1
|
Duraiswamy A, Sneha A. NM, Jebakani K. S, Selvaraj S, Pramitha J. L, Selvaraj R, Petchiammal K. I, Kather Sheriff S, Thinakaran J, Rathinamoorthy S, Kumar P. R. Genetic manipulation of anti-nutritional factors in major crops for a sustainable diet in future. FRONTIERS IN PLANT SCIENCE 2023; 13:1070398. [PMID: 36874916 PMCID: PMC9976781 DOI: 10.3389/fpls.2022.1070398] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
The consumption of healthy food, in order to strengthen the immune system, is now a major focus of people worldwide and is essential to tackle the emerging pandemic concerns. Moreover, research in this area paves the way for diversification of human diets by incorporating underutilized crops which are highly nutritious and climate-resilient in nature. However, although the consumption of healthy foods increases nutritional uptake, the bioavailability of nutrients and their absorption from foods also play an essential role in curbing malnutrition in developing countries. This has led to a focus on anti-nutrients that interfere with the digestion and absorption of nutrients and proteins from foods. Anti-nutritional factors in crops, such as phytic acid, gossypol, goitrogens, glucosinolates, lectins, oxalic acid, saponins, raffinose, tannins, enzyme inhibitors, alkaloids, β-N-oxalyl amino alanine (BOAA), and hydrogen cyanide (HCN), are synthesized in crop metabolic pathways and are interconnected with other essential growth regulation factors. Hence, breeding with the aim of completely eliminating anti-nutrition factors tends to compromise desirable features such as yield and seed size. However, advanced techniques, such as integrated multi-omics, RNAi, gene editing, and genomics-assisted breeding, aim to breed crops in which negative traits are minimized and to provide new strategies to handle these traits in crop improvement programs. There is also a need to emphasize individual crop-based approaches in upcoming research programs to achieve smart foods with minimum constraints in future. This review focuses on progress in molecular breeding and prospects for additional approaches to improve nutrient bioavailability in major crops.
Collapse
Affiliation(s)
- Aishwarya Duraiswamy
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Nancy Mano Sneha A.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sherina Jebakani K.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sellakumar Selvaraj
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Lydia Pramitha J.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Ramchander Selvaraj
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Indira Petchiammal K.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sharmili Kather Sheriff
- Agronomy, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Jenita Thinakaran
- Horticulture, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Samundeswari Rathinamoorthy
- Crop Physiology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Ramesh Kumar P.
- Plant Biochemistry, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
2
|
Tp MA, Kumar A, Anilkumar C, Sah RP, Behera S, Marndi BC. Understanding natural genetic variation for grain phytic acid content and functional marker development for phytic acid-related genes in rice. BMC PLANT BIOLOGY 2022; 22:446. [PMID: 36114452 PMCID: PMC9482188 DOI: 10.1186/s12870-022-03831-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The nutritional value of rice can be improved by developing varieties with optimum levels of grain phytic acid (PA). Artificial low-PA mutants with impaired PA biosynthesis have been developed in rice through induced mutagenesis. However, low-PA mutant stocks with drastically reduced grain PA content have poor breeding potential, and their use in rice breeding is restricted due to their detrimental pleiotropic effects, which include decreased seed viability, low grain weight, and low seed yield. Therefore, it is necessary to take advantage of the natural variation in grain PA content in order to reduce the PA content to an ideal level without compromising the crop's agronomic performance. Natural genetic diversity in grain PA content has not been thoroughly examined among elite genetic stocks. Additionally, given grain PA content as a quantitative trait driven by polygenes, DNA marker-assisted selection may be required for manipulation of such a trait; however, informative DNA markers for PA content have not yet been identified in rice. Here we investigated and dissected natural genetic variation and genetic variability components for grain PA content in rice varieties cultivated in Eastern and North-Eastern India during the last 50 years. We developed novel gene-based markers for the low-PA-related candidate genes in rice germplasm, and their allelic diversity and association with natural variation in grain PA content were studied. RESULTS A wide (0.3-2.8%), significant variation for grain PA content, with decade-wise and ecology-wise differences, was observed among rice varieties. Significant genotype x environment interaction suggested polygenic inheritance. The novel candidate gene-based markers detected 43 alleles in the rice varieties. The new markers were found highly informative as indicated by PIC values (0.11-0.65; average: 0.34) and coverage of total diversity. Marker alleles developed from two putative transporter genes viz., SPDT and OsPT8 were significantly associated with grain PA variation assayed on the panel. A 201 bp allele at the 3' UTR of SPDT gene was negatively associated with grain PA content and explained 7.84% of the phenotypic variation. A rare allele in the coding sequence of OsPT8 gene was positively associated with grain PA content which explained phenotypic variation of 18.49%. CONCLUSION Natural variation in grain PA content is substantial and is mostly controlled by genetic factors. The unique DNA markers linked with PA content have significant potential as genomic resources for the development of low-PA rice varieties through genomics-assisted breeding procedures.
