1
|
Mahelka V, Kopecký D, Majka J, Krak K. Uniparental expression of ribosomal RNA in × Festulolium grasses: a link between the genome and nucleolar dominance. FRONTIERS IN PLANT SCIENCE 2023; 14:1276252. [PMID: 37790792 PMCID: PMC10544908 DOI: 10.3389/fpls.2023.1276252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023]
Abstract
Genome or genomic dominance (GD) is a phenomenon observed in hybrids when one parental genome becomes dominant over the other. It is manifested by the replacement of chromatin of the submissive genome by that of the dominant genome and by biased gene expression. Nucleolar dominance (ND) - the functional expression of only one parental set of ribosomal genes in hybrids - is another example of an intragenomic competitive process which, however, concerns ribosomal DNA only. Although GD and ND are relatively well understood, the nature and extent of their potential interdependence is mostly unknown. Here, we ask whether hybrids showing GD also exhibit ND and, if so, whether the dominant genome is the same. To test this, we used hybrids between Festuca and Lolium grasses (Festulolium), and between two Festuca species in which GD has been observed (with Lolium as the dominant genome in Festulolium and F. pratensis in interspecific Festuca hybrids). Using amplicon sequencing of ITS1 and ITS2 of the 45S ribosomal DNA (rDNA) cluster and molecular cytogenetics, we studied the organization and expression of rDNA in leaf tissue in five hybrid combinations, four generations and 31 genotypes [F. pratensis × L. multiflorum (F1, F2, F3, BC1), L. multiflorum × F. pratensis (F1), L. multiflorum × F. glaucescens (F2), L. perenne × F. pratensis (F1), F. glaucescens × F. pratensis (F1)]. We have found that instant ND occurs in Festulolium, where expression of Lolium-type rDNA reached nearly 100% in all F1 hybrids and was maintained through subsequent generations. Therefore, ND and GD in Festulolium are manifested by the same dominant genome (Lolium). We also confirmed the concordance between GD and ND in an interspecific cross between two Festuca species.
Collapse
Affiliation(s)
- Václav Mahelka
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czechia
| | - David Kopecký
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Joanna Majka
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Karol Krak
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czechia
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
2
|
Majka J, Glombik M, Doležalová A, Kneřová J, Ferreira MTM, Zwierzykowski Z, Duchoslav M, Studer B, Doležel J, Bartoš J, Kopecký D. Both male and female meiosis contribute to non-Mendelian inheritance of parental chromosomes in interspecific plant hybrids (Lolium × Festuca). THE NEW PHYTOLOGIST 2023; 238:624-636. [PMID: 36658468 DOI: 10.1111/nph.18753] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Some interspecific plant hybrids show unequal transmission of chromosomes from parental genomes to the successive generations. It has been suggested that this is due to a differential behavior of parental chromosomes during meiosis. However, underlying mechanism is unknown. We analyzed chromosome composition of the F2 generation of Festuca × Lolium hybrids and reciprocal backcrosses to elucidate effects of male and female meiosis on the shift in parental genome composition. We studied male meiosis, including the attachment of chromosomes to the karyokinetic spindle and gene expression profiling of the kinetochore genes. We found that Lolium and Festuca homoeologues were transmitted differently to the F2 generation. Female meiosis led to the replacement of Festuca chromosomes by their Lolium counterparts. In male meiosis, Festuca univalents were attached less frequently to microtubules than Lolium univalents, lagged in divisions and formed micronuclei, which were subsequently eliminated. Genome sequence analysis revealed a number of non-synonymous mutations between copies of the kinetochore genes from Festuca and Lolium genomes. Furthermore, we found that outer kinetochore proteins NDC80 and NNF1 were exclusively expressed from the Lolium allele. We hypothesize that silencing of Festuca alleles results in improper attachment of Festuca chromosomes to karyokinetic spindle and subsequently their gradual elimination.
