1
|
Vieira ALC, Pataca LC, Oliveira R, Schlindwein C. Fields of flowers with few strikes: how oligolectic bees manage their foraging behavior on Calibrachoa elegans (Solanaceae). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:26. [PMID: 38647655 DOI: 10.1007/s00114-024-01912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
In specialized plant-pollinator associations, partners may exhibit adaptive traits, which favor the maintenance of the interaction. The association between Calibrachoa elegans (Solanaceae) and its oligolectic bee pollinator, Hexantheda missionica (Colletidae), is mutualistic and forms a narrowly specialized pollination system. Flowers of C. elegans are pollinated exclusively by this bee species, and the bees restrict their pollen resources to this plant species. The pollen presentation schedules of C. elegans were evaluated at the population level to test the hypothesis that H. missionica females adjust their foraging behavior to the resource offering regime of C. elegans plants. For this, the number of new flowers and anthers opened per hour (as a proxy for pollen offering) was determined, and pollen advertisement was correlated with the frequency of flower visits during the day. Preferences of female bees for flowers of different stages were also investigated, and their efficiency as pollinators was evaluated. Pollen offering by C. elegans was found to be partitioned throughout the day through scattered flower openings. Females of H. missionica indeed adjusted their foraging activity to the most profitable periods of pollen availability. The females preferred new, pollen-rich flowers over old ones and gathered pollen and nectar selectively according to flower age. Such behaviors must optimize female bee foraging efficiency on flowers. Female bees set 93% of fruit after a single visit. These findings guarantee their importance as pollinators and the persistence of the specialized plant-pollinator association.
Collapse
Affiliation(s)
- Ana Luísa Cordeiro Vieira
- Programa de Pós-Graduação em Biologia Vegetal-Departamento de Botânica, Grupo Plebeia-Ecologia de Abelhas e da Polinização, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Letícia Cândida Pataca
- Programa de Pós-Graduação em Biologia Vegetal-Departamento de Botânica, Grupo Plebeia-Ecologia de Abelhas e da Polinização, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Reisla Oliveira
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Clemens Schlindwein
- Departamento de Botânica, Grupo Plebeia-Ecologia de Abelhas e da Polinização, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
2
|
Fioratti CAG, Falcão EA, da Silva RM, do Carmo Vieira M, Caires ARL, Mussury RM. Application of Optical Fluorescence Spectroscopy for Studying Bee Abundance in Tropaeolum majus L. (Tropaeolaceae). BIOLOGY 2022; 11:887. [PMID: 35741408 PMCID: PMC9219692 DOI: 10.3390/biology11060887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Tropaeolum majus L. species produce flowers with all sorts of colors, from yellow to red. This work aimed to apply optical fluorescence spectroscopy to study bee abundance in T. majus, answering the following questions: (1) do corolla temperature and weather conditions affect the abundance of visiting bee species? (2) do flower color and corolla fluorescence affect the abundance of visiting bee species? (3) do red flowers attract more visiting bees? (4) is there a relationship between bee visits and flower compounds? The bee species Apis mellifera, Paratrigona lineata, and Trigona spinipes were the most observed in T. majus flowers. The latter was more active in the morning and preferred orange and yellow flowers. These colors also had higher temperatures and fluorescence emissions than did the red ones and those with yellow-red and orange-red nectar guides. Orange flowers emitted a broadband UV spectrum (between 475 and 800 nm). This range might be due to compounds such as hydroxycinnamic acid, flavonols, isoflavonoids, flavones, phenolic acid, and chlorophyll. Extracts from different T. majus corolla colors showed that flowers emit specific fluorescent signals, mainly related to bee color vision and learning, thus acting as a means of communication between bees and flowers. In this way, this information evidences the interaction between bees and T. majus flowers, allowing conservation actions for pollinators.
