1
|
Ji G, Long Y, Cai G, Wang A, Yan G, Li H, Gao G, Xu K, Huang Q, Chen B, Li L, Li F, Nishio T, Shen J, Wu X. A new chromosome-scale genome of wild Brassica oleracea provides insights into the domestication of Brassica crops. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2882-2899. [PMID: 38421062 DOI: 10.1093/jxb/erae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
The cultivated diploid Brassica oleracea is an important vegetable crop, but the genetic basis of its domestication remains largely unclear in the absence of high-quality reference genomes of wild B. oleracea. Here, we report the first chromosome-level assembly of the wild Brassica oleracea L. W03 genome (total genome size, 630.7 Mb; scaffold N50, 64.6 Mb). Using the newly assembled W03 genome, we constructed a gene-based B. oleracea pangenome and identified 29 744 core genes, 23 306 dispensable genes, and 1896 private genes. We re-sequenced 53 accessions, representing six potential wild B. oleracea progenitor species. The results of the population genomic analysis showed that the wild B. oleracea populations had the highest level of diversity and represents the most closely related population to modern-day horticultural B. oleracea. In addition, the WUSCHEL gene was found to play a decisive role in domestication and to be involved in cauliflower and broccoli curd formation. We also illustrate the loss of disease-resistance genes during selection for domestication. Our results provide new insights into the domestication of B. oleracea and will facilitate the future genetic improvement of Brassica crops.
Collapse
Affiliation(s)
- Gaoxiang Ji
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ying Long
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Guangqin Cai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Aihua Wang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan,China
| | - Guixin Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hao Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Guizhen Gao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Kun Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qian Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Biyun Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lixia Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Feng Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Takeshi Nishio
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-0845, Japan
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
2
|
Zhang X, Han F, Li Z, Wen Z, Cheng W, Shan X, Sun D, Liu Y. Map-based cloning and functional analysis of a major quantitative trait locus, BolC.Pb9.1, controlling clubroot resistance in a wild Brassica relative (Brassica macrocarpa). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:41. [PMID: 38305900 DOI: 10.1007/s00122-024-04543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
KEY MESSAGE A causal gene BoUGT76C2, conferring clubroot resistance in wild Brassica oleracea, was identified and functionally characterized. Clubroot is a devastating soil-borne disease caused by the obligate biotrophic pathogen Plasmodiophora brassica (P. brassicae), which poses a great threat to Brassica oleracea (B. oleracea) production. Although several QTLs associated with clubroot resistance (CR) have been mapped in cultivated B. oleracea, none have been cloned in B. oleracea. Previously, we found that the wild B. oleracea B2013 showed high resistance to clubroot. In this study, we constructed populations using B2013 and broccoli line 90196. CR in B2013 is quantitatively inherited, and a major QTL, BolC.Pb9.1, was identified on C09 using QTL-seq and linkage analysis. The BolC.Pb9.1 was finely mapped to a 56 kb genomic region using F2:3 populations. From the target region, the candidate BoUGT76C2 showed nucleotide variations between the parents, and was inducible in response to P. brassicae infection. We generated BoUGT76C2 overexpression lines in the 90196 background, which showed significantly enhanced resistance to P. brassicae compared to the WT line, suggesting that BoUGT76C2 corresponds to the resistance gene BolC.Pb.9.1. This is the first report on the CR gene map-based cloning and functional analysis from wild relatives, which provides a theoretical basis to the understanding of the molecular mechanism of CR, and lays a foundation to improve the CR of cultivated B. oleracea.
Collapse
Affiliation(s)
- Xiaoli Zhang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100181, China.