Collapse
Affiliation(s)
| | - Awadhesh Kumar
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Chandrappa Anilkumar
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Rameswar Prasad Sah
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India.
| | - Sasmita Behera
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Bishnu Charan Marndi
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| |
Collapse
|
3
|
Pramitha JL, Rana S, Aggarwal PR, Ravikesavan R, Joel AJ, Muthamilarasan M. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. ADVANCES IN GENETICS 2020; 107:89-120. [PMID: 33641749 DOI: 10.1016/bs.adgen.2020.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural or synthetic compounds that interfere with the bioavailability of nutrients are called antinutrients. Phytic acid (PA) is one of the major antinutrients present in the grains and acts as a chelator of micronutrients. The presence of six reactive phosphate groups in PA hinders the absorption of micronutrients in the gut of non-ruminants. Consumption of PA-rich diet leads to deficiency of minerals such as iron and zinc among human population. On the contrary, PA is a natural antioxidant, and PA-derived molecules function in various signal transduction pathways. Therefore, optimal concentration of PA needs to be maintained in plants to avoid adverse pleiotropic effects, as well as to ensure micronutrient bioavailability in the diets. Given this, the chapter enumerates the structure, biosynthesis, and accumulation of PA in food grains followed by their roles in growth, development, and stress responses. Further, the chapter elaborates on the antinutritional properties of PA and explains the conventional breeding and transgene-based approaches deployed to develop low-PA varieties. Studies have shown that conventional breeding methods could develop low-PA lines; however, the pleiotropic effects of these methods viz. reduced yield, embryo abnormalities, and poor seed quality hinder the use of breeding strategies. Overexpression of phytase in the endosperm and RNAi-mediated silencing of genes involved in myo-inositol biosynthesis overcome these constraints. Next-generation genome editing approaches, including CRISPR-Cas9 enable the manipulation of more than one gene involved in PA biosynthesis pathway through multiplex editing, and scope exists to deploy such tools in developing varieties with optimal PA levels.
