ontario Museum, Department of Natural History-Palaeobiology, 100 Queen’s Park, Toronto, Ontario, M5S 2C6, Canada
| | - Jean-Bernard Caron
- University of Toronto, Department of Ecology and Evolutionary Biology, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
- Royal Ontario Museum, Department of Natural History-Palaeobiology, 100 Queen’s Park, Toronto, Ontario, M5S 2C6, Canada
- University of Toronto, Department of Earth Sciences, 22 Russell Street, Toronto, Ontario, M5S 3B1, Canada
| |
Collapse
|