1
|
Griffin BW, Martin-Silverstone E, Pêgas RV, Meilak EA, Costa FR, Palmer C, Rayfield EJ. Modelling take-off moment arms in an ornithocheiraean pterosaur. PeerJ 2024; 12:e17678. [PMID: 39119105 PMCID: PMC11308997 DOI: 10.7717/peerj.17678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Take-off is a vital part of powered flight which likely constrains the size of birds, yet extinct pterosaurs are known to have reached far larger sizes. Three different hypothesised take-off motions (bipedal burst launching, bipedal countermotion launching, and quadrupedal launching) have been proposed as explanations for how pterosaurs became airborne and circumvented this proposed morphological limit. We have constructed a computational musculoskeletal model of a 5 m wingspan ornithocheiraean pterosaur, reconstructing thirty-four key muscles to estimate the muscle moment arms throughout the three hypothesised take-off motions. Range of motion constrained hypothetical kinematic sequences for bipedal and quadrupedal take-off motions were modelled after extant flying vertebrates. Across our simulations we did not find higher hindlimb moment arms for bipedal take-off motions or noticeably higher forelimb moment arms in the forelimb for quadrupedal take-off motions. Despite this, in all our models we found the muscles utilised in the quadrupedal take-off have the largest total launch applicable moment arms throughout the entire take-off sequences and for the take-off pose. This indicates the potential availability of higher leverage for a quadrupedal take-off than hypothesised bipedal motions in pterosaurs pending further examination of muscle forces.
Collapse
Affiliation(s)
- Benjamin W. Griffin
- Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Rodrigo V. Pêgas
- Laboratory of Vertebrate Paleontology and Animal Behavior. Federal University of ABC, Alameda da Universidade, São Bernardo do Campo, SP, Brazil
| | - Erik Anthony Meilak
- School of Pharmacy and Bioengineering, University of Keele, Keele, United Kingdom
| | - Fabiana R. Costa
- Laboratory of Vertebrate Paleontology and Animal Behavior. Federal University of ABC, Alameda da Universidade, São Bernardo do Campo, SP, Brazil
| | - Colin Palmer
- Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Emily J. Rayfield
- Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Abourachid A, Chevallereau C, Pelletan I, Wenger P. An upright life, the postural stability of birds: a tensegrity system. J R Soc Interface 2023; 20:20230433. [PMID: 37963555 PMCID: PMC10645509 DOI: 10.1098/rsif.2023.0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Birds are so stable that they can rest and even sleep standing up. We propose that stable static balance is achieved by tensegrity. The rigid bones can be held together by tension in the tendons, allowing the system to stabilize under the action of gravity. We used the proportions of the bird's osteomuscular system to create a mathematical model. First, the extensor muscles and tendons of the leg are replaced by a single cable that follows the leg and is guided by joint pulleys. Analysis of the model shows that it can achieve balance. However, it does not match the biomechanical characteristics of the bird's body and is not stable. We then replaced the single cable with four cables, roughly corresponding to the extensor groups, and added a ligament loop at the knee. The model is then able to reach a stable equilibrium and the biomechanical characteristics are satisfied. Some of the anatomical features used in our model correspond to innovations unique to the avian lineage. We propose that tensegrity, which allows light and stable mechanical systems, is fundamental to the evolution of the avian body plan. It can also be used as an alternative model for bipedal robots.