Collapse
Affiliation(s)
- Joanna Majka
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 77900, Olomouc, Czech Republic
- Institute of Plant Genetics, Polish Academy of Sciences, 60479, Poznan, Poland
| | - Marek Glombik
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 77900, Olomouc, Czech Republic
- Department of Crop Genetics, John Innes Centre, Norwich. NR4 7UH, UK
| | - Alžběta Doležalová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 77900, Olomouc, Czech Republic
| | - Jana Kneřová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 77900, Olomouc, Czech Republic
| | - Marco Tulio Mendes Ferreira
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 77900, Olomouc, Czech Republic
- Department of Biology, Federal University of Lavras, 37200-000, Lavras, MG, Brazil
| | | | - Martin Duchoslav
- Department of Botany, Palacký University, 77900, Olomouc, Czech Republic
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 77900, Olomouc, Czech Republic
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 77900, Olomouc, Czech Republic
| | - David Kopecký
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 77900, Olomouc, Czech Republic
| |
Collapse
|
3
|
Pašakinskienė I. Festuca pratensis-like Subgenome Reassembly from a "Chromosomal Cocktail" in the Intergeneric Festulolium (Poaceae) Hybrid: A Rare Chromoanagenesis Event in Grasses. PLANTS (BASEL, SWITZERLAND) 2023; 12:984. [PMID: 36903845 PMCID: PMC10005718 DOI: 10.3390/plants12050984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Festuca and Lolium grass species are used for Festulolium hybrid variety production where they display trait complementarities. However, at the genome level, they show antagonisms and a broad scale of rearrangements. A rare case of an unstable hybrid, a donor plant manifesting pronounced variability of its clonal parts, was discovered in the F2 group of 682 plants of Lolium multiflorum × Festuca arundinacea (2n = 6x = 42). Five phenotypically distinct clonal plants were determined to be diploids, having only 14 chromosomes out of the 42 in the donor. GISH defined the diploids as having the basic genome from F. pratensis (2n = 2x = 14), one of the progenitors of F. arundinacea (2n = 6x = 42), with minor components from L. multiflorum and another subgenome, F. glaucescens. The 45S rDNA position on two chromosomes also corresponded to the variant of F. pratensis in the F. arundinacea parent. In the highly unbalanced donor genome, F. pratensis was the least represented, but the most involved in numerous recombinant chromosomes. Specifically, FISH highlighted 45S rDNA-containing clusters involved in the formation of unusual chromosomal associations in the donor plant, suggesting their active role in karyotype realignment. The results of this study show that F. pratensis chromosomes have a particular fundamental drive for restructuring, which prompts the disassembly/reassembly processes. The finding of F. pratensis "escaping" and rebuilding itself from the chaotic "chromosomal cocktail" of the donor plant points to a rare chromoanagenesis event and extends the view of plant genome plasticity.
Collapse
Affiliation(s)
- Izolda Pašakinskienė
- Life Sciences Centre, Vilnius University, Saulėtekio 7, 10221 Vilnius, Lithuania;
- Botanical Garden of Vilnius University, Kairėnų 43, 10239 Vilnius, Lithuania
| |
Collapse
|
4
|
Kopecký D, Scholten O, Majka J, Burger-Meijer K, Duchoslav M, Bartoš J. Genome Dominance in Allium Hybrids ( A. cepa × A. roylei). FRONTIERS IN PLANT SCIENCE 2022; 13:854127. [PMID: 35371123 PMCID: PMC8965639 DOI: 10.3389/fpls.2022.854127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Genome dominance is a phenomenon in wide hybrids when one of the parental genomes becomes "dominant," while the other genome turns to be "submissive." This dominance may express itself in several ways including homoeologous gene expression bias and modified epigenetic regulation. Moreover, some wide hybrids display unequal retention of parental chromosomes in successive generations. This may hamper employment of wide hybridization in practical breeding due to the potential elimination of introgressed segments from progeny. In onion breeding, Allium roylei (A. roylei) Stearn has been frequently used as a source of resistance to downy mildew for cultivars of bulb onion, Allium cepa (A. cepa) L. This study demonstrates that in A. cepa × A. roylei hybrids, chromosomes of A. cepa are frequently substituted by those of A. roylei and in just one generation, the genomic constitution shifts from 8 A. cepa + 8 A. roylei chromosomes in the F1 generation to the average of 6.7 A. cepa + 9.3 A. roylei chromosomes in the F2 generation. Screening of the backcross generation A. cepa × (A. cepa × A. roylei) revealed that this shift does not appear during male meiosis, which is perfectly regular and results with balanced segregation of parental chromosomes, which are equally transmitted to the next generation. This indicates that female meiotic drive is the key factor underlying A. roylei genome dominance. Single nucleotide polymorphism (SNP) genotyping further suggested that the drive has different strength across the genome, with some chromosome segments displaying Mendelian segregation, while others exhibiting statistically significant deviation from it.
