1
|
Ambient Climate Influences Anti-Adhesion between Biomimetic Structured Foil and Nanofibers. NANOMATERIALS 2021; 11:nano11123222. [PMID: 34947571 PMCID: PMC8707556 DOI: 10.3390/nano11123222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/24/2021] [Indexed: 01/16/2023]
Abstract
Due to their uniquely high surface-to-volume ratio, nanofibers are a desired material for various technical applications. However, this surface-to-volume ratio also makes processing difficult as van der Waals forces cause nanofibers to adhere to virtually any surface. The cribellate spider Uloborus plumipes represents a biomimetic paragon for this problem: these spiders integrate thousands of nanofibers into their adhesive capture threads. A comb on their hindmost legs, termed calamistrum, enables the spiders to process the nanofibers without adhering to them. This anti-adhesion is due to a rippled nanotopography on the calamistrum. Via laser-induced periodic surface structures (LIPSS), these nanostructures can be recreated on artificial surfaces, mimicking the non-stickiness of the calamistrum. In order to advance the technical implementation of these biomimetic structured foils, we investigated how climatic conditions influence the anti-adhesive performance of our surfaces. Although anti-adhesion worked well at low and high humidity, technical implementations should nevertheless be air-conditioned to regulate temperature: we observed no pronounced anti-adhesive effect at temperatures above 30 °C. This alteration between anti-adhesion and adhesion could be deployed as a temperature-sensitive switch, allowing to swap between sticking and not sticking to nanofibers. This would make handling even easier.
Collapse
|
2
|
Knapczyk-Korczak J, Stachewicz U. Biomimicking spider webs for effective fog water harvesting with electrospun polymer fibers. NANOSCALE 2021; 13:16034-16051. [PMID: 34581383 DOI: 10.1039/d1nr05111c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fog is an underestimated source of water, especially in regions where conventional methods of water harvesting are impossible, ineffective, or challenging for low-cost water resources. Interestingly, many novel methods and developments for effective water harvesting are inspired by nature. Therefore, in this review, we focused on one of the most researched and developing forms of electrospun polymer fibers, which successfully imitate many fascinating natural materials for instance spider webs. We showed how fiber morphology and wetting properties can increase the fog collection rate, and also observed the influence of fog water collection parameters on testing their efficiency. This review summarizes the current state of the art on water collection by fibrous meshes and offers suggestions for the testing of new designs under laboratory conditions by classifying the parameters already reported in experimental set-ups. This is extremely important, as fog collection under laboratory conditions is the first step toward creating a new water harvesting technology. This review summarizes all the approaches taken so far to develop the most effective water collection systems based on electrospun polymer fibers.
Collapse
Affiliation(s)
- Joanna Knapczyk-Korczak
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Urszula Stachewicz
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Kraków, Poland.
| |
Collapse
|
3
|
Piorkowski D, Liao CP, Joel AC, Wu CL, Doran N, Blamires SJ, Pugno NM, Tso IM. Adhesion of spider cribellate silk enhanced in high humidity by mechanical plasticization of the underlying fiber. J Mech Behav Biomed Mater 2020; 114:104200. [PMID: 33214109 DOI: 10.1016/j.jmbbm.2020.104200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022]
Abstract
The disruptive nature of water presents a significant challenge when designing synthetic adhesives that maintain functionality in wet conditions. However, many animal adhesives can withstand high humidity or underwater conditions, and some are even enhanced by them. An understudied mechanism in such systems is the influence of material plasticization by water to induce adhesive work through deformation. Cribellate silk is a dry adhesive used by particular spiders to capture moving prey. It presents as a candidate for testing the water plasticization model as it can remain functional at high humidity despite lacking an aqueous component. We performed herein tensile and adhesion tests on cribellate threads from the spider, Hickmania troglodytes; a spider that lives within wet cave environments. We found that the work of adhesion of its cribellate threads increased as the axial fibre deformed during pull-off experiments. This effect was enhanced when the silk was wetted and as spider body size increased. Dry threads on the other hand were stiff with low adhesion. We rationalized our experiments by a series of scaling law models. We concluded that these cribellate threads operate best when the nanofibrils and axial fibers both contribute to adhesion. Design of future synthetic materials could draw inspiration from how water facilitates, rather than diminishes, cribellate silk adhesion.
