1
|
Corbett B, Luz S, Sotuyo N, Pearson-Leary J, Moorthy GS, Zuppa AF, Bhatnagar S. FTY720 (Fingolimod), a modulator of sphingosine-1-phosphate receptors, increases baseline hypothalamic-pituitary adrenal axis activity and alters behaviors relevant to affect and anxiety. Physiol Behav 2021; 240:113556. [PMID: 34390688 DOI: 10.1016/j.physbeh.2021.113556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
FTY720 (fingolimod) is an analog of sphingosine, a ubiquitous sphingolipid. Phosphorylated FTY720 (FTY720-P) non-selectively binds to sphingosine-1-phosphate receptors (S1PRs) and regulates multiple cellular processes including cell proliferation, inflammation, and vascular remodeling. We recently demonstrated that S1PR3 expression in the medial prefrontal cortex (mPFC) of rats promotes stress resilience and that S1PR3 expression in blood may serve as a biomarker for PTSD. Here we investigate the effects of FTY720 in regulating the stress response. We found that single and repeated intraperitoneal injections of FTY720 increased baseline plasma adrenocorticotropic hormone (ACTH) and corticosterone concentrations. FTY720 reduced social anxiety- and despair-like behavior as assessed by increased social interaction time and reduced time spent immobile in the Porsolt forced swim test. In blood, FTY720 administration reduced lymphocyte and reticulocyte counts, but raised erythrocyte counts. FTY720 also reduced mRNA of angiopoietin 1, endothelin 1, plasminogen, TgfB2, Pdgfa, and Mmp2 in the medial prefrontal cortex, suggesting that FTY720 reduced vascular remodeling. The antidepressant-like and anxiolytic-like effects of FTY720 may be attributed to reduced vascular remodeling as increased stress-induced blood vessel density in the brain contributes to behavior associated with vulnerability in rats. Together, these results demonstrate that FTY720 regulates baseline HPA axis activity but reduces social anxiety and despair, providing further evidence that S1PRs are important and novel regulators of stress-related functions.
Collapse
Affiliation(s)
- Brian Corbett
- Center for Stress Neurobiology, Children's Hospital of Philadelphia, 3615 CIvic Center Blvd, ARC Suite 402, Philadelphia, Pennsylvania,19104-4399, USA
| | - Sandra Luz
- Center for Stress Neurobiology, Children's Hospital of Philadelphia, 3615 CIvic Center Blvd, ARC Suite 402, Philadelphia, Pennsylvania,19104-4399, USA
| | - Nathaniel Sotuyo
- Center for Stress Neurobiology, Children's Hospital of Philadelphia, 3615 CIvic Center Blvd, ARC Suite 402, Philadelphia, Pennsylvania,19104-4399, USA
| | - Jiah Pearson-Leary
- Center for Stress Neurobiology, Children's Hospital of Philadelphia, 3615 CIvic Center Blvd, ARC Suite 402, Philadelphia, Pennsylvania,19104-4399, USA
| | - Ganesh S Moorthy
- Center for Clinical Pharmacology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Athena F Zuppa
- Center for Clinical Pharmacology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Seema Bhatnagar
- Center for Stress Neurobiology, Children's Hospital of Philadelphia, 3615 CIvic Center Blvd, ARC Suite 402, Philadelphia, Pennsylvania,19104-4399, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Rau CR, Hein K, Sättler MB, Kretzschmar B, Hillgruber C, McRae BL, Diem R, Bähr M. Anti-inflammatory effects of FTY720 do not prevent neuronal cell loss in a rat model of optic neuritis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1770-81. [PMID: 21406175 PMCID: PMC3078467 DOI: 10.1016/j.ajpath.2011.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 12/08/2010] [Accepted: 01/04/2011] [Indexed: 11/24/2022]
Abstract
In multiple sclerosis, long-term disability is caused by axonal and neuronal damage. Established therapies target primarily the inflammatory component of the disease, but fail to prevent neurodegeneration. Fingolimod (codenamed FTY720) is an oral sphingosine 1-phosphate (S1P) receptor modulator with promising results in phase II trials in multiple sclerosis patients and is under further development as a novel treatment for multiple sclerosis. To evaluate whether FTY720 has neuroprotective properties, we tested this drug in a rat model of myelin oligodendrocyte glycoprotein-induced optic neuritis. FTY720 exerted significant anti-inflammatory effects during optic neuritis and reduced inflammation, demyelination, and axonal damage; however, FTY720 treatment did not prevent apoptosis of retinal ganglion cells (RGCs), the neurons that form the axons of the optic nerve. Consistent with this lack of effect on RGC survival, FTY720 treatment did not improve visual function, nor did it prevent apoptosis of RGCs in vitro. We observed a persistent activation of apoptotic signaling pathways in RGCs under FTY720 treatment, a possible underlying mechanism for the lack of neuroprotection in the presence of strong anti-inflammatory effects, Furthermore, FTY720 shifted the remaining inflammation in the optic nerve toward neurotoxicity by modest up-regulation of potential neurotoxic cytokines. We conclude that FTY720-induced anti-inflammation and axon protection did not of itself protect neurons from apoptotic cell death.
Collapse
Affiliation(s)
- Christian R. Rau
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Katharina Hein
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Muriel B. Sättler
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | | | - Carina Hillgruber
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Bradford L. McRae
- Department of Pharmacology, Abbott Bioresearch Center, Worcester, Massachusetts
| | - Ricarda Diem
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany
| | - Mathias Bähr
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| |
Collapse
|