1
|
Zhang S, Hu H, Cui S, Yan L, Wu B, Wei S. Genome-wide identification and functional analysis of the cellulose synthase-like gene superfamily in common oat (Avena sativa L.). PHYTOCHEMISTRY 2024; 218:113940. [PMID: 38056517 DOI: 10.1016/j.phytochem.2023.113940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Hemicelluloses constitute approximately one-third of the plant cell wall and can be used as a dietary fiber and food additive, and as raw materials for biofuels. Although genes involved in hemicelluloses synthesis have been investigated in some model plants, no comprehensive analysis has been conducted in common oat at present. In this study, we identified and systematically analyzed the cellulose synthase-like gene (Csl) family members in common oat and investigated them using various bioinformatics tools. The results showed that there are 76 members of the oat Csl gene family distributed on 17 chromosomes, and phylogenetic analysis indicated that the 76 Csl genes belong to the CslA, CslC, CslD, CslE, CslF, CslH, and CslJ subfamilies. A total of 14 classes of cis-acting elements were identified in the promoter regions, including hormone response, light response, cell development, and defense stress elements. The collinearity analysis identified 28 pairs of segmentally duplicated genes, most of which were found on chromosomes 2D and 6A. Expression pattern analysis showed that oat Csl genes display strong tissue-specific expression; of the 76 Csl genes, 33 were significantly up-regulated in stems and 30 were up-regulated in immature seeds. The expression of most members of the AsCsl gene family is repressed by abiotic stress, while the expression of some members is up-regulated by light. Immunoelectron microscopy shows that the product of AsCsl61, a member of CslF subfamily, mediates (1,3; 1,4)-β-D-glucan synthesis in transgenic Arabidopsis. These findings provide a fundamental understanding of the structural, functional, and evolutionary features of the oat Csl genes and may contribute to our general understanding of hemicellulose biosynthesis. Moreover, this information will be helpful in designing experiments for genetic manipulation of mixed-linkage glucan (MLG) synthesis with the goal of quality improvement in oat.
Collapse
Affiliation(s)
- Shanshan Zhang
- College of Life and Environmental Sciences, Minzu University of China, No. 27. Zhongguancun South Street, Beijing, 100081, China
| | - Haibin Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), No. 12. Zhongguancun South Street, Beijing, 100081, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shumin Cui
- College of Life and Environmental Sciences, Minzu University of China, No. 27. Zhongguancun South Street, Beijing, 100081, China
| | - Lin Yan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), No. 12. Zhongguancun South Street, Beijing, 100081, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), No. 12. Zhongguancun South Street, Beijing, 100081, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Shanjun Wei
- College of Life and Environmental Sciences, Minzu University of China, No. 27. Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
2
|
Koroluk A, Sowa S, Boczkowska M, Paczos-Grzęda E. Utilizing Genomics to Characterize the Common Oat Gene Pool—The Story of More than a Century of Polish Breeding. Int J Mol Sci 2023; 24:ijms24076547. [PMID: 37047519 PMCID: PMC10094864 DOI: 10.3390/ijms24076547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
This study was undertaken to investigate the diversity and population structure of 487 oat accessions, including breeding lines from the ongoing programs of the three largest Polish breeding companies, along with modern and historical Polish and foreign cultivars. The analysis was based on 7411 DArTseq-derived SNPs distributed among three sub-genomes (A, C, and D). The heterogeneity of the studied material was very low, as only cultivars and advanced breeding lines were examined. Principal component analysis (PCA), principal coordinate analysis (PCoA), and cluster and STRUCTURE analyses found congruent results, which show that most of the examined cultivars and materials from Polish breeding programs formed major gene pools, that only some accessions derived from Strzelce Plant Breeding, and that foreign cultivars were outside of the main group. During the 120 year oat breeding process, only 67 alleles from the old gene pool were lost and replaced by 67 new alleles. The obtained results indicate that no erosion of genetic diversity was observed within the Polish native oat gene pool. Moreover, current oat breeding programs have introduced 673 new alleles into the gene pool relative to historical cultivars. The analysis also showed that most of the changes in relation to historical cultivars occurred within the A sub-genome with emphasis on chromosome 6A. The targeted changes were the rarest in the C sub-genome. This study showed that Polish oat breeding based mainly on traditional breeding methods—although focused on improving traits typical to this crop, i.e., enhancing the grain yield and quality and improving adaptability—did not significantly narrow the oat gene pool and in fact produced cultivars that are not only competitive in the European market but are also reservoirs of new alleles that were not found in the analyzed foreign materials.
Collapse
|
3
|
Wang L, Xu J, Wang H, Chen T, You E, Bian H, Chen W, Zhang B, Shen Y. Population structure analysis and genome-wide association study of a hexaploid oat landrace and cultivar collection. FRONTIERS IN PLANT SCIENCE 2023; 14:1131751. [PMID: 37025134 PMCID: PMC10070682 DOI: 10.3389/fpls.2023.1131751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Oat (Avena sativa L.) is an important cereal crop grown worldwide for grain and forage, owing to its high adaptability to diverse environments. However, the genetic and genomics research of oat is lagging behind that of other staple cereal crops. METHODS In this study, a collection of 288 oat lines originating worldwide was evaluated using 2,213 single nucleotide polymorphism (SNP) markers obtained from an oat iSelect 6K-beadchip array to study its genetic diversity, population structure, and linkage disequilibrium (LD) as well as the genotype-phenotype association for hullessness and lemma color. RESULTS The average gene diversity and polymorphic information content (PIC) were 0.324 and 0.262, respectively. The first three principal components (PCs) accounted for 30.33% of the genetic variation, indicating that the population structure of this panel of oat lines was stronger than that reported in most previous studies. In addition, accessions could be classified into two subpopulations using a Bayesian clustering approach, and the clustering pattern of accessions was closely associated with their region of origin. Additionally, evaluation of LD decay using 2,143 mapped markers revealed that the intrachromosomal whole-genome LD decayed rapidly to a critical r2 value of 0.156 for marker pairs separated by a genetic distance of 1.41 cM. Genome-wide association study (GWAS) detected six significant associations with the hullessness trait. Four of these six markers were located on the Mrg21 linkage group between 194.0 and 205.7 cM, while the other two significant markers mapped to Mrg05 and Mrg09. Three significant SNPs, showing strong association with lemma color, were located on linkage groups Mrg17, Mrg18, and Mrg20. DISCUSSION Our results discerned relevant patterns of genetic diversity, population structure, and LD among members of a worldwide collection of oat landraces and cultivars proposed to be 'typical' of the Qinghai-Tibetan Plateau. These results have important implications for further studies on association mapping and practical breeding in high-altitude oat.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Jinqing Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Handong Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Tongrui Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - En You
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Bian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Wenjie Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining, China
| | - Bo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining, China
| | - Yuhu Shen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
4
|
Yan H, Zhang H, Zhou P, Ren C, Peng Y. Genome-Wide Association Mapping of QTL Underlying Groat Protein Content of a Diverse Panel of Oat Accessions. Int J Mol Sci 2023; 24:ijms24065581. [PMID: 36982656 PMCID: PMC10053717 DOI: 10.3390/ijms24065581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Groat protein content (GPC) is a key quality trait attribute in oat. Understanding the variation of GPC in oat germplasms and identifying genomic regions associated with GPC are essential for improving this trait. In this study, the GPC of 174 diverse oat accessions was evaluated in three field trials. The results showed a wide variation in GPC, ranging from 6.97% to 22.24% in this panel. Hulless oats displayed a significantly higher GPC compared to hulled oats across all environments. A GWAS analysis was performed based on 38,313 high-quality SNPs, which detected 27 non-redundant QTLs with 41 SNPs significantly associated with GPC. Two QTLs on chromosome 6C (QTL16) and 4D (QTL11) were consistently detected in multiple environments, with QTL16 being the most significant and explaining the highest proportion of the phenotypical variation in all tested environments except in CZ20. Haplotype analysis showed that the favorable haplotypes for GPC are more prevalent in hulless oats. These findings provide a foundation for future efforts to incorporate favorable alleles into new cultivars through introgression, fine mapping, and cloning of promising QTLs.
