1
|
Yang X, Aguado MT, Yang J, Bleidorn C. A burrowing annelid from the early Cambrian. Biol Lett 2024; 20:20240357. [PMID: 39378985 PMCID: PMC11461068 DOI: 10.1098/rsbl.2024.0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Soft-bodied fossils of annelids from the Cambrian are relatively rare but provide vital insights into the early evolution and diversification of annelids. Here we describe a new annelid, Xiaoshibachaeta biodiversa gen. et sp. nov., from the early Cambrian (Stage 3) Xiaoshiba biota of Kunming, Yunnan Provence, China. This worm is obliquely oriented in the sediment, and is characteristic of a cephalic cage-like structure formed by the anteriorly directed parapodia and long chaetae of chaetiger 1, strongly suggesting an endobenthic lifestyle. This first report of an annelid worm from the Xiaoshiba biota provides the earliest known plausible evidence of burrowing behaviour in Annelida. Phylogenetic analyses recover X. biodiversa in the polytomy with other crown-group Annelida, indicating that the evolution of cephalic cage in Annelida is most likely convergent.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming650500, People’s Republic of China
- Animal Evolution and Biodiversity, University of Göttingen, Göttingen37073, Germany
| | - M. Teresa Aguado
- Animal Evolution and Biodiversity, University of Göttingen, Göttingen37073, Germany
| | - Jie Yang
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming650500, People’s Republic of China
| | - Christoph Bleidorn
- Animal Evolution and Biodiversity, University of Göttingen, Göttingen37073, Germany
| |
Collapse
|
2
|
Yang X, Aguado MT, Helm C, Zhang Z, Bleidorn C. New fossil of Gaoloufangchaeta advances the origin of Errantia (Annelida) to the early Cambrian. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231580. [PMID: 38601033 PMCID: PMC11004674 DOI: 10.1098/rsos.231580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
Molecular clock estimates suggest the origin of Annelida dates back to the Ediacaran period, which is in discordance with the first appearance of this taxon in the early Cambrian, as evidenced by the fossil records of stem-group and basally branching crown-group annelids. Using new material from the early Cambrian Guanshan biota (Cambrian Series 2, Stage 4), we re-interpret Gaoloufangchaeta bifurcus Zhao, Li & Selden, 2023, as the earliest known errantian annelid. Gaoloufangchaeta has a prominent anterior end bearing three pairs of putatively sensory appendages and a pair of anterior eyes; a muscular eversible pharynx with papillae is identified. The presence of enlarged parapodia with acicula-like structures and long capillary chaetae suggests a pelagic lifestyle for this taxon. Our phylogenetic analyses recover Gaoloufangchaeta within the Phyllodocida (Pleistoannelida, Errantia), extending the origin of Errantia back to the early Cambrian. Our data are in line with the hypothesis that Annelida diverged before the Cambrian and indicate both morphological and ecological diversification of annelids in the early Cambrian.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming650500, People's Republic of China
- Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Göttingen37073, Germany
| | - M. Teresa Aguado
- Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Göttingen37073, Germany
| | - Conrad Helm
- Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Göttingen37073, Germany
| | - Zhiqian Zhang
- School of Fine Arts, Yunnan Normal University, Kunming650500, People's Republic of China
| | - Christoph Bleidorn
- Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Göttingen37073, Germany
| |
Collapse
|
3
|
Kimmig J, LaVine RJ, Schiffbauer JD, Egenhoff SO, Shelton KL, Leibach WW. Annelids from the Cambrian (Wuliuan Stage, Miaolingian) Spence Shale Lagerstätte of northern Utah, USA. HISTORICAL BIOLOGY 2023; 36:934-943. [PMID: 38800616 PMCID: PMC11114447 DOI: 10.1080/08912963.2023.2196685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/22/2023] [Indexed: 05/29/2024]
Abstract
The Spence Shale Member of the Langston Formation in northern Utah and southern Idaho preserves generally non-biomineralized fossil assemblages referred to as the Spence Shale Lagerstätte. The biota of this Lagerstätte is dominated by panarthropods, both biomineralized and soft-bodied examples, but also preserves diverse infaunal organisms, including species of scalidophorans, echinoderms, lobopodians, stalked filter feeders, and various problematic taxa. To date, however, only a single annelid fossil, originally assigned to Canadia sp., has been described from the Spence Shale. This lone specimen and another recently collected specimen were analyzed in this study using scanning electron microscopy and energy dispersive X-ray spectrometry. The previous occurrence is reassigned to Burgessochaeta cf. B. setigera Walcott, 1911. The new fossil, however, is identified as a novel polychaete taxon, Shaihuludia shurikeni gen. et sp. nov., characterized by the presence of fused, bladed chaetae and a wide body. The occurrence of Burgessochaeta is the first outside the Burgess Shale and its vicinity, whereas Shaihuludia shurikeni gen. et sp. nov. adds to the diversity of annelids in the middle Cambrian and highlights the diversity of the Spence Shale Lagerstätte.