Collapse
Affiliation(s)
- Dakota Piorkowski
- Department of Life Science, Tunghai University, Taichung, 40704, Taiwan
| | - Chen-Pan Liao
- Department of Life Science, Tunghai University, Taichung, 40704, Taiwan; Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Anna-Christin Joel
- Department of Biological Sciences, Macquarie University, Sydney, Australia; Institute of Biology II, RWTH Aachen University, Aachen, Germany
| | - Chung-Lin Wu
- Center for Measurement Standards, Industrial Technology Research Institute, Hsinchu, Taiwan
| | | | - Sean J Blamires
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Nicola M Pugno
- Laboratory of Bio-Inspired Bionic, Nano Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, I-38123, Trento, Italy; School of Engineering and Materials Science, Queen Mary University, Mile End Rd, London, E1 4NS, UK
| | - I-Min Tso
- Department of Life Science, Tunghai University, Taichung, 40704, Taiwan; Center for Tropical Ecology and Biodiversity, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
4
|
Fang W, Mok J, Kesari H. Effects of geometric nonlinearity in an adhered microbeam for measuring the work of adhesion. Proc Math Phys Eng Sci 2018; 474:20170594. [PMID: 29662338 DOI: 10.1098/rspa.2017.0594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/05/2018] [Indexed: 11/12/2022] Open
Abstract
Design against adhesion in microelectromechanical devices is predicated on the ability to quantify this phenomenon in microsystems. Previous research related the work of adhesion for an adhered microbeam to the beam's unadhered length, and as such, interferometric techniques were developed to measure that length. We propose a new vibration-based technique that can be easily implemented with existing atomic force microscopy tools or similar metrology systems. To make such a technique feasible, we analysed a model of the adhered microbeam using the nonlinear beam theory put forth by Woinowsky-Krieger. We found a new relation between the work of adhesion and the unadhered length; this relation is more accurate than the one by Mastrangelo & Hsu (Mastrangelo & Hsu 1993 J. Microelectromech. S., 2, 44-55. (doi:10.1109/84.232594)) which is commonly used. Then, we derived a closed-form approximate relationship between the microbeam's natural frequency and its unadhered length. Results obtained from this analytical formulation are in good agreement with numerical results from three-dimensional nonlinear finite-element analysis.
Collapse
Affiliation(s)
- Wenqiang Fang
- Solid Mechanics, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Joyce Mok
- Solid Mechanics, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Haneesh Kesari
- Solid Mechanics, School of Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
5
|
Sparkes J, Holland C. The rheological properties of native sericin. Acta Biomater 2018; 69:234-242. [PMID: 29408618 DOI: 10.1016/j.actbio.2018.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/13/2017] [Accepted: 01/16/2018] [Indexed: 11/29/2022]
Abstract
Unlike spider silk, spinning silkworm silk has the added intricacy of being both fibre and micron-thick glue-like coating. Whilst the natural flow properties of the fibre feedstock fibroin are now becoming more established, our understanding of the coating sericin is extremely limited and thus presents both a gap in our knowledge and a hindrance to successful exploitation of these materials. In this study we characterise sericin feedstock from the silkworm Bombyx mori in its native state and by employing both biochemical, rheological and spectroscopic tools, define a natural gold standard. Our results demonstrate that native sericin behaves as a viscoelastic shear thinning fluid, but that it does so at a considerably lower viscosity than its partner fibroin, and that its upper critical shear rate (onset of gelation) lies above that of fibroin. Together these findings provide the first evidence that in addition to acting as a binder in the construction of the cocoon, sericin is capable of lubricating the flow of fibroin within the silk gland, which has implications for future processing, modelling and biomimetic use of these materials. STATEMENT OF SIGNIFICANCE This study addresses one of the major gaps in our knowledge regarding natural silk spinning by providing rigorous rheological characterisation of the other major protein involved - sericin. This allows progress in silk flow modelling, biomimetic system design, and in assessing the quality of bioinspired and waste sericin materials by providing a better understanding of the native, undegraded system.