Collapse
Affiliation(s)
- Honghai Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haixu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pingping Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Changzhong Ren
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng 137000, China
| | - Yuanying Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
5
|
Kumar P, Singh J, Kaur G, Adunola PM, Biswas A, Bazzer S, Kaur H, Kaur I, Kaur H, Sandhu KS, Vemula S, Kaur B, Singh V, Tseng TM. OMICS in Fodder Crops: Applications, Challenges, and Prospects. Curr Issues Mol Biol 2022; 44:5440-5473. [PMID: 36354681 PMCID: PMC9688858 DOI: 10.3390/cimb44110369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2024] Open
Abstract
Biomass yield and quality are the primary targets in forage crop improvement programs worldwide. Low-quality fodder reduces the quality of dairy products and affects cattle's health. In multipurpose crops, such as maize, sorghum, cowpea, alfalfa, and oat, a plethora of morphological and biochemical/nutritional quality studies have been conducted. However, the overall growth in fodder quality improvement is not on par with cereals or major food crops. The use of advanced technologies, such as multi-omics, has increased crop improvement programs manyfold. Traits such as stay-green, the number of tillers per plant, total biomass, and tolerance to biotic and/or abiotic stresses can be targeted in fodder crop improvement programs. Omic technologies, namely genomics, transcriptomics, proteomics, metabolomics, and phenomics, provide an efficient way to develop better cultivars. There is an abundance of scope for fodder quality improvement by improving the forage nutrition quality, edible quality, and digestibility. The present review includes a brief description of the established omics technologies for five major fodder crops, i.e., sorghum, cowpea, maize, oats, and alfalfa. Additionally, current improvements and future perspectives have been highlighted.
Collapse
Affiliation(s)
- Pawan Kumar
- Agrotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar 125004, India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
- Krishi Vigyan Kendra, Guru Angad Dev Veterinary and Animal Science University, Barnala 148107, India
| | - Gurleen Kaur
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Anju Biswas
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Sumandeep Bazzer
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, WA 57007, USA
| | - Harpreet Kaur
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88001, USA
| | - Ishveen Kaur
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Harpreet Kaur
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | - Shailaja Vemula
- Agronomy Department, UF/IFAS Research and Education Center, Belle Glade, FL 33430, USA
| | - Balwinder Kaur
- Department of Entomology, UF/IFAS Research and Education Center, Belle Glade, FL 33430, USA
| | - Varsha Singh
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39759, USA
| | - Te Ming Tseng
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39759, USA
| |
Collapse
|
6
|
Tinker NA, Wight CP, Bekele WA, Yan W, Jellen EN, Renhuldt NT, Sirijovski N, Lux T, Spannagl M, Mascher M. Genome analysis in Avena sativa reveals hidden breeding barriers and opportunities for oat improvement. Commun Biol 2022; 5:474. [PMID: 35585176 PMCID: PMC9117302 DOI: 10.1038/s42003-022-03256-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/10/2022] [Indexed: 11/22/2022] Open
Abstract
Oat (Avena sativa L.) is an important and nutritious cereal crop, and there is a growing need to identify genes that contribute to improved oat varieties. Here we utilize a newly sequenced and annotated oat reference genome to locate and characterize quantitative trait loci (QTLs) affecting agronomic and grain-quality traits in five oat populations. We find strong and significant associations between the positions of candidate genes and QTL that affect heading date, as well as those that influence the concentrations of oil and β-glucan in the grain. We examine genome-wide recombination profiles to confirm the presence of a large, unbalanced translocation from chromosome 1 C to 1 A, and a possible inversion on chromosome 7D. Such chromosome rearrangements appear to be common in oat, where they cause pseudo-linkage and recombination suppression, affecting the segregation, localization, and deployment of QTLs in breeding programs. Tinker et al. identified the position and effects of major QTLs relative to a new fully annotated reference genome in five recombinant inbred line populations representing nine diverse oat (Avena sativa) varieties. They also characterized two major chromosome rearrangements that may impact breeding targets affected by QTL that are located in these regions.
Collapse
Affiliation(s)
- Nicholas A Tinker
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, K.W. Neatby Bldg., Central Experimental Farm, Ottawa, K1A 0C6, ON, Canada.
