1
|
Fernández-Rodríguez I, Barroso FM, Carretero MA. An integrative analysis of the short-term effects of tail autotomy on thermoregulation and dehydration rates in wall lizards. J Therm Biol 2021; 99:102976. [PMID: 34420620 DOI: 10.1016/j.jtherbio.2021.102976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 11/26/2022]
Abstract
Maintaining body temperature is essential for the optimal performance of physiological functions. Ectotherms depend on external heat sources to thermoregulate. However, thermoregulation may be constrained by body condition and hydration state. Autotomy (i.e., the voluntary shed of a body part) evolved in various animal lineages and allowed surviving certain events (such as predator attacks), but it may affect body condition and volume/surface ratios, increase dehydration and constrain thermoregulation. In the framework of a general analysis of the evolution of autotomy, here we assessed the effects of tail loss on the thermal preferences and evaporative water loss rates (EWL) in the lizard Podarcis bocagei, integrating the thermal and hydric factors. We did not observe shifts in the thermal preferences of experimentally autotomized lizards when compared to the controls, which contradicted the hypothesis that they would raise preferred temperature to increase metabolic rates and accelerate regeneration. Evaporative water loss rates were also similar for tailed and tailless individuals, suggesting negligible increase of water loss through the injury and no specific ecophysiological responses after autotomy. Therefore, the changes observed in autotomized lizards in the field are to be considered primarily behavioural, rather than physiological, and thermoregulation could be secondarily affected by behavioural compensations for an increased predation risk after autotomy. Functional studies are necessary to understand how lizards' interaction with the environment is altered after autotomy, and further studies including different dehydration levels would be useful to fully understand the effect of water shortage on lizards' performance after caudal autotomy.
Collapse
Affiliation(s)
- Irene Fernández-Rodríguez
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, nº7, Vairão, 4485-661, Vila do Conde, Portugal; Department of Organisms and Systems Biology (Zoology), University of Oviedo, Oviedo, 33071, Spain; Research Unit of Biodiversity (UMIB, UO/CSIC/PA), University of Oviedo, Mieres, Spain.
| | - Frederico M Barroso
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, nº7, Vairão, 4485-661, Vila do Conde, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre, s/n, 4169 - 007, Porto, Portugal
| | - Miguel A Carretero
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, nº7, Vairão, 4485-661, Vila do Conde, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre, s/n, 4169 - 007, Porto, Portugal
| |
Collapse
|
2
|
Sagonas K, Deimezis-Tsikoutas A, Reppa A, Domenikou I, Papafoti M, Synevrioti K, Polydouri I, Voutsela A, Bletsa A, Karambotsi N, Pafilis P, Valakos ED. Tail regeneration alters the digestive performance of lizards. J Evol Biol 2021; 34:671-679. [PMID: 33539579 DOI: 10.1111/jeb.13769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 11/28/2022]
Abstract
Tissue regeneration is a fundamental evolutionary adaptation, which is well known in lizards that can regenerate their entire tail. However, numerous parameters of this process remain poorly understood. Lizard tail serves many functions. Thus, tail autotomy comes with many disadvantages and the need for quick regeneration is imperative. To provide the required energy and materials for caudal tissue building, lizards are expected to undergo a number of physiological and biochemical adjustments. Previous research showed that tail regeneration induces changes in the digestive process. Here, we investigated if and how tail regeneration affects the digestive performance in five wall lizard species deriving from mainland and island sites and questioned whether the association of tail regeneration and digestion is affected by species relationships or environmental features, including predation pressure. We expected that lizards from high predation environments would regenerate their tail faster and modify accordingly their digestive efficiency, prioritizing the digestion of proteins; the main building blocks for tissue repair. Second, we anticipated that the general food shortage on islands would inhibit the process. Our findings showed that all species shifted their digestive efficiency, as predicted. Elongation rate was higher in sites with stronger predation regime and this was also applied to the rate with which protein digestion raised. Gut passage time increases during regeneration so as to improve the nutrient absorbance, but among the islanders, the pace was more intense. The deviations between species should be attributed to the different ecological conditions prevailing on islands rather than to their phylogenetic relationships.
Collapse
Affiliation(s)
- Kostas Sagonas
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.,Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Aris Deimezis-Tsikoutas
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Reppa
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Iro Domenikou
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Mirto Papafoti
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Synevrioti
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Polydouri
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Anneta Voutsela
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Aristoula Bletsa
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Niki Karambotsi
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panayiotis Pafilis
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece.,Zoological Museum, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios D Valakos
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece.,Zoological Museum, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Emberts Z, Escalante I, Bateman PW. The ecology and evolution of autotomy. Biol Rev Camb Philos Soc 2019; 94:1881-1896. [PMID: 31240822 DOI: 10.1111/brv.12539] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 01/29/2023]
Abstract
Autotomy, the self-induced loss of a body part, occurs throughout Animalia. A lizard dropping its tail to escape predation is an iconic example, however, autotomy occurs in a diversity of other organisms. Octopuses can release their arms, crabs can drop their claws, and bugs can amputate their legs. The diversity of organisms that can autotomize body parts has led to a wealth of research and several taxonomically focused reviews. These reviews have played a crucial role in advancing our understanding of autotomy within their respective groups. However, because of their taxonomic focus, these reviews are constrained in their ability to enhance our understanding of autotomy. Here, we aim to synthesize research on the ecology and evolution of autotomy throughout Animalia, building a unified framework on which future studies can expand. We found that the ability to drop an appendage has evolved multiple times throughout Animalia and that once autotomy has evolved, selection appears to act on the removable appendage to increase the efficacy and/or efficiency of autotomy. This could explain why some autotomizable body parts are so elaborate (e.g. brightly coloured). We also show that there are multiple benefits, and variable costs, associated with autotomy. Given this variation, we generate an economic theory of autotomy (modified from the economic theory of escape) which makes predictions about when an individual should resort to autotomy. Finally, we show that the loss of an autotomizable appendage can have numerous consequences on population and community dynamics. By taking this broad taxonomic approach, we identified patterns of autotomy that transcend specific lineages and highlight clear directions for future research.
Collapse
Affiliation(s)
- Zachary Emberts
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL, 32611, USA
| | - Ignacio Escalante
- Department of Environmental Sciences, Policy, & Management, University of California, 140 Mulford Hall, Berkeley, CA, 94720, USA
| | - Philip W Bateman
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia
| |
Collapse
|
4
|
Humphreys RK, Ruxton GD. What is known and what is not yet known about deflection of the point of a predator’s attack. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/blx164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rosalind K Humphreys
- School of Biology, University of St Andrews, Dyer’s Brae House, St Andrews, Fife, UK
| | - Graeme D Ruxton
- School of Biology, University of St Andrews, Dyer’s Brae House, St Andrews, Fife, UK
| |
Collapse
|