Collapse
Affiliation(s)
- Julien Kimmig
- Abteilung Geowissenschaften, Staatliches Museum für Naturkunde Karlsruhe, Karlsruhe, 76133, Germany
- The Harold Hamm School of Geology & Geological Engineering, University of North Dakota, Grand Forks, ND 58202, USA
| | - Rhiannon J. LaVine
- Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045, USA
| | - James D. Schiffbauer
- Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA
- X-ray Microanalysis Laboratory, University of Missouri, Columbia, MO 65211, USA
| | - Sven O. Egenhoff
- The Harold Hamm School of Geology & Geological Engineering, University of North Dakota, Grand Forks, ND 58202, USA
| | - Kevin L. Shelton
- Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Wade W. Leibach
- Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA
- Jacobs Solutions, St. Louis, MO 63102, USA
| |
Collapse
|
4
|
Osawa H, Caron JB, Gaines RR. First record of growth patterns in a Cambrian annelid. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221400. [PMID: 37122950 PMCID: PMC10130728 DOI: 10.1098/rsos.221400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Early annelid evolution is mostly known from 13 described species from Cambrian Burgess Shale-type Lagerstätten. We introduce a new exceptionally well-preserved polychaete, Ursactis comosa gen. et sp. nov., from the Burgess Shale (Wuliuan Stage). This small species (3-15 mm) is the most abundant Cambrian polychaete known to date. Most specimens come from Tokumm Creek, a new Burgess Shale locality in northern Kootenay National Park, British Columbia, Canada. Ursactis has a pair of large palps, thin peristomial neurochaetae and biramous parapodia bearing similarly sized capillary neurochaetae and notochaetae, except for segments six to nine, which also have longer notochaetae. The number of segments in this polychaete range between 8 and 10 with larger individuals having 10 segments. This number of segments in Ursactis is remarkably small compared with other polychaetes, including modern forms. Specimens with 10 segments show significant size variations, and the length of each segment increases with the body length, indicating that body growth was primarily achieved by increasing the size of existing segments rather than adding new ones. This contrasts with most modern polychaetes, which typically have a larger number of segments through additions of segments throughout life. The inferred growth pattern in Ursactis suggests that annelids had evolved control over segment addition by the mid-Cambrian.
Collapse
Affiliation(s)
- Hatena Osawa
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, Canada M5S 2C6
| | - Jean-Bernard Caron
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, Canada M5S 2C6
- Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario, Canada M5S 3B1
| | - Robert R. Gaines
- Geology Department, Pomona College, 185 E Sixth Street, Claremont, CA 91711, USA
| |
Collapse
|
5
|
Zhang Z, Smith MR, Ren X. The Cambrian cirratuliform Iotuba denotes an early annelid radiation. Proc Biol Sci 2023; 290:20222014. [PMID: 36722078 PMCID: PMC9890102 DOI: 10.1098/rspb.2022.2014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The principal animal lineages (phyla) diverged in the Cambrian, but most diversity at lower taxonomic ranks arose more gradually over the subsequent 500 Myr. Annelid worms seem to exemplify this pattern, based on molecular analyses and the fossil record: Cambrian Burgess Shale-type deposits host a single, early-diverging crown-group annelid alongside a morphologically and taxonomically conservative stem group; the polychaete sub-classes diverge in the Ordovician; and many orders and families are first documented in Carboniferous Lagerstätten. Fifteen new fossils of the 'phoronid' Iotuba (=Eophoronis) chengjiangensis from the early Cambrian Chengjiang Lagerstätte challenge this picture. A chaetal cephalic cage surrounds a retractile head with branchial plates, affiliating Iotuba with the derived polychaete families 'Flabelligeridae' and Acrocirridae. Unless this similarity represents profound convergent evolution, this relationship would pull back the origin of the nested crown groups of Cirratuliformia, Sedentaria and Pleistoannelida by tens of millions of years-indicating a dramatic unseen origin of modern annelid diversity in the heat of the Cambrian 'explosion'.