Collapse
Affiliation(s)
- Anick Abourachid
- Muséum National d'Histoire Naturelle CNRS, Mecadev, 57 rue Cuvier, 75231 Paris Cedex 05, France
| | | | - Idriss Pelletan
- Muséum National d'Histoire Naturelle CNRS, Mecadev, 57 rue Cuvier, 75231 Paris Cedex 05, France
| | - Philippe Wenger
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, 44000 Nantes, France
| |
Collapse
|
3
|
Uesaka L, Goto Y, Naruoka M, Weimerskirch H, Sato K, Sakamoto KQ. Wandering albatrosses exert high take-off effort only when both wind and waves are gentle. eLife 2023; 12:RP87016. [PMID: 37814539 PMCID: PMC10564450 DOI: 10.7554/elife.87016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
The relationship between the environment and marine animal small-scale behavior is not fully understood. This is largely due to the difficulty in obtaining environmental datasets with a high spatiotemporal precision. The problem is particularly pertinent in assessing the influence of environmental factors in rapid, high energy-consuming behavior such as seabird take-off. To fill the gaps in the existing environmental datasets, we employed novel techniques using animal-borne sensors with motion records to estimate wind and ocean wave parameters and evaluated their influence on wandering albatross take-off patterns. Measurements revealed that wind speed and wave heights experienced by wandering albatrosses during take-off ranged from 0.7 to 15.4 m/s and 1.6 to 6.4 m, respectively. The four indices measured (flapping number, frequency, sea surface running speed, and duration) also varied with the environmental conditions (e.g., flapping number varied from 0 to over 20). Importantly, take-off was easier under higher wave conditions than under lower wave conditions at a constant wind speed, and take-off effort increased only when both wind and waves were gentle. Our data suggest that both ocean waves and winds play important roles for albatross take-off and advances our current understanding of albatross flight mechanisms.
Collapse
Affiliation(s)
- Leo Uesaka
- Atmosphere and Ocean Research Institute, The University of TokyoKashiwaJapan
- Information and Technology Center, The University of TokyoKashiwaJapan
| | - Yusuke Goto
- Atmosphere and Ocean Research Institute, The University of TokyoKashiwaJapan
- Graduate School of Environmental Studies, Nagoya UniversityFuroJapan
- Centre d’Etudes Biologiques de Chize (CEBC), UMR 7372 CNRS, Université de La RochelleVilliers-en-BoisFrance
| | - Masaru Naruoka
- Aeronautical Technology Directorate, Japan Aerospace Exploration Agency (JAXA)ChofuJapan
| | - Henri Weimerskirch
- Centre d’Etudes Biologiques de Chize (CEBC), UMR 7372 CNRS, Université de La RochelleVilliers-en-BoisFrance
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of TokyoKashiwaJapan
| | - Kentaro Q Sakamoto
- Atmosphere and Ocean Research Institute, The University of TokyoKashiwaJapan
| |
Collapse
|
4
|
Provini P, Camp AL, Crandell KE. Emerging biological insights enabled by high-resolution 3D motion data: promises, perspectives and pitfalls. J Exp Biol 2023; 226:286825. [PMID: 36752301 PMCID: PMC10038148 DOI: 10.1242/jeb.245138] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Deconstructing motion to better understand it is a key prerequisite in the field of comparative biomechanics. Since Marey and Muybridge's work, technical constraints have been the largest limitation to motion capture and analysis, which, in turn, limited what kinds of questions biologists could ask or answer. Throughout the history of our field, conceptual leaps and significant technical advances have generally worked hand in hand. Recently, high-resolution, three-dimensional (3D) motion data have become easier to acquire, providing new opportunities for comparative biomechanics. We describe how adding a third dimension of information has fuelled major paradigm shifts, not only leading to a reinterpretation of long-standing scientific questions but also allowing new questions to be asked. In this paper, we highlight recent work published in Journal of Experimental Biology and influenced by these studies, demonstrating the biological breakthroughs made with 3D data. Although amazing opportunities emerge from these technical and conceptual advances, high-resolution data often come with a price. Here, we discuss challenges of 3D data, including low-throughput methodology, costly equipment, low sample sizes, and complex analyses and presentation. Therefore, we propose guidelines for how and when to pursue 3D high-resolution data. We also suggest research areas that are poised for major new biological advances through emerging 3D data collection.