Collapse
Affiliation(s)
- David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Center of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Olga Scholten
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Joanna Majka
- Institute of Experimental Botany, Czech Academy of Sciences, Center of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | | | | | - Jan Bartoš
- Institute of Experimental Botany, Czech Academy of Sciences, Center of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
5
|
Glombik M, Copetti D, Bartos J, Stoces S, Zwierzykowski Z, Ruttink T, Wendel JF, Duchoslav M, Dolezel J, Studer B, Kopecky D. Reciprocal allopolyploid grasses (Festuca × Lolium) display stable patterns of genome dominance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1166-1182. [PMID: 34152039 PMCID: PMC8518873 DOI: 10.1111/tpj.15375] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/21/2021] [Accepted: 06/11/2021] [Indexed: 05/19/2023]
Abstract
Allopolyploidization entailing the merger of two distinct genomes in a single hybrid organism, is an important process in plant evolution and a valuable tool in breeding programs. Newly established hybrids often experience massive genomic perturbations, including karyotype reshuffling and gene expression modifications. These phenomena may be asymmetric with respect to the two progenitors, with one of the parental genomes being "dominant." Such "genome dominance" can manifest in several ways, including biased homoeolog gene expression and expression level dominance. Here we employed a k-mer-based approach to study gene expression in reciprocal Festuca pratensis Huds. × Lolium multiflorum Lam. allopolyploid grasses. Our study revealed significantly more genes where expression mimicked that of the Lolium parent compared with the Festuca parent. This genome dominance was heritable to successive generation and its direction was only slightly modified by environmental conditions and plant age. Our results suggest that Lolium genome dominance was at least partially caused by its more efficient trans-acting gene expression regulatory factors. Unraveling the mechanisms responsible for propagation of parent-specific traits in hybrid crops contributes to our understanding of allopolyploid genome evolution and opens a way to targeted breeding strategies.
Collapse
Affiliation(s)
- Marek Glombik
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 3177900OlomoucCzech Republic
- National Centre for Biomolecular ResearchFaculty of ScienceMasaryk UniversityKotlářská 261137BrnoCzech Republic
| | - Dario Copetti
- Molecular Plant BreedingInstitute of Agricultural SciencesETH ZurichUniversitaetstrasse 28092ZurichSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Jan Bartos
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 3177900OlomoucCzech Republic
| | - Stepan Stoces
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 3177900OlomoucCzech Republic
| | - Zbigniew Zwierzykowski
- Department of Environmental Stress BiologyInstitute of Plant GeneticsPolish Academy of SciencesStrzeszyńska 3460‐479PoznańPoland
| | - Tom Ruttink
- Plant Sciences UnitFlanders Research Institute for Agriculture, Fisheries and Food (ILVO)Caritasstraat 399090MelleBelgium
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIA50011USA
| | - Martin Duchoslav
- Department of BotanyFaculty of SciencePalacký University in OlomoucŠlechtitelů 2778371OlomoucCzech Republic
| | - Jaroslav Dolezel
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 3177900OlomoucCzech Republic
| | - Bruno Studer
- Molecular Plant BreedingInstitute of Agricultural SciencesETH ZurichUniversitaetstrasse 28092ZurichSwitzerland
| | - David Kopecky
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 3177900OlomoucCzech Republic
| |
Collapse
|
6
|
Glombik M, Bačovský V, Hobza R, Kopecký D. Competition of Parental Genomes in Plant Hybrids. FRONTIERS IN PLANT SCIENCE 2020; 11:200. [PMID: 32158461 PMCID: PMC7052263 DOI: 10.3389/fpls.2020.00200] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/11/2020] [Indexed: 05/17/2023]
Abstract
Interspecific hybridization represents one of the main mechanisms of plant speciation. Merging of two genomes from different subspecies, species, or even genera is frequently accompanied by whole-genome duplication (WGD). Besides its evolutionary role, interspecific hybridization has also been successfully implemented in multiple breeding programs. Interspecific hybrids combine agronomic traits of two crop species or can be used to introgress specific loci of interests, such as those for resistance against abiotic or biotic stresses. The genomes of newly established interspecific hybrids (both allopolyploids and homoploids) undergo dramatic changes, including chromosome rearrangements, amplifications of tandem repeats, activation of mobile repetitive elements, and gene expression modifications. To ensure genome stability and proper transmission of chromosomes from both parental genomes into subsequent generations, allopolyploids often evolve mechanisms regulating chromosome pairing. Such regulatory systems allow only pairing of homologous chromosomes and hamper pairing of homoeologs. Despite such regulatory systems, several hybrid examples with frequent homoeologous chromosome pairing have been reported. These reports open a way for the replacement of one parental genome by the other. In this review, we provide an overview of the current knowledge of genomic changes in interspecific homoploid and allopolyploid hybrids, with strictly homologous pairing and with relaxed pairing of homoeologs.