Collapse
Affiliation(s)
- ZhiFei Zhang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments and Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| | - Martin R. Smith
- Department of Earth Sciences, Durham University, Mountjoy Site, South Road, Durham DH1 3LE, UK
| | - XinYi Ren
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments and Department of Geology, Northwest University, Xi'an 710069, People's Republic of China
| |
Collapse
|
6
|
A Cambrian crown annelid reconciles phylogenomics and the fossil record. Nature 2020; 583:249-252. [PMID: 32528177 DOI: 10.1038/s41586-020-2384-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/26/2020] [Indexed: 11/09/2022]
Abstract
The phylum of annelids is one of the most disparate animal phyla and encompasses ambush predators, suspension feeders and terrestrial earthworms1. The early evolution of annelids remains obscure or controversial2,3, partly owing to discordance between molecular phylogenies and fossils2,4. Annelid fossils from the Cambrian period have morphologies that indicate epibenthic lifestyles, whereas phylogenomics recovers sessile, infaunal and tubicolous taxa as an early diverging grade5. Magelonidae and Oweniidae (Palaeoannelida1) are the sister group of all other annelids but contrast with Cambrian taxa in both lifestyle and gross morphology2,6. Here we describe a new fossil polychaete (bristle worm) from the early Cambrian Canglangpu formation7 that we name Dannychaeta tucolus, which is preserved within delicate, dwelling tubes that were originally organic. The head has a well-defined spade-shaped prostomium with elongated ventrolateral palps. The body has a wide, stout thorax and elongated abdomen with biramous parapodia with parapodial lamellae. This character combination is shared with extant Magelonidae, and phylogenetic analyses recover Dannychaeta within Palaeoannelida. To our knowledge, Dannychaeta is the oldest polychaete that unambiguously belongs to crown annelids, providing a constraint on the tempo of annelid evolution and revealing unrecognized ecological and morphological diversity in ancient annelids.
Collapse
|
7
|
Han J, Conway Morris S, Hoyal Cuthill JF, Shu D. Sclerite-bearing annelids from the lower Cambrian of South China. Sci Rep 2019; 9:4955. [PMID: 30894583 PMCID: PMC6426949 DOI: 10.1038/s41598-019-40841-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 02/19/2019] [Indexed: 11/16/2022] Open
Abstract
Cambrian annelids are strikingly diverse and reveal important details of annelid character acquisition. Their contribution, however, to a wider understanding of the evolution of the trochozoans (encompassing the annelids as well as such groups as the brachiopods and molluscs) remains limited. Thus the early annelids had been linked to a variety of cataphract Cambrian metazoans, notably Wiwaxia and the halkieriids, but recent work assigns such fossils to stem-group molluscs. Here we report two new annelids from the Lower Cambrian Chengjiang Lagerstätte, South China. Ipoliknus avitus n. gen., n. sp. is biramous with neurochaetae and notochaetae, but significantly also bears dorsal spinose sclerites and dorso-lateral dentate sclerites. Adelochaeta sinensis n. gen., n. sp. is unique amongst Cambrian polychaetes in possessing the rod-like supports of the parapodia known as aciculae. This supports phylogenetic placement of Adelochaeta as sister to some more derived aciculate Palaeozoic taxa, but in contrast Ipoliknus is recovered as the most basal of the stem-group annelids. Sclerites and chaetae of I. avitus are interpreted respectively as the remnants and derivatives of a once more extensive cataphract covering that was a characteristic of more primitive trochozoans. The two sets of chaetae (noto- and neurochaetae) and two sets of sclerites (spinose and dentate) suggest that in a pre-annelid an earlier and more complete scleritome may have consisted of four zones of sclerites. Other cataphract taxa from the Lower Palaeozoic show a variety of scleritome configurations but establishing direct links with such basal annelids as Ipoliknus at present must remain conjectural.