| | - Charlene P Wight
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, K.W. Neatby Bldg., Central Experimental Farm, Ottawa, K1A 0C6, ON, Canada
| | - Wubishet A Bekele
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, K.W. Neatby Bldg., Central Experimental Farm, Ottawa, K1A 0C6, ON, Canada
| | - Weikai Yan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, K.W. Neatby Bldg., Central Experimental Farm, Ottawa, K1A 0C6, ON, Canada
| | - Eric N Jellen
- Department of Plant and Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, 84602, Utah, USA
| | - Nikos Tsardakas Renhuldt
- Lund University, Department of Chemistry, Division of Pure and Applied Biochemistry, Box 124, 221 00, Lund, Sweden
| | - Nick Sirijovski
- Lund University, Department of Chemistry, Division of Pure and Applied Biochemistry, Box 124, 221 00, Lund, Sweden.,CropTailor AB, c/o Lund University, Department of Chemistry, Division of Pure and Applied Biochemistry, Box 124, 221 00, Lund, Sweden.,Oatly AB, Food Science, Scheelevägen 19, 223 63, Lund, Sweden
| | - Thomas Lux
- Helmholtz Center Munich - Research Center for Environmental Health, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Manuel Spannagl
- Helmholtz Center Munich - Research Center for Environmental Health, Plant Genome and Systems Biology (PGSB), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Domestication Genomics, Corrensstrasse 3, 06466, Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
| |
Collapse
|
7
|
Blake VC, Wight CP, Yao E, Sen TZ. GrainGenes: Tools and Content to Assist Breeders Improving Oat Quality. Foods 2022; 11:foods11070914. [PMID: 35407001 PMCID: PMC8998097 DOI: 10.3390/foods11070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/10/2022] Open
Abstract
GrainGenes is the USDA-ARS database and Web resource for wheat, barley, oat, rye, and their relatives. As a community Web hub and database for small grains, GrainGenes strives to provide resources for researchers, students, and plant breeders to improve traits such as quality, yield, and disease resistance. Quantitative trait loci (QTL), genes, and genetic maps for quality attributes in GrainGenes represent the historical approach to mapping genes for groat percentage, test weight, protein, fat, and β-glucan content in oat (Avena spp.). Genetic maps are viewable in CMap, the comparative mapping tool that enables researchers to take advantage of highly populated consensus maps to increase the marker density around their genes-of-interest. GrainGenes hosts over 50 genome browsers and is launching an effort for community curation, including the manually curated tracks with beta-glucan QTL and significant markers found via GWAS and cloned cellulose synthase-like AsClF6 alleles.
Collapse
Affiliation(s)
- Victoria C. Blake
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA;
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
| | - Charlene P. Wight
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada;
| | - Eric Yao
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Taner Z. Sen
- Western Regional Research Center, Crop Improvement and Genetics Research Unit, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Correspondence:
| |
Collapse
|
8
|
Esvelt Klos K, Yimer BA, Howarth CJ, McMullen MS, Sorrells ME, Tinker NA, Yan W, Beattie AD. The Genetic Architecture of Milling Quality in Spring Oat Lines of the Collaborative Oat Research Enterprise. Foods 2021; 10:foods10102479. [PMID: 34681528 PMCID: PMC8535619 DOI: 10.3390/foods10102479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Most oat grains destined for human consumption must possess the ability to pass through an industrial de-hulling process with minimal breakage and waste. Uniform grain size and a high groat to hull ratio are desirable traits related to milling performance. The purpose of this study was to characterize the genetic architecture of traits related to milling quality by identifying quantitative trait loci (QTL) contributing to variation among a diverse collection of elite and foundational spring oat lines important to North American oat breeding programs. A total of 501 lines from the Collaborative Oat Research Enterprise (CORE) panel were evaluated for genome-wide association with 6 key milling traits. Traits were evaluated in 13 location years. Associations for 36,315 markers were evaluated for trait means across and within location years, as well as trait variance across location years, which was used to assess trait stability. Fifty-seven QTL influencing one or more of the milling quality related traits were identified, with fourteen QTL mapped influencing mean and variance across location years. The most prominent QTL was Qkernel.CORE.4D on chromosome 4D at approximately 212 cM, which influenced the mean levels of all traits. QTL were identified that influenced trait variance but not mean, trait mean only and both.
Collapse
Affiliation(s)
- Kathy Esvelt Klos
- Small Grains and Potato Germplasm Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 1691 South 2700 West, Aberdeen, ID 83210, USA
- Correspondence:
| | - Belayneh A. Yimer
- Department of Plant, Soil, and Entomological Sciences, University of Idaho Research and Extension, Idaho Falls, ID 83210, USA;
| | - Catherine J. Howarth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EE, UK;
| | - Michael S. McMullen
- Department of Plant Sciences, North Dakota State University, P.O. Box 6050, Fargo, ND 58108, USA;
| | - Mark E. Sorrells
- Plant Breeding and Genetics, Cornell University, 240 Emerson Hall, Ithaca, NY 14853, USA;
| | - Nicholas A. Tinker
- Agriculture and AgriFoods Canada (AAFC), Ottawa Research and Development Centre, 960 Carling Ace., Central Experiment Farm, Ottawa, ON K1A 0C6, Canada; (N.A.T.); (W.Y.)
| | - Weikai Yan
- Agriculture and AgriFoods Canada (AAFC), Ottawa Research and Development Centre, 960 Carling Ace., Central Experiment Farm, Ottawa, ON K1A 0C6, Canada; (N.A.T.); (W.Y.)
| | - Aaron D. Beattie
- Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| |
Collapse
|
9
|
Yan H, Zhou P, Peng Y, Bekele WA, Ren C, Tinker NA, Peng Y. Genetic diversity and genome-wide association analysis in Chinese hulless oat germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3365-3380. [PMID: 32888041 DOI: 10.1007/s00122-020-03674-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/21/2020] [Indexed: 05/12/2023]
Abstract
Genotyping-by-sequencing (GBS)-derived molecular markers reveal the distinct genetic population structure and relatively narrow genetic diversity of Chinese hulless oat landraces. Four markers linked to the naked grain gene (N1) are identified by genome-wide association study (GWAS). Interest in hulless oat (Avena sativa ssp. nuda), a variant of common oat (A. sativa) domesticated in Western Asia, has increased in recent years due to its free-threshing attribute and its domestication history. However, the genetic diversity and population structure of hulless oat, as well as the genetic mechanism of hullessness, are poorly understood. In this study, the genetic diversity and population structure of a worldwide sample of 805 oat lines including 186 hulless oats were investigated using genotyping-by-sequencing. Population structure analyses showed a strong genetic differentiation between hulless landraces vs other oat lines, including the modern hulless cultivars. The distinct subpopulation stratification of hulless landraces and their low genetic diversity suggests that a domestication bottleneck existed in hulless landraces. Additionally, low genetic diversity within European oats and strong differentiation between the spring oats and southern origin oat lines revealed by previous studies were also observed in this study. Genomic regions contributing to these genetic differentiations suggest that genetic loci related to growth habit and stress resistance may have been under intense selection, rather than the hulless-related genomic regions. Genome-wide association analysis detected four markers that were highly associated with hullessness. Three of these were mapped on linkage group Mrg21 at a genetic position between 195.7 and 212.1 cM, providing robust evidence that the dominant N1 locus located on Mrg21 is the single major factor controlling this trait.