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100181, China
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100181, China
| | - Zhenghua Wen
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Wenjuan Cheng
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Xiaozheng Shan
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Deling Sun
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100181, China.
| |
Collapse
|
3
|
Treccarichi S, Ben Ammar H, Amari M, Cali R, Tribulato A, Branca F. Molecular Markers for Detecting Inflorescence Size of Brassica oleracea L. Crops and B. oleracea Complex Species (n = 9) Useful for Breeding of Broccoli ( B. oleracea var. italica) and Cauliflower ( B. oleracea var. botrytis). PLANTS (BASEL, SWITZERLAND) 2023; 12:407. [PMID: 36679119 PMCID: PMC9862391 DOI: 10.3390/plants12020407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The gene flow from Brassica oleracea L. wild relatives to B. oleracea vegetable crops have occurred and continue to occur ordinarily in several Mediterranean countries, such as Sicily, representing an important hot spot of diversity for some of them, such as broccoli, cauliflower and kale. For detecting and for exploiting the forgotten alleles lost during the domestication processes of the B. oleracea crops, attention has been pointed to the individuation of specific markers for individuating genotypes characterized by hypertrophic inflorescence traits by the marker assisted selection (MAS) during the first plant growing phases after the crosses between broccoli (B. oleracea var. italica)/cauliflower (B. oleracea var. botrytis) with B. oleracea wild relatives (n = 9), reducing the cultivation and evaluation costs. The desired traits often found in several B. oleracea wild relatives are mainly addressed to improve the plant resistance to biotic and abiotic stresses and to increase the organoleptic, nutritive and nutraceutical traits of the products. One of the targeted traits for broccoli and cauliflower breeding is represented by the inflorescences size as is documented by the domestication processes of these two crops. Based on the previous results achieved, the numerical matrix, obtained utilizing five simple sequence repeats (SSRs), was analyzed to assess the relationship among the main inflorescence characteristics and the allelic variation of the SSRs loci analyzed (BoABI1, BoAP1, BoPLD1, BoTHL1 and PBCGSSRBo39), both for the Brassica oleracea and B. oleracea wild relatives (n = 9) accessions set. The main inflorescence morphometric characteristics, such as weight, height, diameter, shape, inflorescence curvature angle and its stem diameter, were registered before the flower anthesis. We analyzed the correlations among the allelic variation of the SSRs primers utilized and the inflorescence morphometric characteristics to individuate genomic regions stimulating the hypertrophy of the reproductive organ. The relationships found explain the diversity among B. oleracea crops and the B. oleracea complex species (n = 9) for the inflorescence size and structure. The individuated markers allow important time reduction during the breeding programs after crossing wild species for transferring useful biotic and abiotic resistances and organoleptic and nutraceutical traits to the B. oleracea crops by MAS.
Collapse
Affiliation(s)
- Simone Treccarichi
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95131 Catania, Italy
| | - Hajer Ben Ammar
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95131 Catania, Italy
- Laboratory of Molecular Genetics Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire, Tunis 2092, Tunisia
| | - Marwen Amari
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95131 Catania, Italy
| | - Riccardo Cali
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95131 Catania, Italy
| | - Alessandro Tribulato
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95131 Catania, Italy
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95131 Catania, Italy
| |
Collapse
|
4
|
Chen J, Guo Y, Hu X, Zhou K. Comparison of the Chloroplast Genome Sequences of 13 Oil-Tea Camellia Samples and Identification of an Undetermined Oil-Tea Camellia Species From Hainan Province. FRONTIERS IN PLANT SCIENCE 2022; 12:798581. [PMID: 35197990 PMCID: PMC8860168 DOI: 10.3389/fpls.2021.798581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/17/2021] [Indexed: 06/01/2023]
Abstract