Collapse
Affiliation(s)
- James Sparkes
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S. Yorks S1 3JD, UK
| | - Chris Holland
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S. Yorks S1 3JD, UK.
| |
Collapse
|
6
|
Bott RA, Baumgartner W, Bräunig P, Menzel F, Joel AC. Adhesion enhancement of cribellate capture threads by epicuticular waxes of the insect prey sheds new light on spider web evolution. Proc Biol Sci 2017; 284:rspb.2017.0363. [PMID: 28566485 DOI: 10.1098/rspb.2017.0363] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/04/2017] [Indexed: 11/12/2022] Open
Abstract
To survive, web-building spiders rely on their capture threads to restrain prey. Many species use special adhesives for this task, and again the majority of those species cover their threads with viscoelastic glue droplets. Cribellate spiders, by contrast, use a wool of nanofibres as adhesive. Previous studies hypothesized that prey is restrained by van der Waals' forces and entrapment in the nanofibres. A large discrepancy when comparing the adhesive force on artificial surfaces versus prey implied that the real mechanism was still elusive. We observed that insect prey's epicuticular waxes infiltrate the wool of nanofibres, probably induced by capillary forces. The fibre-reinforced composite thus formed led to an adhesion between prey and thread eight times stronger than that between thread and wax-free surfaces. Thus, cribellate spiders employ the originally protective coating of their insect prey as a fatal component of their adhesive and the insect promotes its own capture. We suggest an evolutionary arms race with prey changing the properties of their cuticular waxes to escape the cribellate capture threads that eventually favoured spider threads with viscous glue.
Collapse
Affiliation(s)
- Raya A Bott
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, Aachen, Germany
| | - Werner Baumgartner
- Institute of Biomedical Mechatronics, JKU Linz, Altenberger Straße 69, Linz, Austria
| | - Peter Bräunig
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, Aachen, Germany
| | - Florian Menzel
- Institute of Zoology, University of Mainz, Johannes-von-Müller-Weg 6, Mainz, Germany
| | - Anna-Christin Joel
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, Aachen, Germany
| |
Collapse
|
7
|
Piorkowski D, Blackledge TA. Punctuated evolution of viscid silk in spider orb webs supported by mechanical behavior of wet cribellate silk. Naturwissenschaften 2017; 104:67. [DOI: 10.1007/s00114-017-1489-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/01/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023]
|
8
|
Joel AC, Baumgartner W. Nanofibre production in spiders without electric charge. J Exp Biol 2017; 220:2243-2249. [DOI: 10.1242/jeb.157594] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/03/2017] [Indexed: 01/27/2023]
Abstract
Technical nanofibre production is linked to high voltage, because they are typically produced by electrospinning. Spiders on the contrary have evolved a way to produce nanofibres without high voltage. These spiders are called cribellate spiders and produce nanofibres within their capture thread production. It is suggested that their nanofibres are frictionally charged when being brushed over a continuous area on the calamistrum, a comb-like structure at the metatarsus of the fourth leg. Although there are indications that electrostatic charges are involved in the formation of the threads structure, final proof is missing. We proposed three claims to validate this hypothesis: 1. The removal of any charge during or after thread production has an influence on the structure of the thread, 2. The characteristic structure of the thread can be regenerated by charging, and 3. The thread is attracted to, respectively repelled from differently charged objects. None of these three claims were proven true. Furthermore, mathematical calculations reveal that even at low charges, the calculated structural assembly of the thread does not match the observed reality. Electrostatic forces are therefore not involved in the production of cribellate capture threads.
Collapse
Affiliation(s)
- Anna-Christin Joel
- RWTH Aachen University, Institute of Biology II, Worringerweg 3, Germany
| | - Werner Baumgartner
- JKU Linz, Institute of Biomedical Mechatronics, Altenberger Straße 69, Austria
| |
Collapse
|