Collapse
Affiliation(s)
- Jian Han
- Shaanxi Key Laboratory of Early Life and Environment, State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, 229 Taibai Road, Xi'an, 710069, P.R. China
| | - Simon Conway Morris
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK.
| | - Jennifer F Hoyal Cuthill
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK.,Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Degan Shu
- Shaanxi Key Laboratory of Early Life and Environment, State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, 229 Taibai Road, Xi'an, 710069, P.R. China.
| |
Collapse
|
8
|
Costa-Paiva EM, Whelan NV, Waits DS, Santos SR, Schrago CG, Halanych KM. Discovery and evolution of novel hemerythrin genes in annelid worms. BMC Evol Biol 2017; 17:85. [PMID: 28330441 PMCID: PMC5363010 DOI: 10.1186/s12862-017-0933-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/10/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite extensive study on hemoglobins and hemocyanins, little is known about hemerythrin (Hr) evolutionary history. Four subgroups of Hrs have been documented, including: circulating Hr (cHr), myohemerythrin (myoHr), ovohemerythrin (ovoHr), and neurohemerythrin (nHr). Annelids have the greatest diversity of oxygen carrying proteins among animals and are the only phylum in which all Hr subgroups have been documented. To examine Hr diversity in annelids and to further understand evolution of Hrs, we employed approaches to survey annelid transcriptomes in silico. RESULTS Sequences of 214 putative Hr genes were identified from 44 annelid species in 40 different families and Bayesian inference revealed two major clades with strong statistical support. Notably, the topology of the Hr gene tree did not mirror the phylogeny of Annelida as presently understood, and we found evidence of extensive Hr gene duplication and loss in annelids. Gene tree topology supported monophyly of cHrs and a myoHr clade that included nHrs sequences, indicating these designations are functional rather than evolutionary. CONCLUSIONS The presence of several cHrs in early branching taxa suggests that a variety of Hrs were present in the common ancestor of extant annelids. Although our analysis was limited to expressed-coding regions, our findings demonstrate a greater diversity of Hrs among annelids than previously reported.
Collapse
Affiliation(s)
- Elisa M Costa-Paiva
- Departamento de Genética, Laboratório de Biologia Evolutiva Teórica e Aplicada, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Department of Biological Sciences, Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL, 36849, USA
| | - Nathan V Whelan
- Department of Biological Sciences, Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL, 36849, USA.,Warm Springs Fish Technology Center, U.S. Fish and Wildlife Service, 5308 Spring ST, Warm Springs, GA, 31830, USA
| | - Damien S Waits
- Department of Biological Sciences, Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL, 36849, USA
| | - Scott R Santos
- Department of Biological Sciences, Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL, 36849, USA
| | - Carlos G Schrago
- Departamento de Genética, Laboratório de Biologia Evolutiva Teórica e Aplicada, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Kenneth M Halanych
- Department of Biological Sciences, Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
9
|
Earth's oldest 'Bobbit worm' - gigantism in a Devonian eunicidan polychaete. Sci Rep 2017; 7:43061. [PMID: 28220886 PMCID: PMC5318920 DOI: 10.1038/srep43061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/17/2017] [Indexed: 11/08/2022] Open
Abstract
Whilst the fossil record of polychaete worms extends to the early Cambrian, much data on this group derive from microfossils known as scolecodonts. These are sclerotized jaw elements, which generally range from 0.1-2 mm in size, and which, in contrast to the soft-body anatomy, have good preservation potential and a continuous fossil record. Here we describe a new eunicidan polychaete, Websteroprion armstrongi gen. et sp. nov., based primarily on monospecific bedding plane assemblages from the Lower-Middle Devonian Kwataboahegan Formation of Ontario, Canada. The specimens are preserved mainly as three-dimensional moulds in the calcareous host rock, with only parts of the original sclerotized jaw walls occasionally present. This new taxon has a unique morphology and is characterized by an unexpected combination of features seen in several different Palaeozoic polychaete families. Websteroprion armstrongi was a raptorial feeder and possessed the largest jaws recorded in polychaetes from the fossil record, with maxillae reaching over one centimetre in length. Total body length of the species is estimated to have reached over one metre, which is comparable to that of extant 'giant eunicid' species colloquially referred to as 'Bobbit worms'. This demonstrates that polychaete gigantism was already a phenomenon in the Palaeozoic, some 400 million years ago.