Collapse
Affiliation(s)
- Pauline Provini
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, F-75004 Paris, France
- Learning Planet Institute, F-75004 Paris, France
- Département Adaptations du Vivant, UMR 7179 CNRS/Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Ariel L Camp
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L78TX, UK
| | | |
Collapse
|
5
|
Gatesy SM, Manafzadeh AR, Bishop PJ, Turner ML, Kambic RE, Cuff AR, Hutchinson JR. A proposed standard for quantifying 3-D hindlimb joint poses in living and extinct archosaurs. J Anat 2022; 241:101-118. [PMID: 35118654 PMCID: PMC9178381 DOI: 10.1111/joa.13635] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/02/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023] Open
Abstract
The last common ancestor of birds and crocodylians plus all of its descendants (clade Archosauria) dominated terrestrial Mesozoic ecosystems, giving rise to disparate body plans, sizes, and modes of locomotion. As in the fields of vertebrate morphology and paleontology more generally, studies of archosaur skeletal structure have come to depend on tools for acquiring, measuring, and exploring three‐dimensional (3‐D) digital models. Such models, in turn, form the basis for many analyses of musculoskeletal function. A set of shared conventions for describing 3‐D pose (joint or limb configuration) and 3‐D kinematics (change in pose through time) is essential for fostering comparison of posture/movement among such varied species, as well as for maximizing communication among scientists. Following researchers in human biomechanics, we propose a standard methodological approach for measuring the relative position and orientation of the major segments of the archosaur pelvis and hindlimb in 3‐D. We describe the construction of anatomical and joint coordinate systems using the extant guineafowl and alligator as examples. Our new standards are then applied to three extinct taxa sampled from the wider range of morphological, postural, and kinematic variation that has arisen across >250 million years of archosaur evolution. These proposed conventions, and the founding principles upon which they are based, can also serve as starting points for measuring poses between elements within a hindlimb segment, for establishing coordinate systems in the forelimb and axial skeleton, or for applying our archosaurian system more broadly to different vertebrate clades.
Collapse
Affiliation(s)
- Stephen M Gatesy
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Armita R Manafzadeh
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Peter J Bishop
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Geosciences Program, Queensland Museum, Brisbane, Queensland, Australia
| | - Morgan L Turner
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA.,Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Robert E Kambic
- Department of Biology, Hood College, Frederick, Maryland, USA
| | - Andrew R Cuff
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Human Anatomy Resource Centre, University of Liverpool, Liverpool, UK
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
6
|
Aires AS, Reichert LM, Müller RT, Andrade MB. Review of morphology, development, and evolution of the notarium in birds. Anat Rec (Hoboken) 2021; 305:2079-2098. [PMID: 34910372 DOI: 10.1002/ar.24852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/11/2022]
Abstract
The notarium is a rigid bony structure, which resulted from the fusion of thoracic vertebrae of some pterosaurs and birds. It is high variable, ranging from two to six fused thoracic vertebrae. In this study, we reviewed and analyzed approximately 270 specimens of neornithine birds (representing 80% of the living orders) and some fossils in order to identify the number of fused vertebrae, degree and sites of vertebral fusion, occurrence of sutures, and other structures of potential phylogenetic and functional significance. These data were analyzed using a recent time-calibrated molecular phylogenetic tree and principal component analyses analysis evaluating the relationship with long bones in order to reconstruct macroevolutionary trends related to the evolution of the notarium. The occurrence of this structure shows a mosaic distribution over neornithine phylogeny, originating several times independently, especially during the Paleogene, in predominantly ground-dwelling forms. The notarium of these groups is characterized by: neural spines fused into single structure, intervertebral openings small to absent, large ventral keels forming ventral plates, and fused transverse processes. Derived neornithines, such as aquatic forms and long-legged birds, have a tendency to display a decreased degree of fusion between the vertebrae, which may indicate a reduction or disappearance of the notarium.