The comparison of chloroplast genome (cpDNA) sequences among different plant species is an important source of plant molecular phylogenetic data. In this paper, the cpDNA sequences of 13 different oil-tea camellia samples were compared to identify an undetermined oil-tea camellia species from Hainan Province. The cpDNA of the samples was sequenced and resequenced, and divergence hotspots and simple sequence repeat (SSR) variations were analyzed. Bayesian inference (BI) and maximum-likelihood (ML) phylogenetic trees were constructed based on the full cpDNA sequences. The cpDNA sequences were 156512∼157089 bp in length and had the circular tetrad structure typical of angiosperms. The inverted repeats (IRs) of different species included varying contractions and expansions. The cpDNA sequences of the samples of the undetermined species of oil-tea camellia from Hainan Province and Camellia gauchowensis from Xuwen County were identical. In total, 136 genes were annotated, including 91 protein-coding genes (PCGs), 37 tRNA genes and 8 rRNA genes. The GC content of the cpDNA was 37.3%. The small single-copy (SSC)/IR boundary was rich in variation. Divergence hotspots were mainly located in the intergenic space (IGS) and coding sequences (CDSs), and there were obvious differences in divergence hotspots among species. The same divergence hotspots were found in Camellia vietnamensis, Camellia gauchowensis and the undetermined species of oil-tea camellia from Hainan Province. A total of 191∼198 SSR loci were detected. Most of the SSRs included A or T, and the distribution of SSRs in the cpDNA was uneven. Different species shared common SSRs and exhibited unique SSRs. Based on the full cpDNA sequences, the evolutionary relationships of different species of Camellia were well identified. The thirteen samples were classified into 2 clades and 6 subclades, and the different sections of Camellia clustered on the same branch in 2 clades and 2 subclades. Camellia vietnamensis was more closely related to the undetermined species of oil-tea camellia from Hainan Province and the sample of Camellia gauchowensis from Xuwen County than to the sample of Camellia gauchowensis from Luchuan County. Camellia osmantha was closely related to Camellia gauchowensis and Camellia vietnamensis. In conclusion, the cpDNA of different oil-tea camellia species has a conserved tetrad structure with certain length polymorphisms. SSRs are expected to be developed as "barcodes" or "identity cards" for species identification. SSR variations and other factors result in abundant divergence hotspots in the CDSs and IGS (one non-CDS region), indicating that full cpDNA sequences can be used for the species identification and phylogenetic analysis of Camellia. Accordingly, the undetermined species of oil-tea camellia from Hainan Province is likely Camellia vietnamensis, Camellia vietnamensis and Camellia gauchowensis may be the same species, and additional genetic evidence is needed to determine whether Camellia osmantha is a new independent species. The previous division of related sections of Camellia may need readjustment based on full cpDNA sequences.
Collapse
Affiliation(s)
- Jing Chen
- Engineering Research Center for Breeding of New Varieties of Tropical Crops, Ministry of Education, Haikou, China
- College of Horticulture, Hainan University, Haikou, China
| | - Yujian Guo
- Engineering Research Center for Breeding of New Varieties of Tropical Crops, Ministry of Education, Haikou, China
- College of Horticulture, Hainan University, Haikou, China
| | - Xinwen Hu
- Engineering Research Center for Breeding of New Varieties of Tropical Crops, Ministry of Education, Haikou, China
- College of Horticulture, Hainan University, Haikou, China
| | - Kaibing Zhou
- Engineering Research Center for Breeding of New Varieties of Tropical Crops, Ministry of Education, Haikou, China
- College of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
5
|
Mabry ME, Turner-Hissong SD, Gallagher EY, McAlvay AC, An H, Edger PP, Moore JD, Pink DAC, Teakle GR, Stevens CJ, Barker G, Labate J, Fuller DQ, Allaby RG, Beissinger T, Decker JE, Gore MA, Pires JC. The Evolutionary History of Wild, Domesticated, and Feral Brassica Oleracea (Brassicaceae). Mol Biol Evol 2021; 38:4419-4434. [PMID: 34157722 PMCID: PMC8476135 DOI: 10.1093/molbev/msab183] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the evolutionary history of crops, including identifying wild relatives, helps to provide insight for conservation and crop breeding efforts. Cultivated Brassica oleracea has intrigued researchers for centuries due to its wide diversity in forms, which include cabbage, broccoli, cauliflower, kale, kohlrabi, and Brussels sprouts. Yet, the evolutionary history of this species remains