Collapse
Affiliation(s)
- Marek Glombik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Roman Hobza
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
7
|
Selective Elimination of Parental Chromatin from Introgression Cultivars of xFestulolium (Festuca × Lolium). SUSTAINABILITY 2019. [DOI: 10.3390/su11113153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alien chromosome introgressions can be used to introduce beneficial traits from one species into another. However, exploitation of the introgressions in breeding requires proper transmission of introgressed segments to consecutive generations. In xFestulolium hybrids chromosomes of Festuca and Lolium readily pair and recombine. This opens a way for introgression of traits (e.g., abiotic and biotic stress resistance) from Festuca into elite Lolium cultivars. However, retention of Festuca chromatin in xFestulolium is uncertain as several studies indicated its gradual elimination over generations of sexual reproduction. Here we investigated genome composition in two subsequent generations of four introgression xFestulolium (F. pratensis × L. multiflorum) cultivars using genomic in situ hybridization. We observed about 27–32% elimination of Festuca chromatin in a single round of multiplication. At this pace, Festuca chromatin would be completely eliminated in about four generations of seed multiplication. On the other hand, we observed that it is possible to increase the proportion of Festuca chromatin in the cultivars by proper selection of mating plants. Nevertheless, once selection is relaxed, the first round of the seed multiplication reverts the genome composition back to the Lolium type. Thus, it seems that amphiploid forms of xFestulolium with relatively stable hybrid genomes may be more promising material for future breeding than introgression lines.
Collapse
|
8
|
Majka J, Bzdęga K, Janiak A, Ćwiek-Kupczyńska H, Krajewski P, Książczyk T, Zwierzykowski Z. Cytogenetic and molecular genotyping in the allotetraploid Festuca pratensis × Lolium perenne hybrids. BMC Genomics 2019; 20:367. [PMID: 31088367 PMCID: PMC6518686 DOI: 10.1186/s12864-019-5766-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/03/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Species of the Festuca and Lolium genera, as well as intergeneric Festuca × Lolium (Festulolium) hybrids, are valuable fodder and turf grasses for agricultural and amenity purposes worldwide. Festulolium hybrids can merge in their genomes agronomically important characteristics. However, in polyploid plants, especially in allopolyploids, the hybridization of divergent genomes could contribute to various abnormalities, such as variability in chromosome number, structural rearrangements, and/or disorders in inheritance patterns. Here we studied these issues in allotetraploid Festuca pratensis × Lolium perenne hybrids. RESULTS Cytogenetic procedures, including fluorescent in situ hybridization, genomic in situ hybridization, and molecular markers - inter-simple sequence repeats (ISSR) were exploited. This cytogenetic approach indicated the dynamics in the number and distribution of ribosomal RNA genes and structural rearrangements for both parental genomes (Festuca and Lolium) in hybrid karyotypes. The separate analysis of F. pratensis and L. perenne chromosomes in hybrid plants (F2-F3 generations of F. pratensis × L. perenne) revealed the asymmetrical level of rearrangements. Recognized structural changes were mainly located in the distal part of chromosome arms, and in chromosomes bearing ribosomal DNA, they were more frequently mapped in arms without this sequence. Based on the ISSR markers distribution, we found that the tetrasomic type of inheritance was characteristic for the majority of ISSR loci, but the disomic type was also observed. Nonetheless, no preference in the transmission of either Festuca or Lolium alleles to the following generations of allotetraploid F. pratensis × L. perenne hybrid was observed. CONCLUSION Our study reports cytogenetic and molecular genotyping of the F. pratensis × L. perenne hybrid and its following F2-F3 progenies. The analysis of 137 allotetraploid F. pratensis × L. perenne hybrids revealed the higher level of recombination in chromosomes derived from F. pratensis genome. The results of ISSR markers indicated a mixed model of inheritance, which may be characteristic for these hybrids.