Collapse
Affiliation(s)
- Alex S Aires
- Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leici M Reichert
- Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo T Müller
- Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Marco B Andrade
- Museu de Ciências e Tecnologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
7
|
Roderick WRT, Cutkosky MR, Lentink D. Bird-inspired dynamic grasping and perching in arboreal environments. Sci Robot 2021; 6:eabj7562. [PMID: 34851710 DOI: 10.1126/scirobotics.abj7562] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Birds take off and land on a wide range of complex surfaces. In contrast, current robots are limited in their ability to dynamically grasp irregular objects. Leveraging recent findings on how birds take off, land, and grasp, we developed a biomimetic robot that can dynamically perch on complex surfaces and grasp irregular objects. To accommodate high-speed collisions, the robot’s two legs passively transform impact energy into grasp force, while the underactuated grasping mechanism wraps around irregularly shaped objects in less than 50 milliseconds. To determine the range of hardware design, kinematic, behavior, and perch parameters that are sufficient for perching success, we launched the robot at tree branches. The results corroborate our mathematical model, which shows that larger isometrically scaled animals and robots must accommodate disproportionately larger angular momenta, relative to their mass, to achieve similar landing performance. We find that closed-loop balance control serves an important role in maximizing the range of parameters sufficient for perching. The performance of the robot’s biomimetic features attests to the functionality of their avian counterparts, and the robot enables us to study aspects of bird legs in ways that are infeasible in vivo. Our data show that pronounced differences in modern avian toe arrangements do not yield large changes in perching performance, suggesting that arboreal perching does not represent a strong selection pressure among common bird toe topographies. These findings advance our understanding of the avian perching apparatus and highlight design concepts that enable robots to perch on natural surfaces for environmental monitoring.
Collapse
Affiliation(s)
- W R T Roderick
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - M R Cutkosky
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - D Lentink
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.,Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
Meilak EA, Gostling NJ, Palmer C, Heller MO. On the 3D Nature of the Magpie (Aves: Pica pica) Functional Hindlimb Anatomy During the Take-Off Jump. Front Bioeng Biotechnol 2021; 9:676894. [PMID: 34268296 PMCID: PMC8275989 DOI: 10.3389/fbioe.2021.676894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/27/2021] [Indexed: 01/07/2023] Open
Abstract
Take-off is a critical phase of flight, and many birds jump to take to the air. Although the actuation of the hindlimb in terrestrial birds is not limited to the sagittal plane, and considerable non-sagittal plane motion has been observed during take-off jumps, how the spatial arrangement of hindlimb muscles in flying birds facilitates such jumps has received little attention. This study aims to ascertain the 3D hip muscle function in the magpie (Pica pica), a bird known to jump to take-off. A musculoskeletal model of the magpie hindlimb was developed using μCT scans (isotropic resolution of 18.2 μm) to derive bone surfaces, while the 3D muscle path definition was further informed by the literature. Function was robustly characterized by determining the 3D moment-generating capacity of 14 hip muscles over the functional joint range of motion during a take-off leap considering variations across the attachment areas and uncertainty in dynamic muscle geometry. Ratios of peak flexion-extension (FE) to internal-external rotation (IER) and abduction-adduction (ABD) moment-generating capacity were indicators of muscle function. Analyses of 972 variations of the 3D muscle paths showed that 11 of 14 muscles can act as either flexor or extensor, while all 14 muscles demonstrated the capacity to act as internal or external rotators of the hip with the mean ratios of peak FE to IER and ABD moment-generating capacity were 0.89 and 0.31, respectively. Moment-generating capacity in IER approaching levels in the FE moment-generating capacity determined here underline that the avian hip muscle function is not limited to the sagittal plane. Together with previous findings on the 3D nature of hindlimb kinematics, our results suggest that musculoskeletal models to develop a more detailed understanding of how birds orchestrate the use of muscles during a take-off jump cannot be restricted to the sagittal plane.