Collapse
Affiliation(s)
- Honghai Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pingping Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yun Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wubishet A Bekele
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave, Ottawa, ON, K1A0C6, Canada
| | - Changzhong Ren
- Baicheng Academy of Agricultural Sciences, Baicheng, 137000, China
| | - Nicholas A Tinker
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave, Ottawa, ON, K1A0C6, Canada.
| | - Yuanying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
10
|
Bekele WA, Wight CP, Chao S, Howarth CJ, Tinker NA. Haplotype-based genotyping-by-sequencing in oat genome research. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1452-1463. [PMID: 29345800 PMCID: PMC6041447 DOI: 10.1111/pbi.12888] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 05/05/2023]
Abstract
In a de novo genotyping-by-sequencing (GBS) analysis of short, 64-base tag-level haplotypes in 4657 accessions of cultivated oat, we discovered 164741 tag-level (TL) genetic variants containing 241224 SNPs. From this, the marker density of an oat consensus map was increased by the addition of more than 70000 loci. The mapped TL genotypes of a 635-line diversity panel were used to infer chromosome-level (CL) haplotype maps. These maps revealed differences in the number and size of haplotype blocks, as well as differences in haplotype diversity between chromosomes and subsets of the diversity panel. We then explored potential benefits of SNP vs. TL vs. CL GBS variants for mapping, high-resolution genome analysis and genomic selection in oats. A combined genome-wide association study (GWAS) of heading date from multiple locations using both TL haplotypes and individual SNP markers identified 184 significant associations. A comparative GWAS using TL haplotypes, CL haplotype blocks and their combinations demonstrated the superiority of using TL haplotype markers. Using a principal component-based genome-wide scan, genomic regions containing signatures of selection were identified. These regions may contain genes that are responsible for the local adaptation of oats to Northern American conditions. Genomic selection for heading date using TL haplotypes or SNP markers gave comparable and promising prediction accuracies of up to r = 0.74. Genomic selection carried out in an independent calibration and test population for heading date gave promising prediction accuracies that ranged between r = 0.42 and 0.67. In conclusion, TL haplotype GBS-derived markers facilitate genome analysis and genomic selection in oat.
Collapse
Affiliation(s)
- Wubishet A. Bekele
- Ottawa Research and Development CentreAgriculture and Agri‐Food CanadaOttawaONCanada
| | - Charlene P. Wight
- Ottawa Research and Development CentreAgriculture and Agri‐Food CanadaOttawaONCanada
| | - Shiaoman Chao
- USDA‐ARS Cereal Crops Research UnitRed River Valley Agricultural Research CenterFargoNDUSA
| | - Catherine J. Howarth
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Nicholas A. Tinker
- Ottawa Research and Development CentreAgriculture and Agri‐Food CanadaOttawaONCanada
| |
Collapse
|
11
|
Sowadan O, Li D, Zhang Y, Zhu S, Hu X, Bhanbhro LB, Edzesi WM, Dang X, Hong D. Mining of favorable alleles for lodging resistance traits in rice (oryza sativa) through association mapping. PLANTA 2018; 248:155-169. [PMID: 29637263 DOI: 10.1007/s00425-018-2885-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/26/2018] [Indexed: 05/04/2023]
Affiliation(s)
- Ognigamal Sowadan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dalu Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanqing Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shangshang Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoxiao Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lal Bux Bhanbhro
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wisdom M Edzesi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaojing Dang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Delin Hong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Sunilkumar BA, Leonova S, Öste R, Olsson O. Identification and characterization of high protein oat lines from a mutagenized oat population. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Yan H, Bekele WA, Wight CP, Peng Y, Langdon T, Latta RG, Fu YB, Diederichsen A, Howarth CJ, Jellen EN, Boyle B, Wei Y, Tinker NA. High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2133-2149. [PMID: 27522358 PMCID: PMC5069325 DOI: 10.1007/s00122-016-2762-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/02/2016] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Genome analysis of 27 oat species identifies ancestral groups, delineates the D genome, and identifies ancestral origin of 21 mapped chromosomes in hexaploid oat. We investigated genomic relationships among 27 species of the genus Avena using high-density genetic markers revealed by genotyping-by-sequencing (GBS). Two methods of GBS analysis were used: one based on tag-level haplotypes that were previously mapped in cultivated hexaploid oat (A. sativa), and one intended to sample and enumerate tag-level haplotypes originating from all species under investigation. Qualitatively, both methods gave similar predictions regarding the clustering of species and shared ancestral genomes. Furthermore, results were consistent with previous phylogenies of the genus obtained with conventional approaches, supporting the robustness of whole genome GBS analysis. Evidence is presented to justify the final and definitive classification of the tetraploids A. insularis, A. maroccana (=A. magna), and A. murphyi as containing D-plus-C genomes, and not A-plus-C genomes, as is most often specified in past literature. Through electronic painting of the 21 chromosome representations in the hexaploid oat consensus map, we show how the relative frequency of matches between mapped hexaploid-derived haplotypes and AC (DC)-genome tetraploids vs. A- and C-genome diploids can accurately reveal the genome origin of all hexaploid chromosomes, including the approximate positions of inter-genome translocations. Evidence is provided that supports the continued classification of a diverged B genome in AB tetraploids, and it is confirmed that no extant A-genome diploids, including A. canariensis, are similar enough to the D genome of tetraploid and hexaploid oat to warrant consideration as a D-genome diploid.
Collapse
Affiliation(s)
- Honghai Yan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wubishet A Bekele
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
| | - Charlene P Wight
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
| | - Yuanying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tim Langdon
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, UK
| | - Robert G Latta
- Department of Biology, Dalhousie University, 1355 Oxford St., Halifax, NS, B3H 4R2, Canada
| | - Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Axel Diederichsen
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Catherine J Howarth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, UK
| | - Eric N Jellen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Brian Boyle
- Plateforme d'analyses génomiques, Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Nicholas A Tinker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
14
|
Tumino G, Voorrips RE, Rizza F, Badeck FW, Morcia C, Ghizzoni R, Germeier CU, Paulo MJ, Terzi V, Smulders MJM. Population structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratios. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1711-24. [PMID: 27318699 PMCID: PMC4983288 DOI: 10.1007/s00122-016-2734-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/21/2016] [Indexed: 05/19/2023]
Abstract
Infinium SNP data analysed as continuous intensity ratios enabled associating genotypic and phenotypic data from heterogeneous oat samples, showing that association mapping for frost tolerance is a feasible option. Oat is sensitive to freezing temperatures, which restricts the cultivation of fall-sown or winter oats to regions with milder winters. Fall-sown oats have a longer growth cycle, mature earlier, and have a higher productivity than spring-sown oats, therefore improving frost tolerance is an important goal in oat breeding. Our aim was to test the effectiveness of a Genome-Wide Association Study (GWAS) for mapping QTLs related to frost tolerance, using an approach that tolerates continuously distributed signals from SNPs in bulked samples from heterogeneous accessions. A collection of 138 European oat accessions, including landraces, old and modern varieties from 27 countries was genotyped using the Infinium 6K SNP array. The SNP data were analyzed as continuous intensity ratios, rather than converting them into discrete values by genotype calling. PCA and Ward's clustering of genetic similarities revealed the presence of two main groups of accessions, which roughly corresponded to Continental Europe and Mediterranean/Atlantic Europe, although a total of eight subgroups can be distinguished. The accessions were phenotyped for frost tolerance under controlled conditions by measuring fluorescence quantum yield of photosystem II after a freezing stress. GWAS were performed by a linear mixed model approach, comparing different corrections for population structure. All models detected three robust QTLs, two of which co-mapped with QTLs identified earlier in bi-parental mapping populations. The approach used in the present work shows that SNP array data of heterogeneous hexaploid oat samples can be successfully used to determine genetic similarities and to map associations to quantitative phenotypic traits.