Collapse
Affiliation(s)
- J Lydia Pramitha
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Rajasekaran Ravikesavan
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - A John Joel
- Tamil Nadu Rice Research Institute, Tamil Nadu Agricultural University, Aduthurai, Tamil Nadu, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Kishor DS, Lee C, Lee D, Venkatesh J, Seo J, Chin JH, Jin Z, Hong SK, Ham JK, Koh HJ. Novel allelic variant of Lpa1 gene associated with a significant reduction in seed phytic acid content in rice (Oryza sativa L.). PLoS One 2019; 14:e0209636. [PMID: 30870429 PMCID: PMC6417671 DOI: 10.1371/journal.pone.0209636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/19/2019] [Indexed: 01/26/2023] Open
Abstract
In plants, myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6), also known as phytic acid (PA), is a major component of organic phosphorus (P), and accounts for up to 85% of the total P in seeds. In rice (Oryza sativa L.), PA mainly accumulates in rice bran, and chelates mineral cations, resulting in mineral deficiencies among brown rice consumers. Therefore, considerable efforts have been focused on the development of low PA (LPA) rice cultivars. In this study, we performed genetic and molecular analyses of OsLpa1, a major PA biosynthesis gene, in Sanggol, a low PA mutant variety developed via chemical mutagenesis of Ilpum rice cultivar. Genetic segregation and sequencing analyses revealed that a recessive allele, lpa1-3, at the OsLpa1 locus (Os02g0819400) was responsible for a significant reduction in seed PA content in Sanggol. The lpa1-3 gene harboured a point mutation (C623T) in the fourth exon of the predicted coding region, resulting in threonine (Thr) to isoleucine (Ile) amino acidsubstitution at position 208 (Thr208Ile). Three-dimensional analysis of Lpa1 protein structure indicated that myo-inositol 3-monophosphate [Ins(3)P1] could bind to the active site of Lpa1, with ATP as a cofactor for catalysis. Furthermore, the presence of Thr208 in the loop adjacent to the entry site of the binding pocket suggests that Thr208Ile substitution is involved in regulating enzyme activity via phosphorylation. Therefore, we propose that Thr208Ile substitution in lpa1-3 reduces Lpa1 enzyme activity in Sanggol, resulting in reduced PA biosynthesis.
Collapse
Affiliation(s)
- D. S. Kishor
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Choonseok Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Dongryung Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jelli Venkatesh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jeonghwan Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Joong Hyoun Chin
- Graduate School of Integrated Bioindustry, Sejong University, Seoul, Republic of Korea
| | - Zhuo Jin
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Soon-Kwan Hong
- Division of Biotechnology, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jin-Kwan Ham
- Gangwon provincial Agricultural Research & Extension Services, Chuncheon, Gangwon-do, Republic of Korea
| | - Hee Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
5
|
Perera I, Seneweera S, Hirotsu N. Manipulating the Phytic Acid Content of Rice Grain Toward Improving Micronutrient Bioavailability. RICE (NEW YORK, N.Y.) 2018; 11:4. [PMID: 29327163 PMCID: PMC5764899 DOI: 10.1186/s12284-018-0200-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/05/2018] [Indexed: 05/18/2023]
Abstract
Myo-inositol hexaphosphate, also known as phytic acid (PA), is the most abundant storage form of phosphorus in seeds. PA acts as a strong chelator of metal cations to form phytate and is considered an anti-nutrient as it reduces the bioavailability of important micronutrients. Although the major nutrient source for more than one-half of the global population, rice is a poor source of essential micronutrients. Therefore, biofortification and reducing the PA content of rice have arisen as new strategies for increasing micronutrient bioavailability in rice. Furthermore, global climate change effects, particularly rising atmospheric carbon dioxide concentration, are expected to increase the PA content and reduce the concentrations of most of the essential micronutrients in rice grain. Several genes involved in PA biosynthesis have been identified and characterized in rice. Proper understanding of the genes related to PA accumulation during seed development and creating the means to suppress the expression of these genes should provide a foundation for manipulating the PA content in rice grain. Low-PA rice mutants have been developed that have a significantly lower grain PA content, but these mutants also had reduced yields and poor agronomic performance, traits that challenge their effective use in breeding programs. Nevertheless, transgenic technology has been effective in developing low-PA rice without hampering plant growth or seed development. Moreover, manipulating the micronutrient distribution in rice grain, enhancing micronutrient levels and reducing the PA content in endosperm are possible strategies for increasing mineral bioavailability. Therefore, a holistic breeding approach is essential for developing successful low-PA rice lines. In this review, we focus on the key determinants for PA concentration in rice grain and discuss the possible molecular methods and approaches for manipulating the PA content to increase micronutrient bioavailability.