Collapse
Affiliation(s)
- Joanna Majka
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Katarzyna Bzdęga
- Department of Botany and Nature Protection, University of Silesia in Katowice, Katowice, Poland
| | - Agnieszka Janiak
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| | - Hanna Ćwiek-Kupczyńska
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz Książczyk
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Zbigniew Zwierzykowski
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
9
|
Perničková K, Koláčková V, Lukaszewski AJ, Fan C, Vrána J, Duchoslav M, Jenkins G, Phillips D, Šamajová O, Sedlářová M, Šamaj J, Doležel J, Kopecký D. Instability of Alien Chromosome Introgressions in Wheat Associated with Improper Positioning in the Nucleus. Int J Mol Sci 2019; 20:ijms20061448. [PMID: 30909382 PMCID: PMC6472020 DOI: 10.3390/ijms20061448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/16/2023] Open
Abstract
Alien introgressions introduce beneficial alleles into existing crops and hence, are widely used in plant breeding. Generally, introgressed alien chromosomes show reduced meiotic pairing relative to the host genome, and may be eliminated over generations. Reduced pairing appears to result from a failure of some telomeres of alien chromosomes to incorporate into the leptotene bouquet at the onset of meiosis, thereby preventing chiasmate pairing. In this study, we analysed somatic nuclei of rye introgressions in wheat using 3D-FISH and found that while introgressed rye chromosomes or chromosome arms occupied discrete positions in the Rabl’s orientation similar to chromosomes of the wheat host, their telomeres frequently occupied positions away from the nuclear periphery. The frequencies of such abnormal telomere positioning were similar to the frequencies of out-of-bouquet telomere positioning at leptotene, and of pairing failure at metaphase I. This study indicates that improper positioning of alien chromosomes that leads to reduced pairing is not a strictly meiotic event but rather a consequence of a more systemic problem. Improper positioning in the nuclei probably impacts the ability of introgressed chromosomes to migrate into the telomere bouquet at the onset of meiosis, preventing synapsis and chiasma establishment, and leading to their gradual elimination over generations.
Collapse
Affiliation(s)
- Kateřina Perničková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic.
| | - Veronika Koláčková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic.
| | - Adam J Lukaszewski
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | - Chaolan Fan
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic.
| | - Martin Duchoslav
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Glyn Jenkins
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, Wales SY23 3DA, UK.
| | - Dylan Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, Wales SY23 3DA, UK.
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic.
| | - David Kopecký
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic.
| |
Collapse
|
10
|
Østrem L, Rapacz M, Larsen A, Marum P, Rognli OA. Chlorophyll a Fluorescence and Freezing Tests as Selection Methods for Growth Cessation and Increased Winter Survival in × Festulolium. FRONTIERS IN PLANT SCIENCE 2018; 9:1200. [PMID: 30177939 PMCID: PMC6109792 DOI: 10.3389/fpls.2018.01200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/26/2018] [Indexed: 05/30/2023]
Abstract
In a ×Festulolium population (FuRs0357) of parental origin Lolium perenne × Festuca pratensis, selection of freezing tolerance by freezing tests on whole plants (FT) and chlorophyll a (Chl-a) fluorimetry on frozen detached leaves (CF) was assessed in high and low directions during two cycles of selection. The original population went through two cycles of random mating. All selections and non-selected intercrossed generations of the original population were established in field trials at a coastal site and a continental site in Norway. At the coastal site, analyses of Chl-a fluorimetry parameters and leaf growth on individual plants in autumn and winter hardiness observed in field plots in spring showed that the first-generation selections for high freezing tolerance were associated with winter hardiness and early growth cessation. The second-generation FT-selections for high freezing tolerance were also associated with winter hardiness, whereas the CF-high selections diverged toward high photosynthetic activity. Both low selections were correlated with high photosynthetic activity. There were smaller variations between generations in unselected generations of the original population. Low accumulated leaf growth and early growth cessation were observed in the second-generation FT-selection for high freezing tolerance, whereas high normalized difference vegetation index (NDVI) were seen in Chl-a selections. Both selection methods distinguished diverging selections with significantly different high and low freezing tolerance, but selection efficiency was comparable only for the first selection cycle. Moreover, due to mixed ploidy level in the original population, selection by FT and CF generated diploid and tetraploid plants, respectively, which intensified the response of selection, particularly in the diploid selections. Total dry matter yield (DMY) (mean of three annual cuts for 3 years) of the FT-high selections was lower than for the CF-selections. At coastal sites, selection intensity using freezing tests on whole plants should be adapted to actual climate conditions, to obtain genotypes that balance photosynthetic activity during autumn and good winter hardiness, making them persistent and high yielding.