Collapse
Affiliation(s)
- Giorgio Tumino
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy.
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands.
| | - Roeland E Voorrips
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Fulvia Rizza
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Franz W Badeck
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Caterina Morcia
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Roberta Ghizzoni
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Christoph U Germeier
- Julius Kühn Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, 06484, Quedlinburg, Germany
| | - Maria-João Paulo
- Biometris, Wageningen UR, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| | - Valeria Terzi
- Council for Agricultural Research and Economics, Genomics Research Centre, Via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Marinus J M Smulders
- Wageningen UR Plant Breeding, Droevendaalsesteeg 1, NL-6708 PB, Wageningen, The Netherlands
| |
Collapse
|
15
|
Singh AK, Singh R, Subramani R, Kumar R, Wankhede DP. Molecular Approaches to Understand Nutritional Potential of Coarse Cereals. Curr Genomics 2016; 17:177-92. [PMID: 27252585 PMCID: PMC4869005 DOI: 10.2174/1389202917666160202215308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023] Open
Abstract
Coarse grains are important group of crops that constitutes staple food for large population residing primarily in the arid and semi-arid regions of the world. Coarse grains are designated as nutri-cereals as they are rich in essential amino acids, minerals and vitamins. In spite of having several nutritional virtues in coarse grain as mentioned above, there is still scope for improvement in quality parameters such as cooking qualities, modulation of nutritional constituents and reduction or elimination of anti-nutritional factors. Besides its use in traditional cooking, coarse grains have been used mainly in the weaning food preparation and other malted food production. Improvement in quality parameters will certainly increase consumer's preference for coarse grains and increase their demand. The overall genetic gain in quality traits of economic importance in the cultivated varieties will enhance their industrial value and simultaneously increase income of farmers growing these varieties. The urgent step for improvement of quality traits in coarse grains requires a detailed understanding of molecular mechanisms responsible for varied level of different nutritional contents in different genotypes of these crops. In this review we have discussed the progresses made in understanding of coarse grain biology with various omics tool coupled with modern breeding approaches and the current status with regard to our effort towards dissecting traits related to improvement of quality and nutritional constituents of grains.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rajkumar Subramani
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rajesh Kumar
- Division of Genomic Resources, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | | |
Collapse
|
16
|
Winkler LR, Michael Bonman J, Chao S, Admassu Yimer B, Bockelman H, Esvelt Klos K. Population Structure and Genotype-Phenotype Associations in a Collection of Oat Landraces and Historic Cultivars. FRONTIERS IN PLANT SCIENCE 2016; 7:1077. [PMID: 27524988 PMCID: PMC4965477 DOI: 10.3389/fpls.2016.01077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/08/2016] [Indexed: 05/12/2023]
Abstract
Population structure and genetic architecture of phenotypic traits in oat (Avena sativa L.) remain relatively under-researched compared to other small grain species. This study explores the historic context of current elite germplasm, including phenotypic and genetic characterization, with a particular focus on identifying under-utilized areas. A diverse panel of cultivated oat accessions was assembled from the USDA National Small Grains Collection to represent a gene pool relatively unaffected by twentieth century breeding activity and unlikely to have been included in recent molecular studies. The panel was genotyped using an oat iSelect 6K beadchip SNP array. The final dataset included 759 unique individuals and 2,715 polymorphic markers. Some population structure was apparent, with the first three principal components accounting for 38.8% of variation and 73% of individuals belonging to one of three clusters. One cluster with high genetic distinctness appears to have been largely overlooked in twentieth century breeding. Classification and phenotype data provided by the Germplasm Resources Information Network were evaluated for their relationship to population structure. Of the structuring variables evaluated, improvement status (cultivar or landrace) was relatively unimportant, indicating that landraces and cultivars included in the panel were all sampled from a similar underlying population. Instead, lemma color and region of origin showed the strongest explanatory power. An exploratory association mapping study of the panel using a subset of 2,588 mapped markers generated novel indications of genomic regions associated with awn frequency, kernels per spikelet, lemma color, and panicle type. Further results supported previous findings of loci associated with barley yellow dwarf virus tolerance, crown rust (caused by Puccinia coronata f. sp. avenae) resistance, days to anthesis, and growth habit (winter/spring). In addition, two novel loci were identified for crown rust resistance.
Collapse
Affiliation(s)
- Louisa R. Winkler
- Sustainable Seed Systems Laboratory, Department of Crop and Soil Sciences, Washington State University, PullmanWA, USA
| | - J. Michael Bonman
- Small Grains and Potato Germplasm Research Unit, United States Department of Agriculture – Agricultural Research Service, AberdeenID, USA
| | - Shiaoman Chao
- Cereal Crops Research Unit, United States Department of Agriculture – Agricultural Research Service, FargoND, USA
| | - B. Admassu Yimer
- Small Grains and Potato Germplasm Research Unit, United States Department of Agriculture – Agricultural Research Service, AberdeenID, USA
| | - Harold Bockelman
- Small Grains and Potato Germplasm Research Unit, United States Department of Agriculture – Agricultural Research Service, AberdeenID, USA
| | - Kathy Esvelt Klos
- Small Grains and Potato Germplasm Research Unit, United States Department of Agriculture – Agricultural Research Service, AberdeenID, USA
- *Correspondence: Kathy Esvelt Klos,
| |
Collapse
|
17
|
Oat Fungal Diseases and the Application of Molecular Marker Technology for Their Control. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1188-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
He X, Skinnes H, Oliver RE, Jackson EW, Bjørnstad A. Linkage mapping and identification of QTL affecting deoxynivalenol (DON) content (Fusarium resistance) in oats (Avena sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2655-70. [PMID: 23959525 DOI: 10.1007/s00122-013-2163-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/12/2013] [Indexed: 05/22/2023]
Abstract
Mycotoxins caused by Fusarium spp. is a major concern on food and feed safety in oats, although Fusarium head blight (FHB) is often less apparent than in other small grain cereals. Breeding resistant cultivars is an economic and environment-friendly way to reduce toxin content, either by the identification of resistance QTL or phenotypic evaluation. Both are little explored in oats. A recombinant-inbred line population, Hurdal × Z595-7 (HZ595, with 184 lines), was used for QTL mapping and was phenotyped for 3 years. Spawn inoculation was applied and deoxynivalenol (DON) content, FHB severity, days to heading and maturity (DH and DM), and plant height (PH) were measured. The population was genotyped with DArTs, AFLPs, SSRs and selected SNPs, and a linkage map of 1,132 cM was constructed, covering all 21 oat chromosomes. A QTL for DON on chromosome 17A/7C, tentatively designated as Qdon.umb-17A/7C, was detected in all experiments using composite interval mapping, with phenotypic effects of 12.2–26.6 %. In addition, QTL for DON were also found on chromosomes 5C, 9D, 13A, 14D and unknown_3, while a QTL for FHB was found on 11A. Several of the DON/FHB QTL coincided with those for DH, DM and/or PH. A half-sib population of HZ595, Hurdal × Z615-4 (HZ615, with 91 lines), was phenotyped in 2011 for validation of QTL found in HZ595, and Qdon.umb-17A/7C was again localized with a phenotypic effect of 12.4 %. Three SNPs closely linked to Qdon.umb-17A/7C were identified in both populations, and one each for QTL on 5C, 11A and 13A were identified in HZ595. These SNPs, together with those yet to be identified, could be useful in marker-assisted selection to pyramiding resistance QTL.