Collapse
Affiliation(s)
- E A Meilak
- Bioengineering Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom.,Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - N J Gostling
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - C Palmer
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - M O Heller
- Bioengineering Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom.,Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
9
|
Bishop PJ, Falisse A, De Groote F, Hutchinson JR. Predictive Simulations of Musculoskeletal Function and Jumping Performance in a Generalized Bird. ACTA ACUST UNITED AC 2021; 3:obab006. [PMID: 34377939 PMCID: PMC8341896 DOI: 10.1093/iob/obab006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Jumping is a common, but demanding, behavior that many animals employ during everyday activity. In contrast to jump-specialists such as anurans and some primates, jumping biomechanics and the factors that influence performance remains little studied for generalized species that lack marked adaptations for jumping. Computational biomechanical modeling approaches offer a way of addressing this in a rigorous, mechanistic fashion. Here, optimal control theory and musculoskeletal modeling are integrated to generate predictive simulations of maximal height jumping in a small ground-dwelling bird, a tinamou. A three-dimensional musculoskeletal model with 36 actuators per leg is used, and direct collocation is employed to formulate a rapidly solvable optimal control problem involving both liftoff and landing phases. The resulting simulation raises the whole-body center of mass to over double its standing height, and key aspects of the simulated behavior qualitatively replicate empirical observations for other jumping birds. However, quantitative performance is lower, with reduced ground forces, jump heights, and muscle–tendon power. A pronounced countermovement maneuver is used during launch. The use of a countermovement is demonstrated to be critical to the achievement of greater jump heights, and this phenomenon may only need to exploit physical principles alone to be successful; amplification of muscle performance may not necessarily be a proximate reason for the use of this maneuver. Increasing muscle strength or contractile velocity above nominal values greatly improves jump performance, and interestingly has the greatest effect on more distal limb extensor muscles (i.e., those of the ankle), suggesting that the distal limb may be a critical link for jumping behavior. These results warrant a re-evaluation of previous inferences of jumping ability in some extinct species with foreshortened distal limb segments, such as dromaeosaurid dinosaurs. Simulations prédictives de la fonction musculo-squelettique et des performances de saut chez un oiseau généralisé Sauter est un comportement commun, mais exigeant, que de nombreux animaux utilisent au cours de leurs activités quotidiennes. Contrairement aux spécialistes du saut tels que les anoures et certains primates, la biomécanique du saut et les facteurs qui influencent la performance restent peu étudiés pour les espèces généralisées qui n’ont pas d’adaptations marquées pour le saut. Les approches de modélisation biomécanique computationnelle offrent un moyen d’aborder cette question de manière rigoureuse et mécaniste. Ici, la théorie du contrôle optimal et la modélisation musculo-squelettique sont intégrées pour générer des simulations prédictives du saut en hauteur maximal chez un petit oiseau terrestre, le tinamou. Un modèle musculo-squelettique tridimensionnel avec 36 actionneurs par patte est utilisé, et une méthode numérique nommée “direct collocation” est employée pour formuler un problème de contrôle optimal rapidement résoluble impliquant les phases de décollage et d’atterrissage. La simulation qui en résulte élève le centre de masse du corps entier à plus du double de sa hauteur debout, et les aspects clés du comportement simulé reproduisent qualitativement les observations empiriques d’autres oiseaux sauteurs. Cependant, les performances quantitatives sont moindres, avec une réduction des forces au sol, des hauteurs de saut et de la puissance musculo-tendineuse. Une manœuvre de contre-mouvement prononcée est utilisée pendant le lancement. Il a été démontré que l’utilisation d’un contre-mouvement est essentielle à l’obtention de hauteurs de saut plus importantes, et il se peut que ce phénomène doive exploiter uniquement des principes physiques pour réussir; l’amplification