1
|
Tang X, Wang Y, Zhang Y, Huang S, Liu Z, Fei D, Feng H. A missense mutation of plastid RPS4 is associated with chlorophyll deficiency in Chinese cabbage (Brassica campestris ssp. pekinensis). BMC PLANT BIOLOGY 2018; 18:130. [PMID: 29940850 PMCID: PMC6019835 DOI: 10.1186/s12870-018-1353-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 06/17/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plastome mutants are ideal resources for elucidating the functions of plastid genes. Numerous studies have been conducted for the function of plastid genes in barley and tobacco; however, related information is limited in Chinese cabbage. RESULTS A chlorophyll-deficient mutant of Chinese cabbage that was derived by ethyl methanesulfonate treatment on isolated microspores showed uniformly pale green inner leaves and slow growth compared with that shown by the wild type "Fukuda 50' ('FT'). Genetic analysis revealed that cdm was cytoplasmically inherited. Physiological and ultrastructural analyses of cdm showed impaired photosynthesis and abnormal chloroplast development. Utilizing next generation sequencing, the complete plastomes of cdm and 'FT' were respectively re-mapped to the reference genome of Chinese cabbage, and an A-to-C base substitution with a mutation ratio higher than 99% was detected. The missense mutation of plastid ribosomal protein S4 led to valine substitution for glycine at residue 193. The expression level of rps4 was analyzed using quantitative real-time PCR and found lower in than in 'FT'. RNA gel-blot assays showed that the abundance of mature 23S rRNA, 16S rRNA, 5S rRNA, and 4.5S rRNA significantly decreased and that the processing of 23S, 16S rRNA, and 4.5S rRNA was seriously impaired, affecting the ribosomal function in cdm. CONCLUSIONS These findings indicated that cdm was a plastome mutant and that chlorophyll deficiency might be due to an A-to-C base substitution of the plastome-encoded rps4 that impaired the rRNA processing and affected the ribosomal function.
Collapse
Affiliation(s)
- Xiaoyan Tang
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Yiheng Wang
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Yun Zhang
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Shengnan Huang
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Zhiyong Liu
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Danli Fei
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Hui Feng
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| |
Collapse
|
3
|
Gressel J. Low pesticide rates may hasten the evolution of resistance by increasing mutation frequencies. PEST MANAGEMENT SCIENCE 2011; 67:253-257. [PMID: 21308950 DOI: 10.1002/ps.2071] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/24/2010] [Accepted: 10/25/2010] [Indexed: 05/30/2023]
Abstract
At very low pesticide rates, a certain low proportion of pests may receive a sublethal dose, are highly stressed by the pesticide and yet survive. Stress is a general enhancer of mutation rates. Thus, the survivors are likely to have more than normal mutations, which might include mutations leading to pesticide resistance, both for multifactorial (polygenic, gene amplification, sequential allelic mutations) and for major gene resistance. Management strategies should consider how to eliminate the subpopulation of pests with the high mutation rates, but the best strategy is probably to avoid too low application rates of pesticides from the outset.
Collapse
Affiliation(s)
- Jonathan Gressel
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Yu F, Fu A, Aluru M, Park S, Xu Y, Liu H, Liu X, Foudree A, Nambogga M, Rodermel S. Variegation mutants and mechanisms of chloroplast biogenesis. PLANT, CELL & ENVIRONMENT 2007; 30:350-365. [PMID: 17263779 DOI: 10.1111/j.1365-3040.2006.01630.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Variegated plants typically have green- and white-sectored leaves. Cells in the green sectors contain normal-appearing chloroplasts, whereas cells in the white sectors lack pigments and appear to be blocked at various stages of chloroplast biogenesis. Variegations can be caused by mutations in nuclear, chloroplast or mitochondrial genes. In some plants, the green and white sectors have different genotypes, but in others they have the same (mutant) genotype. One advantage of variegations is that they provide a means of studying genes for proteins that are important for chloroplast development, but for which mutant analysis is difficult, either because mutations in a gene of interest are lethal or because they do not show a readily distinguishable phenotype. This paper focuses on Arabidopsis variegations, for which the most information is available at the molecular level. Perhaps the most interesting of these are variegations caused by defective nuclear gene products in which the cells of the mutant have a uniform genotype. Two questions are of paramount interest: (1) What is the gene product and how does it function in chloroplast biogenesis? (2) What is the mechanism of variegation and why do green sectors arise in plants with a uniform (mutant) genotype? Two paradigms of variegation mechanism are described: immutans (im) and variegated2 (var2). Both mechanisms emphasize compensating activities and the notion of plastid autonomy, but redundant gene products are proposed to play a role in var2, but not in im. It is hypothesized that threshold levels of certain activities are necessary for normal chloroplast development.
Collapse
Affiliation(s)
- Fei Yu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Aigen Fu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Maneesha Aluru
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Sungsoon Park
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Yang Xu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Huiying Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Xiayan Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Andrew Foudree
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Milly Nambogga
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Steven Rodermel
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|