Collapse
|
19
|
Newell MA, Asoro FG, Scott MP, White PJ, Beavis WD, Jannink JL. Genome-wide association study for oat (Avena sativa L.) beta-glucan concentration using germplasm of worldwide origin. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1687-96. [PMID: 22865125 DOI: 10.1007/s00122-012-1945-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 07/15/2012] [Indexed: 05/18/2023]
Abstract
Detection of quantitative trait loci (QTL) controlling complex traits followed by selection has become a common approach for selection in crop plants. The QTL are most often identified by linkage mapping using experimental F(2), backcross, advanced inbred, or doubled haploid families. An alternative approach for QTL detection are genome-wide association studies (GWAS) that use pre-existing lines such as those found in breeding programs. We explored the implementation of GWAS in oat (Avena sativa L.) to identify QTL affecting β-glucan concentration, a soluble dietary fiber with several human health benefits when consumed as a whole grain. A total of 431 lines of worldwide origin were tested over 2 years and genotyped using Diversity Array Technology (DArT) markers. A mixed model approach was used where both population structure fixed effects and pair-wise kinship random effects were included. Various mixed models that differed with respect to population structure and kinship were tested for their ability to control for false positives. As expected, given the level of population structure previously described in oat, population structure did not play a large role in controlling for false positives. Three independent markers were significantly associated with β-glucan concentration. Significant marker sequences were compared with rice and one of the three showed sequence homology to genes localized on rice chromosome seven adjacent to the CslF gene family, known to have β-glucan synthase function. Results indicate that GWAS in oat can be a successful option for QTL detection, more so with future development of higher-density markers.
Collapse
Affiliation(s)
- Mark A Newell
- The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Molnar SJ, Chapados JT, Satheeskumar S, Wight CP, Bancroft B, Orr W, Luckert DE, Kibite S. Comparative mapping of the oat Dw6/dw6 dwarfing locus using NILs and association with vacuolar proton ATPase subunit H. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1115-25. [PMID: 22307555 DOI: 10.1007/s00122-011-1773-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/15/2011] [Indexed: 05/12/2023]
Abstract
Seven pairs of oat near-isogenic lines (NILs) (Kibite in Crop Sci 41:277-278, 2001) contrasting for the Dw6 dwarfing gene were used to test for correlation between tall/dwarf phenotype and polymorphic genotype using restriction fragment length polymorphism (RFLP) and other molecular markers selected from the Kanota × Ogle (K×O) (Wight et al. in Genome 46:28-47, 2003) and Terra × Marion (De Koeyer et al. in Theor Appl Genet 108:1285-1298, 2004) recombination maps. This strategy located the Dw6/dw6 locus to a small chromosomal region on K×O linkage group (LG) KO33, near or at a putative RFLP locus aco245z. Aco245z and other tightly linked flanking markers have potential for use in marker-assisted selection (MAS), and PCR-based markers were developed from several of these. RFLP genotyping of the Dw6 NILs indicated that 13 of the 14 individual lines were homogeneously maternal or paternal for a large genomic region near Dw6/dw6, an unexpected result for NILs. The cDNA clone aco245 codes for a vacuolar proton ATPase subunit H, a potential candidate gene for Dw6. Vacuolar proton ATPase enzymes have a central role in plant growth and development and a mutation in subunit C is responsible for the det3 dwarfing mutation in Arabidopsis thaliana (Schumacher et al. in Genes Dev 13:3259-3270, 1999). Aco245 affords the potential of designing highly precise diagnostic markers for MAS for Dw6. The Dw6 NILs have potential utility to investigate the role of vacuolar proton ATPases in growth and development in plants.
Collapse
Affiliation(s)
- Stephen J Molnar
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Central Experimental Farm, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tanhuanpää P, Manninen O, Beattie A, Eckstein P, Scoles G, Rossnagel B, Kiviharju E. An updated doubled haploid oat linkage map and QTL mapping of agronomic and grain quality traits from Canadian field trials. Genome 2012; 55:289-301. [PMID: 22443510 DOI: 10.1139/g2012-017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The first doubled haploid oat linkage map constructed at MTT Agrifood Research Finland was supplemented with additional microsatellites and Diversity Array Technology (DArT) markers to produce a map containing 1058 DNA markers and 34 linkage groups. The map was used to locate quantitative trait loci (QTLs) for 11 important breeding traits analyzed from Finnish and Canadian field trials. The new markers enabled most of the linkage groups to be anchored to the 'Kanota' × 'Ogle' oat ( Avena sativa L.) reference map and allowed comparison of the QTLs located in this study with those found previously. Two to 12 QTLs for each trait were discovered, of which several were expressed consistently across several environments.
Collapse
Affiliation(s)
- Pirjo Tanhuanpää
- Plant Genomics, Biotechnology and Food Research, MTT Agrifood Research Finland, Finland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Satheeskumar S, Sharp PJ, Lagudah ES, McIntosh RA, Molnar SJ. Genetic association of crown rust resistance gene Pc68, storage protein loci, and resistance gene analogues in oats. Genome 2011; 54:484-97. [PMID: 21615301 DOI: 10.1139/g11-014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Segregating F(3) families, derived from a cross between oat cultivar Swan and the putative single gene line PC68, were used to determine the association of seed storage protein loci and resistance gene analogues (RGAs) with the crown rust resistance gene Pc68. SDS-PAGE analysis detected three avenin loci, AveX, AveY, and AveZ, closely linked to Pc68. Their diagnostic alleles are linked in coupling to Pc68 and were also detected in three additional lines carrying Pc68. Another protein locus was linked in repulsion to Pc68. In complementary studies, three wheat RGA clones (W2, W4, and W10) detected restriction fragment length polymorphisms (RFLPs) between homozygous resistant and homozygous susceptible F(3) DNA bulks. Four oat homologues of W2 were cloned and sequenced. RFLPs detected with two of them were mapped using F(3) and F(4) populations. Clone 18 detected a locus, Orga2, linked in repulsion to Pc68. Clone 22 detected several RFLPs including Orga1 (the closest locus to Pc68) and three RGA loci (Orga22-2, Orga22-3, and Orga22-4) loosely linked to Pc68. The diagnostic RFLPs linked in coupling to Pc68 were detected by clone 22 in three additional oat lines carrying Pc68 and have potential utility in investigating and improving crown rust resistance of oat.
