1
|
Viveiros E, Francisco BS, Dutra FB, de Souza LA, Inocente MC, Bastos ACV, da Costa GFL, Barbosa MC, Martins RP, Passaretti RA, Fernandes MJP, de Oliveira JST, Shiguehara APP, Manzoli EC, Teração BS, Piotrowski I, Piña-Rodrigues FCM, da Silva JMS. How the Adequate Choice of Plant Species Favors the Restoration Process in Areas Susceptible to Extreme Frost Events. BIOLOGY 2023; 12:1369. [PMID: 37997968 PMCID: PMC10669021 DOI: 10.3390/biology12111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
This work aimed to evaluate the impacts caused by extreme frost events in an ecological restoration area. We grouped the species in three ways: (1) type of trichome coverage; (2) shape of the seedling crown; and (3) functional groups according to the degree of damage caused by frost. The variables of the restored area and species characteristics were selected to be subjected to linear generalization analysis models (GLMs). A total of 104 individuals from seven species were sampled. The most affected species were Guazuma ulmifolia Lam. (98% of leaves affected), followed by Cecropia pachystachia Trécul and Hymenea courbaril L. (both 97%), Inga vera Willd. (84%), and Senegalia polyphylla (DC.) Britton & Rose with 75%. Tapirira guianensis Aubl. was considered an intermediate species, with 62% of the crown affected. Only Solanum granulosoleprosum Dunal was classified as slightly affected, with only 1.5% of leaves affected. With the GLM analysis, it was verified that the interaction between the variables of leaf thickness (Χ² = 37.1, df = 1, p < 0.001), trichome coverage (Χ² = 650.5, df = 2, p < 0.001), and leaf structure culture (Χ² = 54.0, df = 2, p < 0.001) resulted in a model with high predictive power (AIC = 927,244, BIC = 940,735, Χ² = 6947, R² = 0.74, p < 0.001). Frost-affected crown cover was best explained by the interaction between the three functional attributes (74%). We found that there is a tendency for thicker leaves completely covered in trichomes to be less affected by the impact of frost and that the coverage of the affected crown was greatly influenced by the coverage of trichomes. Seedlings with leaves completely covered in trichomes, thicker leaves, and a funneled or more open crown structure are those that are most likely to resist frost events. The success of ecological restoration in areas susceptible to extreme events such as frost can be predicted based on the functional attributes of the chosen species. This can contribute to a better selection of species to be used to restore degraded areas.
Collapse
Affiliation(s)
- Emerson Viveiros
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
- AES Brasil, Bauru 17064-868, Brazil; (R.P.M.); (R.A.P.); (M.J.P.F.)
| | - Bruno Santos Francisco
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
| | - Felipe Bueno Dutra
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
| | - Lindomar Alves de Souza
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
| | - Mariane Cristina Inocente
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
| | - Aline Cipriano Valentim Bastos
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
| | - Glória Fabiani Leão da Costa
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
| | - Maycon Cristiano Barbosa
- Undergraduate Program in Forest Engineering, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil;
| | | | | | | | - Julia Siqueira Tagliaferro de Oliveira
- Undergraduate Program in Biologycal Sciences, Department of Biologycal Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil;
| | - Ana Paula Ponce Shiguehara
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
| | - Enzo Coletti Manzoli
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
| | - Bruna Santos Teração
- Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (B.S.T.); (I.P.)
| | - Ivonir Piotrowski
- Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (B.S.T.); (I.P.)
| | - Fátima Conceição Márquez Piña-Rodrigues
- AES Brasil, Bauru 17064-868, Brazil; (R.P.M.); (R.A.P.); (M.J.P.F.)
- Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (B.S.T.); (I.P.)
| | - José Mauro Santana da Silva
- AES Brasil, Bauru 17064-868, Brazil; (R.P.M.); (R.A.P.); (M.J.P.F.)
- Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (B.S.T.); (I.P.)
| |
Collapse
|
2
|
da Silva GS, Firmino GV, Ferraro A, Appezzato-da-Glória B. Anatomical inferences on aerial bud protection of three Eugenia shrub species from the Cerrado. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:176-186. [PMID: 36314866 DOI: 10.1111/plb.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Location and degree of protection of aerial buds are important functional traits in disturbance- or stress-prone environments since aerial buds ensure the development of new organs under favourable growing conditions. This study was carried out in a Brazilian Cerrado area under regeneration after long-term Pinus cultivation, where the trees were clear-cut in 2012 and the remaining material was burned in 2014. After the fire treatment, several species resprouted from belowground organs and their aboveground organs were directly exposed to full sunlight. We collected 15 terminal branches with fully expanded leaves from three individuals of each of three Eugenia species to investigate if those with well-developed belowground organs invest in bark for aboveground bud protection. The samples were analysed using light and electron microscopy. In addition to terminal and axillary buds, all species presented accessory buds, and the number varied according to the node analysed. None of the aerial buds were protected by bark, but all were well protected by cataphylls and densely pubescent leaf primordia. There were also inter- and intra-petiolar colleters that released a mucilaginous protein exudate. The distance between the shoot apical meristem and the outer surface was longer in the terminal bud than in axillary buds. The bud leaf primordia covering the shoot apical meristem had a thick cuticle, unicellular non-glandular trichomes that accumulate phenolic and lipophilic compounds, and secretory cavities. Our study shows that all three Eugenia species studied here had highly protected aerial buds allocated from belowground organs. These morphological traits may improve the chances of the species' persistence in areas subjected to frost events, low relative humidity, high irradiance and harmful UV levels.
Collapse
Affiliation(s)
- G S da Silva
- Plant Anatomy Laboratory, Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - G V Firmino
- Plant Anatomy Laboratory, Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - A Ferraro
- Department of Experimental and Functional Morphology, Institute of Botany of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - B Appezzato-da-Glória
- Plant Anatomy Laboratory, Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
3
|
Paiva EAS, Couy-Melo GA, Ballego-Campos I. Colleters, Extrafloral Nectaries, and Resin Glands Protect Buds and Young Leaves of Ouratea castaneifolia (DC.) Engl. (Ochnaceae). PLANTS 2021; 10:plants10081680. [PMID: 34451725 PMCID: PMC8399310 DOI: 10.3390/plants10081680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022]
Abstract
Buds usually possess mechanical or chemical protection and may also have secretory structures. We discovered an intricate secretory system in Ouratea castaneifolia (Ochnaceae) related to the protection of buds and young leaves. We studied this system, focusing on the distribution, morphology, histochemistry, and ultrastructure of glands during sprouting. Samples of buds and leaves were processed following the usual procedures for light and electron microscopy. Overlapping bud scales protect dormant buds, and each young leaf is covered with a pair of stipules. Stipules and scales possess a resin gland, while the former also possess an extrafloral nectary. Despite their distinct secretions, these glands are similar and comprise secreting palisade epidermis. Young leaves also possess marginal colleters. All the studied glands shared some structural traits, including palisade secretory epidermis and the absence of stomata. Secretory activity is carried out by epidermal cells. Functionally, the activity of these glands is synchronous with the young and vulnerable stage of vegetative organs. This is the first report of colleters and resin glands for O. castaneifolia. We found evidence that these glands are correlated with protection against herbivores and/or abiotic agents during a developmental stage that precedes the establishment of mechanical defenses.
Collapse
|