de la performance musculaire n’est pas nécessairement une raison immédiate de l’utilisation de cette manœuvre. L’augmentation de la force musculaire ou de la vitesse de contraction au-dessus des valeurs nominales améliore grandement la performance de saut et, fait intéressant, a le plus grand effet sur les muscles extenseurs des membres plus distaux (c'est-à-dire ceux de la cheville), ce qui suggère que le membre distal peut être un lien critique pour le comportement de saut. Ces résultats justifient une réévaluation des déductions précédentes de la capacité de sauter chez certaines espèces éteintes avec des segments de membres distaux raccourcis, comme les dinosaures droméosauridés. Voorspellende simulaties van musculoskeletale functie en springprestaties bij een gegeneraliseerde vogel Springen is een veel voorkomend, maar veeleisend, gedrag dat veel dieren toepassen tijdens hun dagelijkse bezigheden. In tegenstelling tot de springspecialisten zoals de anura en sommige primaten, is de biomechanica van het springen en de factoren die de prestaties beïnvloeden nog weinig bestudeerd voor algemene soorten die geen uitgesproken adaptaties voor het springen hebben. Computationele biomechanische modelbenaderingen bieden een manier om dit op een rigoureuze, mechanistische manier aan te pakken. Hier worden optimale controle theorie en musculoskeletale modellering geïntegreerd om voorspellende simulaties te genereren van maximale hoogtesprong bij een kleine grondbewonende vogel, een tinamou. Een driedimensionaal musculoskeletaal model met 36 actuatoren per poot wordt gebruikt, en directe collocatie wordt toegepast om een snel oplosbaar optimaal controleprobleem te formuleren dat zowel de opstijg-als de landingsfase omvat. De resulterende simulatie verhoogt het lichaamszwaartepunt tot meer dan het dubbele van de stahoogte, en belangrijke aspecten van het gesimuleerde gedrag komen kwalitatief overeen met empirische waarnemingen voor andere springende vogels. De kwantitatieve prestaties zijn echter minder, met verminderde grondkrachten, spronghoogtes en spierpeeskracht. Tijdens de lancering wordt een uitgesproken tegenbewegingsmanoeuvre gebruikt. Aangetoond is dat het gebruik van een tegenbeweging van cruciaal belang is voor het bereiken van grotere spronghoogten, en dit fenomeen hoeft alleen op fysische principes te berusten om succesvol te zijn; versterking van de spierprestaties hoeft niet noodzakelijk een proximate reden te zijn voor het gebruik van deze manoeuvre. Het verhogen van de spierkracht of van de contractiesnelheid boven de nominale waarden verbetert de sprongprestatie aanzienlijk, en heeft interessant genoeg het grootste effect op de meer distale extensoren van de ledematen (d.w.z. die van de enkel), wat suggereert dat de distale ledematen een kritieke schakel kunnen zijn voor het springgedrag. Deze resultaten rechtvaardigen een herevaluatie van eerdere conclusies over springvermogen bij sommige uitgestorven soorten met voorgekorte distale ledematen, zoals dromaeosauride dinosauriërs. Prädiktive Simulationen der muskuloskelettalen Funktion und Sprungleistung bei einem generalisierten Vogel Springen ist ein übliches jedoch anstrengendes Verhalten, das viele Tiere bei ihren täglichen Aktivitäten einsetzen. Im Gegensatz zu Springspezialisten, wie Fröschen und einigen Primaten, sind bei allgemeinen Arten, welche keine ausgeprägten Anpassung für Sprungverhalten aufweisen, die Biomechanik beim Springen und die Faktoren, welche die Leistungsfähigkeit beeinflussen, noch wenig untersucht. Computergestützte biomechanische Modellierungsverfahren bieten hier eine Möglichkeit, dies in einer gründlichen, mechanistischen Weise anzugehen. In dieser Arbeit werden die optimale Steuerungstheorie und Muskel-Skelett-Modellierung zusammen eingesetzt, um die maximale Sprunghöhe eines kleinen bodenlebenden Vogels, eines Perlsteisshuhns, zu simulieren und zu prognostizieren. Es wird ein dreidimensionales Muskel-Skelett-Modell mit 36 Aktuatoren pro Bein verwendet, und durch direkte Kollokation wird ein schnell lösbares optimales Steuerungsproblem formuliert, das sowohl die Abstoss- als auch die Landephase umfasst. Die daraus folgende Simulation bringt den Ganzkörperschwerpunkt auf mehr als das Doppelte seiner Standhöhe und entscheidende Aspekte des simulierten Verhaltens entsprechen qualitativ empirischen Beobachtungen für andere springende Vögel. Allerdings ist die quantitative Leistungsfähigkeit geringer, mit reduzierten Bodenkräften, Sprunghöhen und