Collapse
Affiliation(s)
- Sivakala Satheeskumar
- The University of Sydney, Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
| | | | | | | | | |
Collapse
|
23
|
Tanhuanpää P, Manninen O, Kiviharju E. QTLs for important breeding characteristics in the doubled haploid oat progeny. Genome 2010; 53:482-93. [DOI: 10.1139/g10-022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A homozygous mapping population, consisting of doubled haploid (DH) oat ( Avena sativa L.) plants generated through anther culture of F1 plants from the cross between the Finnish cultivar ‘Aslak’ and the Swedish cultivar ‘Matilda’, was used to construct an oat linkage map. Ten agronomic and quality traits were analyzed in the DH plants from field trials in 2005 and 2006. Leaf blotch (caused by Pyrenophora avenae ) resistance was also evaluated in a greenhouse test with 2 different isolates. One to 8 quantitative trait loci (QTLs) were found to be associated with each trait studied. Some chromosomal regions affected more than 1 trait; for example, 4 regions affected both protein and oil content. This study gives valuable information to oat breeders concerning the inheritance of important traits, and it provides potential tools to assist breeding.
Collapse
Affiliation(s)
- Pirjo Tanhuanpää
- Plant Genomics, Biotechnology and Food Research, MTT Agrifood Research Finland, FI-31600 Jokioinen, Finland
| | - Outi Manninen
- Plant Genomics, Biotechnology and Food Research, MTT Agrifood Research Finland, FI-31600 Jokioinen, Finland
| | - Elina Kiviharju
- Plant Genomics, Biotechnology and Food Research, MTT Agrifood Research Finland, FI-31600 Jokioinen, Finland
| |
Collapse
|
24
|
Tinker NA, Kilian A, Wight CP, Heller-Uszynska K, Wenzl P, Rines HW, Bjørnstad A, Howarth CJ, Jannink JL, Anderson JM, Rossnagel BG, Stuthman DD, Sorrells ME, Jackson EW, Tuvesson S, Kolb FL, Olsson O, Federizzi LC, Carson ML, Ohm HW, Molnar SJ, Scoles GJ, Eckstein PE, Bonman JM, Ceplitis A, Langdon T. New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics 2009; 10:39. [PMID: 19159465 PMCID: PMC2661094 DOI: 10.1186/1471-2164-10-39] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 01/21/2009] [Indexed: 12/03/2022] Open
Abstract
Background Genomic discovery in oat and its application to oat improvement have been hindered by a lack of genetic markers common to different genetic maps, and by the difficulty of conducting whole-genome analysis using high-throughput markers. This study was intended to develop, characterize, and apply a large set of oat genetic markers based on Diversity Array Technology (DArT). Results Approximately 19,000 genomic clones were isolated from complexity-reduced genomic representations of pooled DNA samples from 60 oat varieties of global origin. These were screened on three discovery arrays, with more than 2000 polymorphic markers being identified for use in this study, and approximately 2700 potentially polymorphic markers being identified for use in future studies. DNA sequence was obtained for 2573 clones and assembled into a non-redundant set of 1770 contigs and singletons. Of these, 705 showed highly significant (Expectation < 10E-10) BLAST similarity to gene sequences in public databases. Based on marker scores in 80 recombinant inbred lines, 1010 new DArT markers were used to saturate and improve the 'Kanota' × 'Ogle' genetic map. DArT markers provided map coverage approximately equivalent to existing markers. After binning markers from similar clones, as well as those with 99% scoring similarity, a set of 1295 non-redundant markers was used to analyze genetic diversity in 182 accessions of cultivated oat of worldwide origin. Results of this analysis confirmed that major clusters of oat diversity are related to spring vs. winter type, and to the presence of major breeding programs within geographical regions. Secondary clusters revealed groups that were often related to known pedigree structure. Conclusion These markers will provide a solid basis for future efforts in genomic discovery, comparative mapping, and the generation of an oat consensus map. They will also provide new opportunities for directed breeding of superior oat varieties, and guidance in the maintenance of oat genetic diversity.
Collapse
Affiliation(s)
- Nicholas A Tinker
- Agriculture and Agri-Food Canada, ECORC, K,W, Neatby Bldg,, 960 Carling Ave,, C,E, Farm, Ottawa, ON K1A 0C6, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tanhuanpää P, Kalendar R, Schulman AH, Kiviharju E. The first doubled haploid linkage map for cultivated oat. Genome 2008; 51:560-9. [PMID: 18650946 DOI: 10.1139/g08-040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To date, all linkage maps of hexaploid oat (Avena sativa L.) have been constructed using recombinant inbred lines (RILs). Doubled haploids (DHs), however, have the advantage over RILs of their comprehensive homozygosity. DHs have been used for mapping in several cereal species, but in oats the production of large DH populations has only recently become an option. A linkage map of hexaploid oat was constructed using an anther culture-derived DH population (137 individuals) from the F1 individuals of a cross between the Finnish cultivar 'Aslak' and the Swedish cultivar 'Matilda'. The map is composed of 28 linkage groups containing 625 DNA markers: 375 AFLPs (amplified fragment length polymorphisms), 3 IRAPs (inter-retrotransposon amplified polymorphisms), 12 ISSRs (inter simple sequence repeats), 12 microsatellites, 57 RAPDs (random amplified polymorphic DNAs), 59 REMAPs (retrotransposon-microsatellite amplified polymorphisms), 105 SRAPs (sequence-related amplified polymorphisms), and 2 SNPs (single-nucleotide polymorphisms). The total map size is 1526 cM. Over half of the markers in the map showed distorted segregation, with alleles from 'Aslak' usually prevailing. This is explained by the better performance of 'Aslak' in anther culture. Quantitative trait loci affecting some important quality and agronomic traits are being localized on the map.