understudied. With such different vegetables produced from a single species, B. oleracea is a model organism for understanding the power of artificial selection. Persistent challenges in the study of B. oleracea include conflicting hypotheses regarding domestication and the identity of the closest living wild relative. Using newly generated RNA-seq data for a diversity panel of 224 accessions, which represents 14 different B. oleracea crop types and nine potential wild progenitor species, we integrate phylogenetic and population genetic techniques with ecological niche modeling, archaeological, and literary evidence to examine relationships among cultivars and wild relatives to clarify the origin of this horticulturally important species. Our analyses point to the Aegean endemic B. cretica as the closest living relative of cultivated B. oleracea, supporting an origin of cultivation in the Eastern Mediterranean region. Additionally, we identify several feral lineages, suggesting that cultivated plants of this species can revert to a wild-like state with relative ease. By expanding our understanding of the evolutionary history in B. oleracea, these results contribute to a growing body of knowledge on crop domestication that will facilitate continued breeding efforts including adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Makenzie E Mabry
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, U.S.A
| | | | - Evan Y Gallagher
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, U.S.A
| | - Alex C McAlvay
- Institute of Economic Botany, The New York Botanical Garden, Bronx, NY, U.S.A
| | - Hong An
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, U.S.A
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, MI, USA
| | | | - David A C Pink
- Agriculture and Environment Department, Harper Adams University, UK
| | | | - Chris J Stevens
- School of Archaeology and Museology, Peking University, Beijing, China.,Institute of Archaeology, University College London, London, UK
| | - Guy Barker
- School of Life Science, University of Warwick, UK
| | - Joanne Labate
- USDA, ARS Plant Genetic Resources Unit, Cornell AgriTech, Geneva, NY, USA
| | - Dorian Q Fuller
- Institute of Archaeology, University College London, London, UK.,School of Cultural Heritage, Northwest University, Xi'an, Shaanxi, China.,Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | | | - Timothy Beissinger
- Division of Plant Breeding Methodology, Department of Crop Sciences, University of Goettingen, Goettingen, Germany
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - J Chris Pires
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, U.S.A
| |
Collapse
|
6
|
Arias T, Niederhuth CE, McSteen P, Pires JC. The Molecular Basis of Kale Domestication: Transcriptional Profiling of Developing Leaves Provides New Insights Into the Evolution of a Brassica oleracea Vegetative Morphotype. FRONTIERS IN PLANT SCIENCE 2021; 12:637115. [PMID: 33747016 PMCID: PMC7973465 DOI: 10.3389/fpls.2021.637115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Morphotypes of Brassica oleracea are the result of a dynamic interaction between genes that regulate the transition between vegetative and reproductive stages and those that regulate leaf morphology and plant architecture. In kales, ornate leaves, extended vegetative phase, and nutritional quality are some of the characters potentially selected by humans during domestication. We used a combination of developmental studies and transcriptomics to understand the vegetative domestication syndrome of kale. To identify candidate genes that are responsible for the evolution of domestic kale, we searched for transcriptome-wide differences among three vegetative B. oleracea morphotypes. RNA-seq experiments were used to understand the global pattern of expressed genes during a mixture of stages at one time in kale, cabbage, and the rapid cycling kale line TO1000. We identified gene expression patterns that differ among morphotypes and estimate the contribution of morphotype-specific gene expression that sets kale apart (3958 differentially expressed genes). Differentially expressed genes that regulate the vegetative to reproductive transition were abundant in all morphotypes. Genes involved in leaf morphology, plant architecture, defense, and nutrition were differentially expressed in kale. This allowed us to identify a set of candidate genes we suggest may be important in the kale domestication syndrome. Understanding candidate genes responsible for kale domestication is of importance to ultimately improve Cole crop production.