Collapse
|
10
|
Parry LA, Edgecombe GD, Eibye-Jacobsen D, Vinther J. The impact of fossil data on annelid phylogeny inferred from discrete morphological characters. Proc Biol Sci 2016; 283:20161378. [PMID: 27581880 PMCID: PMC5013799 DOI: 10.1098/rspb.2016.1378] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/08/2016] [Indexed: 12/30/2022] Open
Abstract
As a result of their plastic body plan, the relationships of the annelid worms and even the taxonomic makeup of the phylum have long been contentious. Morphological cladistic analyses have typically recovered a monophyletic Polychaeta, with the simple-bodied forms assigned to an early-diverging clade or grade. This is in stark contrast to molecular trees, in which polychaetes are paraphyletic and include clitellates, echiurans and sipunculans. Cambrian stem group annelid body fossils are complex-bodied polychaetes that possess well-developed parapodia and paired head appendages (palps), suggesting that the root of annelids is misplaced in morphological trees. We present a reinvestigation of the morphology of key fossil taxa and include them in a comprehensive phylogenetic analysis of annelids. Analyses using probabilistic methods and both equal- and implied-weights parsimony recover paraphyletic polychaetes and support the conclusion that echiurans and clitellates are derived polychaetes. Morphological trees including fossils depict two main clades of crown-group annelids that are similar, but not identical, to Errantia and Sedentaria, the fundamental groupings in transcriptomic analyses. Removing fossils yields trees that are often less resolved and/or root the tree in greater conflict with molecular topologies. While there are many topological similarities between the analyses herein and recent phylogenomic hypotheses, differences include the exclusion of Sipuncula from Annelida and the taxa forming the deepest crown-group divergences.
Collapse
Affiliation(s)
- Luke A Parry
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TH, UK
| | - Gregory D Edgecombe
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Danny Eibye-Jacobsen
- Zoological Museum, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Vinther
- University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TH, UK
| |
Collapse
|
11
|
Parry L, Vinther J, Edgecombe GD. Cambrian stem-group annelids and a metameric origin of the annelid head. Biol Lett 2015; 11:20150763. [PMID: 26445984 PMCID: PMC4650189 DOI: 10.1098/rsbl.2015.0763] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/17/2015] [Indexed: 11/30/2022] Open
Abstract
The oldest fossil annelids come from the Early Cambrian Sirius Passet and Guanshan biotas and Middle Cambrian Burgess Shale. While these are among the best preserved polychaete fossils, their relationship to living taxa is contentious, having been interpreted either as members of extant clades or as a grade outside the crown group. New morphological observations from five Cambrian species include the oldest polychaete with head appendages, a new specimen of Pygocirrus from Sirius Passet, and an undescribed form from the Burgess Shale. We propose that the palps of Canadia are on an anterior segment bearing neuropodia and that the head of Phragmochaeta is formed of a segment bearing biramous parapodia and chaetae. The unusual anatomy of these taxa suggests that the head is not differentiated into a prostomium and peristomium, that palps are derived from a modified parapodium and that the annelid head was originally a parapodium-bearing segment. Canadia, Phragmochaeta and the Marble Canyon annelid share the presence of protective notochaetae, interpreted as a primitive character state subsequently lost in Pygocirrus and Burgessochaeta, in which the head is clearly differentiated from the trunk.
Collapse
Affiliation(s)
- Luke Parry
- Bristol Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TH, UK Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Jakob Vinther
- Bristol Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TH, UK
| | - Gregory D Edgecombe
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|