Collapse
Affiliation(s)
- Ishara Perera
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma, 374-0193 Japan
| | - Saman Seneweera
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Naoki Hirotsu
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma, 374-0193 Japan
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma, 374-0193 Japan
| |
Collapse
|
6
|
Martynov VV, Dorokhov DB. Polymorphism of the IPK1 gene among members of the genus Glycine. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414070138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Sperotto RA, Ricachenevsky FK, Waldow VDA, Fett JP. Iron biofortification in rice: it's a long way to the top. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 190:24-39. [PMID: 22608517 DOI: 10.1016/j.plantsci.2012.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/08/2012] [Accepted: 03/13/2012] [Indexed: 05/04/2023]
Abstract
Rice and most staple cereals contain low iron (Fe) levels, most of which is lost during grain processing. Populations with monotonous diets consisting mainly of cereals are especially prone to Fe deficiency, which affects about two billion people. Supplementation or food fortification programs have not always been successful. Crop Fe fertilization is also not very effective due to Fe soil insolubility. An alternative solution is Fe biofortification by generating cultivars that efficiently mobilize, uptake and translocate Fe to the edible parts. Here, we review the strategies used for the Fe biofortification of rice, including conventional breeding and directed genetic modification, which offer the most rapid way to develop Fe-rich rice plants. While classical breeding is able to modify the contents of inhibitors of Fe absorption, transgenic approaches have focused on enhanced Fe uptake from soil, xylem and phloem loading and grain sink strength. A comprehensive table is provided in which the percentages of the recommended dietary Fe intake reached by independently developed transgenic plants are calculated. In this review we also emphasize that the discovery of new QTLs and genes related to Fe biofortification is extremely important, but interdisciplinary research is needed for future success in this area.
Collapse
Affiliation(s)
- Raul Antonio Sperotto
- Centro de Ciências Biológicas e da Saúde, Centro Universitário UNIVATES, 95900-000, Lajeado, RS, Brazil.
| | | | | | | |
Collapse
|
8
|
Panigrahy M, Rao DN, Sarla N. Molecular mechanisms in response to phosphate starvation in rice. Biotechnol Adv 2009; 27:389-97. [PMID: 19269313 DOI: 10.1016/j.biotechadv.2009.02.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/24/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
Phosphorus is one of the most important elements that significantly affect plant growth and metabolism. Among the macro-nutrients, phosphorus is the least available to the plants as major phosphorus content of the fertiliser is sorbed by soil particles. An increased knowledge of the regulatory mechanisms controlling plant's phosphorus status is vital for improving phosphorus uptake and P-use efficiency and for reducing excessive input of fertilisers, while maintaining an acceptable yield. Phosphorus use efficiency has been studied using forward and reverse genetic analyses of mutants, quantitative genomic approaches and whole plant physiology but all these studies need to be integrated for a clearer understanding. We provide a critical overview on the molecular mechanisms and the components involved in the plant during phosphorus starvation. Then we summarize the information available on the genes and QTLs involved in phosphorus signalling and also the methods to estimate total phosphate in plant tissue. Also, an effort is made to build a comprehensive picture of phosphorus uptake, homeostasis, assimilation, remobilization, its deposition in the grain and its interaction with other micro- and macro-nutrients as well as phytohormones.
Collapse
Affiliation(s)
- Madhusmita Panigrahy
- Directorate of Rice Research, Rajendranagar, Hyderabad, Andhra Pradesh 500030, India.
| | | | | |
Collapse
|
9
|
Kuwano M, Mimura T, Takaiwa F, Yoshida KT. Generation of stable 'low phytic acid' transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:96-105. [PMID: 19021878 DOI: 10.1111/j.1467-7652.2008.00375.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Phytic acid acts as the major storage form of phosphorus in plant seeds and is poorly digested by monogastric animals. The degradation of phytic acid in animal diets is necessary to overcome both environmental and nutritional issues. The enzyme 1D-myo-inositol 3-phosphate [Ins(3)P(1)] synthase (EC 5.5.1.4) catalyses the first step of myo-inositol biosynthesis and directs phytic acid biosynthesis in seeds. The rice Ins(3)P(1) synthase gene (RINO1) is highly expressed in developing seed embryos and in the aleurone layer, where phytic acid is synthesized and stored. In rice seeds, 18-kDa oleosin (Ole18) is expressed in a seed-specific manner, and its transcripts are restricted to the embryo and the aleurone layer. Therefore, to effectively suppress phytic acid biosynthesis, antisense RINO1 cDNA was expressed under the control of the Ole18 promoter, directing the same spatial pattern in seeds as RINO1 in transgenic rice plants. The generated transgenic rice plants showed strong 'low phytic acid' (lpa) phenotypes, in which seed phytic acid was reduced by 68% and free available phosphate was concomitantly increased. No negative effects on seed weight, germination or plant growth were observed. The available phosphate levels of the stable transgenic plants surpassed those of currently available rice lpa mutants.