Collapse
|
7
|
Stansell Z, Björkman T. From landrace to modern hybrid broccoli: the genomic and morphological domestication syndrome within a diverse B. oleracea collection. HORTICULTURE RESEARCH 2020; 7:159. [PMID: 33082966 PMCID: PMC7528014 DOI: 10.1038/s41438-020-00375-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/12/2020] [Accepted: 08/01/2020] [Indexed: 05/03/2023]
Abstract
Worldwide, broccoli (Brassica oleracea var. italica) is among the most economically important, nutritionally rich, and widely-grown vegetable crops. To explore the genomic basis of the dramatic changes in broccoli morphology in the last century, we evaluated 109 broccoli or broccoli/cauliflower intermediates for 24 horticultural traits. Genotype-by-sequencing markers were used to determine four subpopulations within italica: Calabrese broccoli landraces and hybrids, sprouting broccoli, and violet cauliflower, and to evaluate between and within group relatedness and diversity. While overall horticultural quality and harvest index of improved hybrid broccoli germplasm has increased by year of cultivar release, this improvement has been accompanied by a considerable reduction in allelic diversity when compared to the larger pool of germplasm. Two landraces are the most likely founding source of modern broccoli hybrids, and within these modern hybrids, we identified 13 reduction-in-diversity genomic regions, 53 selective sweeps, and 30 (>1 Mbp) runs of homozygosity. Landrace accessions collected in southern Italy contained 4.8-fold greater unique alleles per accessions compared to modern hybrids and provide a valuable resource in subsequent improvement efforts. This work broadens the understanding of broccoli germplasm, informs conservation efforts, and enables breeding for complex quality traits and regionally adapted cultivars.
Collapse
Affiliation(s)
- Zachary Stansell
- Cornell University, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850 USA
- Cornell AgriTech, Cornell University, Geneva, NY 14456 USA
| | - Thomas Björkman
- Cornell University, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850 USA
- Cornell AgriTech, Cornell University, Geneva, NY 14456 USA
| |
Collapse
|
8
|
Mittell EA, Cobbold CA, Ijaz UZ, Kilbride EA, Moore KA, Mable BK. Feral populations of Brassica oleracea along Atlantic coasts in western Europe. Ecol Evol 2020; 10:11810-11825. [PMID: 33145003 PMCID: PMC7593181 DOI: 10.1002/ece3.6821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/16/2023] Open
Abstract
There has been growing emphasis on the role that crop wild relatives might play in supporting highly selected agriculturally valuable species in the face of climate change. In species that were domesticated many thousands of years ago, distinguishing wild populations from escaped feral forms can be challenging, but reintroducing variation from either source could supplement current cultivated forms. For economically important cabbages (Brassicaceae: Brassica oleracea), "wild" populations occur throughout Europe but little is known about their genetic variation or potential as resources for breeding more resilient crop varieties. The main aim of this study was to characterize the population structure of geographically isolated wild cabbage populations along the coasts of the UK and Spain, including the Atlantic range edges. Double-digest restriction-site-associated DNA sequencing was used to sample individual cabbage genomes, assess the similarity of plants from 20 populations, and explore environment-genotype associations across varying climatic conditions. Interestingly, there were no indications of isolation by distance; several geographically close populations were genetically more distinct from each other than to distant populations. Furthermore, several distant populations shared genetic ancestry, which could indicate that they were established by escapees of similar source cultivars. However, there were signals of local adaptation to different environments, including a possible relationship between genetic diversity and soil pH. Overall, these results highlight wild cabbages in the Atlantic region as an important genetic resource worthy of further research into their relationship with existing crop varieties.