Collapse
Affiliation(s)
- Liv Østrem
- Department of Grassland and Livestock, Norwegian Institute of Bioeconomy Research (NIBIO), Hellevik i Fjaler, Norway
| | - Marcin Rapacz
- Department of Plant Physiology, University of Agriculture in Krakow, Krakow, Poland
| | | | | | - Odd A. Rognli
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
11
|
Majka J, Zwierzykowski Z, Majka M, Kosmala A. Karyotype reshufflings of Festuca pratensis × Lolium perenne hybrids. PROTOPLASMA 2018; 255:451-458. [PMID: 28884345 PMCID: PMC5830480 DOI: 10.1007/s00709-017-1161-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Many different processes have an impact on the shape of plant karyotype. Recently, cytogenetic examination of Lolium species has revealed the occurrence of spontaneous fragile sites (FSs) associated with 35S rDNA regions. The FSs are defined as the chromosomal regions that are sensitive to forming gaps or breaks on chromosomes. The shape of karyotype can also be determined by interstitial telomeric sequences (ITSs), what was recognized for the first time in this paper in chromosomes of Festuca pratensis × Lolium perenne hybrids. Both FSs and ITSs can contribute to genome instabilities and chromosome rearrangements. To evaluate whether these cytogenetic phenomena have an impact on karyotype reshuffling observed in Festuca × Lolium hybrids, we examined F1 F. pratensis × L. perenne plants and generated F2-F9 progeny by fluorescent in situ hybridization (FISH) using rDNA sequences, telomere and centromere probes, as well as by genomic in situ hybridization (GISH). Analyses using a combination of FISH and GISH revealed that intergenomic rearrangements did not correspond to FSs but overlapped with ITSs for several analyzed genotypes. It suggests that internal telomeric repeats can affect the shape of F. pratensis × L. perenne karyotypes. However, other factors that are involved in rearrangements and have a more crucial impact could exist, but they are still unknown.
Collapse
Affiliation(s)
- Joanna Majka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Zbigniew Zwierzykowski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Maciej Majka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Arkadiusz Kosmala
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
12
|
Książczyk T, Zwierzykowska E, Molik K, Taciak M, Krajewski P, Zwierzykowski Z. Genome-dependent chromosome dynamics in three successive generations of the allotetraploid Festuca pratensis × Lolium perenne hybrid. PROTOPLASMA 2015; 252:985-996. [PMID: 25480732 PMCID: PMC4491343 DOI: 10.1007/s00709-014-0734-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
We focus on the identification of complete and recombined ribosomal DNA-bearing chromosomes, and the dynamics of chromosomal number and position of ribosomal DNA (rDNA) loci in the F2-F4 generations derived from the F1 hybrid of Festuca pratensis Huds. (2n = 4x = 28) × Lolium perenne L. (2n = 4x = 28). Lolium genomic DNA and rRNA genes were mapped by means of genomic and fluorescence in situ hybridization (GISH and FISH). The results revealed that plants of the three generations share various rDNA loci profiles with chromosome structural changes, possibly as a result of chromosomal inter- and intra-rearrangements. We observed an asymmetrical variation in the number of recombinant arms with and without rDNA loci between parental genomes. The Lolium genome was more affected by rearrangements in arms with rDNA loci, while Festuca was more affected in arms without them. Statistically significant differences between L. perenne and F. pratensis genomes concerned the number of recombined chromosomes without rDNA, and the number of recombined rDNA-bearing chromosomal arms of marked chromosomes, showing a tendency of F. pratensis genome-like chromosomes to be less stable, compared with L. perenne. We postulate a novel genome-dependent range and type of chromosome variation in plants of the F2-F4 generations derived from F. pratensis × L. perenne hybrid.
Collapse
Affiliation(s)
- Tomasz Książczyk
- Department of Environmental Stress Biology, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland,
| | | | | | | | | | | |
Collapse
|
13
|
Akiyama Y, Kimura K, Yamada-Akiyama H, Kubota A, Takahara Y, Ueyama Y. Genomic characteristics of a diploid F(4) festulolium hybrid (Lolium multiflorum × Festuca arundinacea). Genome 2012; 55:599-603. [PMID: 22856536 DOI: 10.1139/g2012-048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The grass festulolium, a hybrid between the genera Festuca and Lolium , has a variety of beneficial agronomic attributes derived from both parents. Compared with high-ploidy festulolium, diploid festulolium is well suited to stabilizing ploidy and for studying agronomic traits and genetic relationships. We sought to produce a diploid festulolium hybrid that was resistant to summer depression, by hybridizing diploid Lolium multiflorum Lam. and hexaploid Festuca arundinacea Schreb., which has a high tolerance to summer depression. We obtained seven diploid F(4) plants that were capable of surviving the extremely hot summer in Morioka, Japan, in 2010, which was 2.7 °C higher than the average summer temperature. The observed resistance to summer depression in these plants was likely due to heat stress tolerance. The genomic constitutions of these seven hybrids were analyzed by GISH, and the chromosomal characteristics of a single diploid F(4) was analyzed by FISH using rDNA probes. The results showed that although no Festuca-specific genome remained in any of the seven diploid F(4) plants, extensive chromosomal rearrangement was observed in one of them. Our findings suggested that hybridizing diploid L. multiflorum and hexaploid F. arundinacea may be useful for modifying chromosome architecture in the Lolium genome with potential applications in chromosome engineering.