Muskel-Sehnen-Kräften. Beim Abstossen wird ein ausgeprägtes Gegenbewegungsmanöver durchgeführt. Die Durchführung einer Gegenbewegung ist nachweislich entscheidend für das Erreichen grösserer Sprunghöhen, wobei dieses Phänomen möglicherweise nur physikalische Prinzipien auszuschöpfen braucht, um erfolgreich zu sein. Die Verstärkung der Muskelleistung ist daher möglicherweise nicht zwingend ein unmittelbarer Grund für die Verwendung dieses Manövers. Eine Erhöhung der Muskelkraft oder der Kontraktionsgeschwindigkeit über die Nominalwerte hinaus führt zu einer erheblichen Zunahme der Sprungleistung und hat interessanterweise den grössten Effekt bei den weiter distal gelegenen Streckmuskeln der Beine (d.h. bei denjenigen des Sprunggelenks), was darauf hindeutet, dass die distale Gliedmasse ein entscheidendes Element für das Sprungverhalten sein könnte. Diese Ergebnisse geben Anlass zur Überprüfung früherer Schlussfolgerungen hinsichtlich der Sprungfähigkeit einiger ausgestorbener Arten mit verkürzten distalen Gliedmassen, wie beispielsweise bei dromaeosauriden Dinosauriern.
Collapse
Affiliation(s)
- P J Bishop
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Geosciences Program, Queensland Museum, Brisbane, Australia.,Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - A Falisse
- Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - F De Groote
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - J R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
10
|
Waxing and Waning of Wings. Trends Ecol Evol 2021; 36:457-470. [PMID: 33648760 DOI: 10.1016/j.tree.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/23/2022]
Abstract
A major challenge to Darwinian evolution is explaining 'rudimentary' organs. This is particularly relevant to birds: rudimentary wings occur in fossils, as well as in developing, molting, and flight-impaired birds. Evidence shows that young birds flap small wings to improve locomotion and transition to flight. Although small wings also occur in adults, their potential role in locomotion is rarely considered. Here we describe the prevalence of rudimentary wings in extant birds, and how wings wax and wane on many timescales. This waxing and waning is integral to the avian clade and offers a rich arena for exploring links between form, function, performance, behavior, ecology, and evolution. Although our understanding is nascent, birds clearly show that rudimentary structures can enhance performance and survival.
Collapse
|
11
|
Yan J, Zhang Z. Post-hatching growth of the limbs in an altricial bird species. Vet Med Sci 2020; 7:210-218. [PMID: 32937037 PMCID: PMC7840189 DOI: 10.1002/vms3.357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/23/2020] [Accepted: 08/29/2020] [Indexed: 11/28/2022] Open
Abstract
The fore‐ and hindlimbs of birds are specialized to perform different functions. The growth patterns of limb bones and their relationship with the ontogeny of locomotion are critical to our understanding of variation in morphological, physiological and life‐history traits within and among species. Unfortunately, the ontogenetic development of limb bones has not been well explored, especially in altricial birds. In this study, we sampled the entire measurements of the pigeon (Columba livia) of individual skeletons, to investigate the ontogenetic allometry of limb bones by reduced major axis regression. The ulna and humerus were found to be positively allometric in relation to body mass, with the ulna growing more rapidly than the humerus. Together with previous data, this suggests that strong positive allometric growth in forelimb bones could be a common trend among diverse Carinatae groups. Hindlimb was dominated by positive allometry, but was variable in the growth of the tarsometatarsus which included three allometric patterns. A greater dorsoventral diameter in the midsection of the humerus and ulna confers superior bending resistance and is ideal for flapping/gliding flight. Shape variation in the midsection of different hindlimb components reflects different mechanical loading, and the markedly inverse trend between the tibiotarsus and tarsometatarsus before 28 days of age also suggests loading change before fledging. Before fledging, the growth of the leg bones was prior to that of the wing bones. This kind of asynchronous development of the fore‐ and hindlimbs was associated with the establishment and improvement of different functions, and with shifts in the importance of different functions over time.