Collapse
Affiliation(s)
- Claudemir Antonio Garcia Fioratti
- Laboratory of Insect-Plant Interaction, Graduate Program in Entomology and Biodiversity Conservation, College of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados-Itahum Highway, 12th km, Dourados 79804-970, MS, Brazil; (C.A.G.F.); (R.M.d.S.)
| | - Evaristo Alexandre Falcão
- Applied Optics Group, College of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados-Itahum Highway, 12th km, Dourados 79804-970, MS, Brazil;
| | - Rosicleia Matias da Silva
- Laboratory of Insect-Plant Interaction, Graduate Program in Entomology and Biodiversity Conservation, College of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados-Itahum Highway, 12th km, Dourados 79804-970, MS, Brazil; (C.A.G.F.); (R.M.d.S.)
| | - Maria do Carmo Vieira
- Laboratory of Medicinal Plants, College of Agricultural Sciences, Federal University of Grande Dourados, Dourados-Itahum Highway, 12th km, Dourados 79804-970, MS, Brazil;
| | - Anderson Rodrigues Lima Caires
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Rosilda Mara Mussury
- Laboratory of Insect-Plant Interaction, Graduate Program in Entomology and Biodiversity Conservation, College of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados-Itahum Highway, 12th km, Dourados 79804-970, MS, Brazil; (C.A.G.F.); (R.M.d.S.)
| |
Collapse
|
3
|
De Araujo FF, Oliveira R, Mota T, Stehmann JR, Schlindwein C. Solitary bee pollinators adjust pollen foraging to the unpredictable flower opening of a species of Petunia (Solanaceae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Details of the foraging patterns of solitary bees are much less well known than those of social species, and these patterns are often adjusted to exploit floral resources of one or only a few species. The specialized flower-visiting bees of Petunia are good models for investigating such foraging patterns. Here we analysed the floral biology and pollen presentation schedule of the endangered Petunia mantiqueirensis in mixed Araucaria forests of Serra da Mantiqueira, Brazil. Pollinators and their pollen foraging behaviour and food specialization were determined through analyses of scopa pollen loads. Flowers opened throughout the day and presented all their pollen resources within the first 30 min of anthesis, thus providing their pollen resources in an asynchronous fashion in one-flower packages throughout the day. Females of Pseudagapostemon fluminensis were the most frequent flower visitors, contacting stigmas in 96% of their visits, and were the unique effective pollinators of Petunia mantiqueirensis. These pollinators were responsible for the first three visits to 115 individually monitored flowers at any daylight hour, removing ~86% of a flower’s total pollen supply during the first visit. Although female bees harvest the majority of pollen resources of Petunia mantiqueirensis, analyses of scopa loads revealed that most of them also collect pollen from plants of other families while foraging for pollen in Petunia flowers.
Collapse
Affiliation(s)
- Fernanda Figueiredo De Araujo
- Programa de Pós-Graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Reisla Oliveira
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG, Brazil
| | - Theo Mota
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - João Renato Stehmann
- Departamento de Botânica, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Clemens Schlindwein
- Departamento de Botânica, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
A neonicotinoid pesticide impairs foraging, but not learning, in free-flying bumblebees. Sci Rep 2019; 9:4764. [PMID: 30886154 PMCID: PMC6423345 DOI: 10.1038/s41598-019-39701-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/30/2019] [Indexed: 11/10/2022] Open
Abstract
Neonicotinoids are widely-used pesticides implicated in the decline of bees, known to have sub-lethal effects on bees’ foraging and colony performance. One proposed mechanism for these negative effects is impairment to bees’ ability to learn floral associations. However, the effects of neonicotinoids on learning performance have largely been addressed using a single protocol, where immobilized bees learn an association based on a single sensory modality. We thus have an incomplete understanding of how these pesticides affect bee learning in more naturalistic foraging scenarios. We carried out the first free-foraging study into the effects of acute exposure of a neonicotinoid (imidacloprid) on bumblebees’ (Bombus impatiens) ability to learn associations with visual stimuli. We uncovered dose-dependent detrimental effects on motivation to initiate foraging, amount of nectar collected, and initiation of subsequent foraging bouts. However, we did not find any impairment to bees’ ability to learn visual associations. While not precluding the possibility that other forms of learning are impaired, our findings suggest that some of the major effects of acute neonicotinoid exposure on foraging performance may be due to motivational and/or sensory impairments. In light of these findings, we discuss more broadly how pesticide effects on pollinator cognition might be studied.
Collapse
|