Collapse
Affiliation(s)
- Mio Kuwano
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
10
|
Kim SI, Andaya CB, Newman JW, Goyal SS, Tai TH. Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:1291-301. [PMID: 18726583 DOI: 10.1007/s00122-008-0863-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 07/31/2008] [Indexed: 05/10/2023]
Abstract
Using a forward genetics approach, we isolated two independent low phytic acid (lpa) rice mutants, N15-186 and N15-375. Both mutants are caused by single gene, recessive non-lethal mutations, which result in approximately 75% (N15-186) and 43% (N15-375) reductions in seed phytic acid (inositol hexakisphosphate). High-performance liquid chromatography and GC-MS analysis of seed extracts from N15-186 indicated that, in addition to phytic acid, inositol monophosphate was significantly reduced whereas inorganic phosphorus and myo-inositol were greatly increased when compared with wild-type. The changes observed in N15-186 resemble those previously described for the maize lpa3 mutant. Analysis of N15-375 revealed changes similar to those observed in previously characterized rice lpa1 mutants (i.e. significant reduction in phytic acid and corresponding increase in inorganic phosphorus with little or no change in inositol phosphate intermediates or myo-inositol). Further genetic analysis of the N15-186 mutant indicated that the mutation, designated lpa N15-186, was located in a region on chromosome 3 between the microsatellite markers RM15875 and RM15907. The rice orthologue of maize lpa3, which encodes a myo-inositol kinase, is in this interval. Sequence analysis of the N15-186 allele of this orthologue (Os03g52760) revealed a single base pair change (C/G to T/A) in the first exon of the gene, which results in a nonsense mutation. Our results indicate that lpa N15-186 is a mutant allele of the rice myo-inositol kinase (OsMIK) gene. Identification and characterization of lpa mutants, such as N15-186, will facilitate studies on the regulation of phytic acid biosynthesis and accumulation and help address questions concerning the contribution of the inositol lipid-dependent and independent biosynthetic pathways to the production of seed phytic acid.
Collapse
Affiliation(s)
- S I Kim
- USDA-ARS Crops Pathology and Genetics Research Unit, Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
11
|
Kim SI, Andaya CB, Goyal SS, Tai TH. The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:769-779. [PMID: 18566795 DOI: 10.1007/s00122-008-0818-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 05/30/2008] [Indexed: 05/26/2023]
Abstract
The rice low phytic acid 1 (lpa1) mutant was originally identified using a forward genetics approach. This mutant exhibits a 45% reduction in rice seed phytic acid with a molar-equivalent increase in inorganic phosphorus; however, it does not appear to differ significantly in productivity from its wild-type progenitor. A second lpa1 mutant was identified from additional screening for high seed inorganic phosphorus phenotypes. Using a positional cloning strategy, we identified a single candidate gene at the rice Lpa1 locus. Sequence analysis of the candidate gene from the lpa1 mutants revealed two independent mutations (a single base pair substitution and a single base pair deletion) that confirmed the identification of this candidate as the rice low phytic acid 1 gene, OsLpa1. The OsLpa1 gene has three splice variants. The location and nature of the two mutations suggests that these lesions only affect the translation of the predicted protein derived from the longest transcript. The proteins encoded by OsLpa1 do not have homology to any of the inositol phosphate metabolism genes recently characterized in plants, although there is homology to 2-phosphoglycerate kinase, an enzyme found in hyperthermophilic methanogens that catalyzes the formation of 2,3-bisphosphoglycerate from 2-phosphoglycerate. OsLpa1 represents a novel gene involved in phytic acid metabolism.