Collapse
Affiliation(s)
- Jianjian Yan
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zihui Zhang
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
12
|
Abourachid A, Wenger P. 44th Congress of the Société de Biomécanique. Comput Methods Biomech Biomed Engin 2019; 22:S1-S393. [PMID: 31791153 DOI: 10.1080/10255842.2019.1668135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Roderick WRT, Chin DD, Cutkosky MR, Lentink D. Birds land reliably on complex surfaces by adapting their foot-surface interactions upon contact. eLife 2019; 8:e46415. [PMID: 31385573 PMCID: PMC6684272 DOI: 10.7554/elife.46415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/30/2019] [Indexed: 11/13/2022] Open
Abstract
Birds land on a wide range of complex surfaces, yet it is unclear how they grasp a perch reliably. Here, we show how Pacific parrotlets exhibit stereotyped leg and wing dynamics regardless of perch diameter and texture, but foot, toe, and claw kinematics become surface-specific upon touchdown. A new dynamic grasping model, which integrates our detailed measurements, reveals how birds stabilize their grasp. They combine predictable toe pad friction with probabilistic friction from their claws, which they drag to find surface asperities-dragging further when they can squeeze less. Remarkably, parrotlet claws can undergo superfast movements, within 1-2 ms, on moderately slippery surfaces to find more secure asperities when necessary. With this strategy, they first ramp up safety margins by squeezing before relaxing their grasp. The model further shows it is advantageous to be small for stable perching when high friction relative to normal force is required because claws can find more usable surface, but this trend reverses when required friction shrinks. This explains how many animals and robots may grasp complex surfaces reliably.
Collapse
Affiliation(s)
- William RT Roderick
- Department of Mechanical EngineeringStanford UniversityStanfordUnited States
| | - Diana D Chin
- Department of Mechanical EngineeringStanford UniversityStanfordUnited States
| | - Mark R Cutkosky
- Department of Mechanical EngineeringStanford UniversityStanfordUnited States
| | - David Lentink
- Department of Mechanical EngineeringStanford UniversityStanfordUnited States
| |
Collapse
|
14
|
Parslew B, Sivalingam G, Crowther W. A dynamics and stability framework for avian jumping take-off. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181544. [PMID: 30473867 PMCID: PMC6227979 DOI: 10.1098/rsos.181544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 06/09/2023]
Abstract
Jumping take-off in birds is an explosive behaviour with the goal of providing a rapid transition from ground to airborne locomotion. An effective jump is predicated on the need to maintain dynamic stability through the acceleration phase. The present study concerns understanding how birds retain control of body attitude and trajectory during take-off. Cursory observation suggests that stability is achieved with relatively little cost. However, analysis of the problem shows that the stability margins during jumping are actually very small and that stability considerations play a significant role in the selection of appropriate jumping kinematics. We use theoretical models to understand stability in prehensile take-off (from a perch) and also in non-prehensile take-off (from the ground). The primary instability is tipping, defined as rotation of the centre of gravity about the ground contact point. Tipping occurs when the centre of pressure falls outside the functional foot. A contribution of the paper is the development of graphical tipping stability margins for both centre of gravity location and acceleration angle. We show that the nose-up angular acceleration extends stability bounds forward and is hence helpful in achieving shallow take-offs. The stability margins are used to interrogate simulated take-offs of real birds using published experimental kinematic data from a guinea fowl (ground take-off) and a diamond dove (perch take-off). For the guinea fowl, the initial part of the jump is stable; however, simulations exhibit a stuttering instability not observed experimentally that is probably due to the absence of compliance in the idealized joints. The diamond dove model confirms that the foot provides an active torque reaction during take-off, extending the range of stable jump angles by around 45°.
Collapse
Affiliation(s)
- Ben Parslew
- School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK
| | | | | |
Collapse
|