Collapse
Affiliation(s)
- Pirjo Tanhuanpää
- Plant Genomics, Biotechnology and Food Research, MTT Agrifood Research Finland, FI-31600 Jokioinen, Finland.
| | | | | | | |
Collapse
|
26
|
Orr W, Molnar SJ. Development of PCR-based SCAR and CAPS markers linked to β-glucan and protein content QTL regions in oat. Genome 2008; 51:421-5. [DOI: 10.1139/g08-026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A key breeding objective in oat ( Avena sativa L.) is cultivars with high and low β-glucan content. In a targeted strategy to develop PCR-based markers linked to published β-glucan content quantitative trait loci (QTLs) regions, 15 random amplified polymorphic DNA (RAPD) fragments were cloned and their sequences used to design sequence-characterized amplified region (SCAR) and cleaved amplified polymorphic sequence (CAPS) primers. The 13 derived SCAR markers and 2 derived CAPS markers were mapped on either the ‘Kanota’ × ‘Ogle’ (KO) or the ‘Terra’ × ‘Marion’ (TM) oat reference map. In addition, 3 previously reported SCAR markers were characterized further. Ten SCAR markers and one CAPS marker were associated with β-glucan QTL regions and many of these are also associated with QTLs for protein content or other traits. These markers have the potential to help define homologous and homoeologous relationships in oat and investigate the complex genetics of β-glucan and protein content.
Collapse
Affiliation(s)
- Winson Orr
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Central Experimental Farm, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Stephen J. Molnar
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Central Experimental Farm, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
27
|
Locatelli AB, Federizzi LC, Milach SCK, Wight CP, Molnar SJ, Chapados JT, Tinker NA. Loci affecting flowering time in oat under short-day conditions. Genome 2007; 49:1528-38. [PMID: 17426767 DOI: 10.1139/g06-108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Flowering time (or days to heading) is an important characteristic in crop plants that affects adaptation to cropping cycles and growing seasons. The objectives of this study were to identify molecular markers associated with flowering time in 3 oat populations developed from Brazilian oat varieties, and to compare their map locations with those of other loci that might influence flowering time. Flowering time was studied in recombinant inbred lines from 3 hexaploid oat populations: UFRGS 8 x Pc68/5*Starter; UFRGS 881971 x Pc68/5*Starter; and UFRGS 8 x UFRGS 930605. Bulked segregant analysis, using amplified fragment length polymorphism, was followed by selective mapping in each population and in a reference population, 'Kanota' x 'Ogle' (KxO). One quantitative trait locus (QTL) with major effects on flowering time was identified in each cross. Comparative mapping showed that a major QTL, with earliness alleles originating from UFRGS 8 and UFRGS 881971, is in a region with close homology to KxO linkage group 17 and to a locus that reportedly confers day-length insensitivity in oat (Di1). This is the first report to identify the map location of the Di1 locus, and putatively confirm the presence of Di1 alleles in new germplasm. Further comparative mapping and the alignment of mapped oat markers with the sequenced rice genome suggest that this QTL and (or) Di1 is orthologous to the Hd1 locus in rice and the CONSTANS gene in Arabidopsis and other species. A different QTL with major effects segregated in the UFRGS 8 x UFRGS 930605 cross, where the early-flowering allele for Di1 was probably fixed. Two additional QTLs with smaller effects were identified in the UFRGS 8 x Pc68/5*Starter population. These results suggest that the Brazilian oat line UFRGS 8 contains an optimal set of alleles conditioning earliness under the short-day conditions of the Brazilian winter growing season, and that molecular selection could be used to introgress these alleles into other breeding material.
Collapse
Affiliation(s)
- Ana B Locatelli
- Federal University of Rio Grande do Sul, Departamento de Plantas de Lavoura, Caixa postal 15100, CEP 91.501-970, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Wight CP, Kibite S, Tinker NA, Molnar SJ. Identification of molecular markers for aluminium tolerance in diploid oat through comparative mapping and QTL analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:222-31. [PMID: 16323000 DOI: 10.1007/s00122-005-0114-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 09/14/2005] [Indexed: 05/05/2023]
Abstract
The degree of aluminium tolerance varies widely across cereal species, with oats (Avena spp.) being among the most tolerant. The objective of this study was to identify molecular markers linked to aluminium tolerance in the diploid oat A. strigosa. Restriction fragment length polymorphism markers were tested in regions where comparative mapping indicated the potential for orthologous quantitative trait loci (QTL) for aluminium tolerance in other grass species. Amplified fragment length polymorphism (AFLP) and sequence-characterized amplified region (SCAR) markers were used to provide additional coverage of the genome. Four QTL were identified. The largest QTL explained 39% of the variation and is possibly orthologous to the major gene found in the Triticeae as well as Alm1 in maize and a minor gene in rice. A second QTL may be orthologous to the Alm2 gene in maize. Two other QTL were associated with anonymous markers. Together, these QTL accounted for 55% of the variation. A SCAR marker linked to the major QTL identified in this study could be used to introgress the aluminium tolerance trait from A. strigosa into cultivated oat germplasm.
Collapse
Affiliation(s)
- C P Wight
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Central Experimental Farm, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
| | | | | | | |
Collapse
|
29
|
Portyanko VA, Chen G, Rines HW, Phillips RL, Leonard KJ, Ochocki GE, Stuthman DD. Quantitative trait loci for partial resistance to crown rust, Puccinia coronata, in cultivated oat, Avena sativa L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:313-24. [PMID: 15918009 DOI: 10.1007/s00122-005-2024-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 04/02/2005] [Indexed: 05/02/2023]
Abstract
To facilitate the detection of quantitative trait loci (QTLs) for partial resistance to oat crown rust, Puccinia coronata f. sp. avenae Eriks., a genetic map was generated in a population of 158 F(6)-derived oat recombinant inbred lines from a cross of a partial resistance line MN841801-1 by a susceptible cultivar selection 'Noble-2'. The map, developed using 230 marker loci, mostly restriction fragment length polymorphism and amplified fragment length polymorphism markers, spanned 1,509 cM (Haldane) arranged into 30 linkage groups of 2-18 markers each. Four consistently detected major QTLs for partial rust resistance, Prq1a, Prq1b, Prq2, and Prq7, and three minor QTLs, Prq3, Prq5, and Prq6, were found in tests involving three field and two greenhouse environments. In addition, two major QTLs for flowering time, Ftq1 and Ftq7, and five weaker QTLs, Ftq2, Ftq3, Ftq4, Ftq5, and Ftq6, were revealed. Overlapping of the map segments of Ftq1 and Prq1 and of Ftq7 and Prq7 suggested either linkage between the flowering time QTLs and resistance QTLs or a pleiotropic effect of the Ftq QTLs on rust resistance. Relatively low heritability estimates (0.30) obtained for partial resistance to crown rust in the field indicate a potential value for marker-assisted selection.
Collapse
Affiliation(s)
- V A Portyanko
- Department of Plant Biology, University of Minnesota, St. Paul, 55108, USA
| | | | | | | | | | | | | |
Collapse
|