Collapse
Affiliation(s)
- S I Kim
- USDA-ARS Crops Pathology and Genetics Research Unit, Department of Plant Sciences, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
12
|
Liu QL, Xu XH, Ren XL, Fu HW, Wu DX, Shu QY. Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:803-14. [PMID: 17219209 DOI: 10.1007/s00122-006-0478-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 11/24/2006] [Indexed: 05/09/2023]
Abstract
Phytic acid (PA, myo-inositol 1,2,3,4,5,6-hexakisphosphate), or its salt form, phytate, is commonly regarded as the major anti-nutritional component in cereal and legume grains. Breeding of low phytic acid (lpa) crops has recently been considered as a potential way to increase nutritional quality of crop products. In this study, eight independent lpa rice mutant lines from both indica and japonica subspecies were developed through physical and chemical mutagenesis. Among them, five are non-lethal while the other three are homozygous lethal. None of the lethal lines could produce homozygous lpa plants through seed germination and growth under field conditions, but two of them could be rescued through in vitro culture of mature embryos. The non-lethal lpa mutants had lower PA content ranging from 34 to 64% that of their corresponding parent and four of them had an unchanged total P level. All the lpa mutations were inherited in a single recessive gene model and at least four lpa mutations were identified mutually non-allelic, while the other two remain to be verified. One mutation was mapped on chromosome 2 between microsatellite locus RM3542 and RM482, falling in the same region as the previously mapped lpa1-1 locus did; another lpa mutation was mapped on chromosome 3, tightly linked to RM3199 with a genetic distance of 1.198 cM. The latter mutation was very likely to have happened to the LOC_Os03g52760, a homolog of the maize myo-inositol kinase (EC 2.7.1.64) gene. The present work greatly expands the number of loci that could influence the biosynthesis of PA in rice, making rice an excellent model system for research in this area.
Collapse
Affiliation(s)
- Qing-Long Liu
- IAEA-Zhejiang University Collaborating Center, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | | | | | | | | | | |
Collapse
|
13
|
Andaya VC, Tai TH. Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:467-75. [PMID: 16741739 DOI: 10.1007/s00122-006-0311-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 05/06/2006] [Indexed: 05/03/2023]
Abstract
The temperate japonica rice cultivar M202 is the predominant variety grown in California due to its tolerance to low temperature stress, good grain quality and high yield. Earlier analysis of a recombinant inbred line mapping population derived from a cross between M202 and IR50, an indica cultivar that is highly sensitive to cold stress, resulted in the identification of a number of QTL conferring tolerance to cold-induced wilting and necrosis. A major QTL, qCTS12, located on the short arm of chromosome 12, contributes over 40% of the phenotypic variance. To identify the gene(s) underlying qCTS12, we have undertaken the fine mapping of this locus. Saturating the short arm of chromosome 12 with microsatellite markers revealed that qCTS12 is closest to RM7003. Using RM5746 and RM3103, which are immediately outside of RM7003, we screened 1,954 F(5)-F(10) lines to find recombinants in the qCTS12 region. Additional microsatellite markers were identified from publicly available genomic sequence and used to fine map qCTS12 to a region of approximately 87 kb located on the BAC clone OSJNBb0071I17. This region contains ten open reading frames (ORFs) consisting of five hypothetical and expressed proteins of unknown function, a transposon protein, a putative NBS-LRR disease resistance protein, two zeta class glutathione S-transferases (OsGSTZ1 and OsGSTZ2), and a DAHP synthetase. Further fine mapping with markers developed from the ORFs delimited the QTL to a region of about 55 kb. The most likely candidates for the gene(s) underlying qCTS12 are OsGSTZ1 and OsGSTZ2.
Collapse
Affiliation(s)
- V C Andaya
- Crops Pathology and Genetics Research Unit, Department of Plant Sciences, USDA-ARS, Davis, CA 95616, USA
| | | |
Collapse
|