Collapse
Affiliation(s)
- Yukio Akiyama
- Livestock and Forage Research Division, Tohoku Agricultural Research Center, National Agriculture and Food Research Organization, Akahira 4, Shimokuriyagawa, Morioka, Iwate 020-0198, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Variability of ribosomal DNA sites in Festuca pratensis, Lolium perenne, and their intergeneric hybrids, revealed by FISH and GISH. J Appl Genet 2011; 51:449-60. [PMID: 21063062 DOI: 10.1007/bf03208874] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study focuses on the variability of chromosomal location and number of ribosomal DNA (rDNA) sites in some diploid and autotetraploid Festuca pratensis and Lolium perenne cultivars, as well as on identification of rDNA-bearing chromosomes in their triploid and tetraploid F. pratensis × L. perenne hybrids. The rDNA loci were mapped using fluorescence in situ hybridization (FISH) with 5S and 25S rDNA probes, and the origin of parental genomes was verified by genomic in situ hybridization (GISH) with L. perenne genomic DNA as a probe, and F. pratensis genomic DNA as a block. FISH detected variation in the number and chromosomal location of both 5S and 45S rDNA sites. In F. pratensis mostly additional signals of 5S rDNA loci occurred, as compared with standard F. pratensis karyotypes. Losses of 45S rDNA loci were more frequent in L. perenne cultivars and intergeneric hybrids. Comparison of the F. pratensis and L. perenne genomes approved a higher number of rDNA sites as well as variation in chromosomal rDNA location in L. perenne. A greater instability of F. pratensis-genome-like and L. perenne-genome-like chromosomes in tetraploid hybrids was revealed, indicating gains and losses of rDNA loci, respectively. Our data indicate that the rDNA loci physically mapped on chromosomes 2 and 3 in F. pratensis and on chromosome 3 in L. perenne are useful markers for these chromosomes in intergeneric Festuca × Lolium hybrids.
Collapse
|
15
|
Chester M, Leitch AR, Soltis PS, Soltis DE. Review of the Application of Modern Cytogenetic Methods (FISH/GISH) to the Study of Reticulation (Polyploidy/Hybridisation). Genes (Basel) 2010; 1. [PMID: 24710040 PMCID: PMC3954085 DOI: 10.3390/genes1010166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The convergence of distinct lineages upon interspecific hybridisation, including when accompanied by increases in ploidy (allopolyploidy), is a driving force in the origin of many plant species. In plant breeding too, both interspecific hybridisation and allopolyploidy are important because they facilitate introgression of alien DNA into breeding lines enabling the introduction of novel characters. Here we review how fluorescence in situ hybridisation (FISH) and genomic in situ hybridisation (GISH) have been applied to: 1) studies of interspecific hybridisation and polyploidy in nature, 2) analyses of phylogenetic relationships between species, 3) genetic mapping and 4) analysis of plant breeding materials. We also review how FISH is poised to take advantage of nextgeneration sequencing (NGS) technologies, helping the rapid characterisation of the repetitive fractions of a genome in natural populations and agricultural plants.
Collapse
Affiliation(s)
- Michael Chester
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary, University of London, UK.
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA.
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
16
|
Chester M, Leitch AR, Soltis PS, Soltis DE. Review of the Application of Modern Cytogenetic Methods (FISH/GISH) to the Study of Reticulation (Polyploidy/Hybridisation). Genes (Basel) 2010; 1:166-92. [PMID: 24710040 PMCID: PMC3954085 DOI: 10.3390/genes1020166] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/30/2010] [Accepted: 06/30/2010] [Indexed: 11/16/2022] Open
Abstract
The convergence of distinct lineages upon interspecific hybridisation, including when accompanied by increases in ploidy (allopolyploidy), is a driving force in the origin of many plant species. In plant breeding too, both interspecific hybridisation and allopolyploidy are important because they facilitate introgression of alien DNA into breeding lines enabling the introduction of novel characters. Here we review how fluorescence in situ hybridisation (FISH) and genomic in situ hybridisation (GISH) have been applied to: 1) studies of interspecific hybridisation and polyploidy in nature, 2) analyses of phylogenetic relationships between species, 3) genetic mapping and 4) analysis of plant breeding materials. We also review how FISH is poised to take advantage of nextgeneration sequencing (NGS) technologies, helping the rapid characterisation of the repetitive fractions of a genome in natural populations and agricultural plants.
Collapse
Affiliation(s)
- Michael Chester
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary, University of London, UK.
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA.
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
17
|
Kopecký D, Lukaszewski AJ, Dolezel J. Cytogenetics of Festulolium (Festuca x Lolium hybrids). Cytogenet Genome Res 2008; 120:370-83. [PMID: 18504366 DOI: 10.1159/000121086] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2007] [Indexed: 11/19/2022] Open
Abstract
Grasses are the most important and widely cultivated crops. Among them, ryegrasses (Lolium spp.) and fescues (Festuca spp.) provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Species from the two genera display complementary agronomic characteristics and are often grown in mixtures. Breeding efforts to combine desired features in single entities culminated with the production of Festuca x Lolium hybrids. The so called Festuloliums enjoy a considerable commercial success with numerous cultivars registered all over the world. They are also very intriguing from a strictly cytogenetic point of view as the parental chromosomes recombine freely in hybrids. Until a decade ago this phenomenon was only known in general quantitative terms. The introduction of molecular cytogenetic tools such as FISH and GISH permitted detailed studies of intergeneric chromosome recombination and karyotyping of Festulolium cultivars. These tools were also invaluable in revealing the origin of polyploid fescues, and facilitated the development of chromosome substitution and introgression lines and physical mapping of traits of interest. Further progress in this area will require the development of a larger set of cytogenetic markers and high-resolution cytogenetic maps. It is expected that the Lolium-Festuca complex will continue providing opportunities for breeding superior grass cultivars and the complex will remain an attractive platform for fundamental research of the early steps of hybrid speciation and interaction of parental genomes, as well as the processes of chromosome pairing, elimination and recombination.
Collapse
Affiliation(s)
- D Kopecký
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Olomouc, Czech Republic.
| | | | | |
Collapse
|
18
|
Zwierzykowski Z, Zwierzykowska E, Taciak M, Jones N, Kosmala A, Krajewski P. Chromosome pairing in allotetraploid hybrids of Festuca pratensis x Lolium perenne revealed by genomic in situ hybridization (GISH). Chromosome Res 2008; 16:575-85. [PMID: 18409011 DOI: 10.1007/s10577-008-1198-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/11/2008] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
Abstract
Genomic in situ hybridization (GISH) was used to make a detailed study of chromosome pairing at metaphase I (MI) of meiosis in six F(1) hybrid plants of the allotetraploid Festuca pratensis x Lolium perenne (2n = 4x = 28; genomic constitution FpFpLpLp). The mean chromosome configurations for all hybrids analysed were 1.13 univalents + 11.51 bivalents + 0.32 trivalents + 0.72 quadrivalents, and the mean chiasma frequency was 21.96 per cell. GISH showed that pairing was predominantly intragenomic, with mean numbers of L. perenne (Lp/Lp) and F. pratensis (Fp/Fp) bivalents being virtually equal at 5.41 and 5.48 per cell, respectively. Intergenomic pairing between Lolium and Festuca chromosomes was observed in 33.3% of Lp/Fp bivalents (0.62 per cell), in 79.7% of trivalents - Lp/Lp/Fp and Lp/Fp/Fp (0.25 per cell), and in 98.4% of quadrivalents - Lp/Lp/Fp/Fp and Lp/Lp/Lp/Fp (0.71 per cell). About 4.0% of the total chromosome complement analysed remained as univalents, an average 0.68 Lp and 0.45 Fp univalents per cell. It is evident that in these hybrids there is opportunity for recombination to take place between the two component genomes, albeit at a low level, and this is discussed in the context of compromising the stability of Festulolium hybrid cultivars and accounting for the drift in the balance of the genomes over generations. We speculate that genotypic differences between hybrids could permit selection for pairing control, and that preferences for homologous versus homoeologous centromeres in their spindle attachments and movement to the poles at anaphase I could form the basis of a mechanism underlying genome drift.
Collapse
Affiliation(s)
- Zbigniew Zwierzykowski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | | | | | | | | | | |
Collapse
|