Collapse
Affiliation(s)
- Elizabeth A. Mittell
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- School of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Christina A. Cobbold
- School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK
- The Boyd Orr Centre for Population and Ecosystem HealthUniversity of GlasgowGlasgowUK
| | | | - Elizabeth A. Kilbride
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | | | - Barbara K. Mable
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- The Boyd Orr Centre for Population and Ecosystem HealthUniversity of GlasgowGlasgowUK
| |
Collapse
|
9
|
Asadi A, Ebrahimi A, Rashidi-Monfared S, Basiri M, Akbari-Afjani J. Comprehensive functional analysis and mapping of SSR markers in the chickpea genome (Cicer arietinum L.). Comput Biol Chem 2019; 84:107169. [PMID: 31812779 DOI: 10.1016/j.compbiolchem.2019.107169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022]
Abstract
Plant molecular breeding largely depends on the relationship between molecular markers and major traits. Herein, a total of 32,962 genomic simple sequence repeats (SSRs) were detected in the whole genome of chickpea with an average density of 94.93 SSRs/Mb. Chickpea chromosomes uniformity test indicated that the genomic SSRs (gSSRs) were steadily distributed across the genome. Moreover, 48,667 transcriptome sequences were analyzed and 1949 SSR-containing transcript assembly contigs (TACs) were identified. The analysis showed that di- and trinucleotide SSRs were the most frequent SSR motifs within the transcriptome sequences. Among them, AT and TTA and AG and TTC motifs within the transcriptome showed the highest frequencies among di- and trinucleotide repeat motifs, respectively. The SSRs-containing TACs were compared to the GenBank non-redundant database using BLASTX, and subsequently, gene ontology (GO) analysis was performed using QuickGO browser to reduce complexity and highlight biological processes associated with the SSRs-containing TACs. The identified SSRs-containing TACs were categorized into 35 enriched functional-related gene group. The mapping of characterized SSRs-containing TACs onto chickpea chromosomes was performed using BLASTN. The mapping result showed that, a total of 1798 SSRs-containing TACs were mapped onto the chickpea genome. Based on the functional analysis result, 249 and 242 of the mapped SSRs-containing TACs were found in the genes encoding for putative stress-related proteins and transcription factors, respectively. The results presented here can be applied to improve and speed up the chickpea breeding programs.
Collapse
Affiliation(s)
- AliAkbar Asadi
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Sajad Rashidi-Monfared
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Basiri
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Javad Akbari-Afjani
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Koh JCO, Barbulescu DM, Norton S, Redden B, Salisbury PA, Kaur S, Cogan N, Slater AT. A multiplex PCR for rapid identification of Brassica species in the triangle of U. PLANT METHODS 2017; 13:49. [PMID: 28638437 PMCID: PMC5472915 DOI: 10.1186/s13007-017-0200-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/08/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Within the Brassicaceae, six species from the genus Brassica are widely cultivated throughout the world as oilseed, condiment, fodder or vegetable crops. The genetic relationships among the six Brassica species are described by U's triangle model. Extensive shared traits and diverse morphotypes among Brassica species make identification and classification based on phenotypic data alone challenging and unreliable, especially when dealing with large germplasm collections. Consequently, a major issue for genebank collections is ensuring the correct identification of species. Molecular genotyping based on simple sequence repeat (SSR) marker sequencing or the Illumina Infinium Brassica napus 60K single nucleotide polymorphism (SNP) array has been used to identify species and assess genetic diversity of Brassica collections. However, these methods are technically challenging, expensive and time-consuming, making them unsuitable for routine or rapid screening of Brassica accessions for germplasm management. A cheaper, faster and simpler method for Brassica species identification is described here. RESULTS A multiplex polymerase chain reaction (MPCR) consisting of new and existing primers specific to the Brassica A, B and C genomes was able to reliably distinguish all six Brassica species in the triangle of U with 16 control samples of known species identity. Further validation against 120 Brassica accessions previously genotyped showed that the MPCR is highly accurate and comparable to more advanced techniques such as SSR marker sequencing or the Illumina Infinium B. napus 60K SNP array. In addition, the MPCR was sensitive enough to detect seed contaminations in pooled seed samples of Brassica accessions. CONCLUSION A cheap and fast multiplex PCR assay for identification of Brassica species in the triangle of U was developed and validated in this study. The MPCR assay can be readily implemented in any basic molecular laboratory and should prove useful for the management of Brassica germplasm collections in genebanks.
Collapse
Affiliation(s)
- Joshua C. O. Koh
- Department of Economic Development, Jobs, Transport and Resources, Grains Innovation Park, 110 Natimuk Rd, Horsham, VIC 3401 Australia
| | - Denise M. Barbulescu
- Department of Economic Development, Jobs, Transport and Resources, Grains Innovation Park, 110 Natimuk Rd, Horsham, VIC 3401 Australia
| | - Sally Norton
- Department of Economic Development, Jobs, Transport and Resources, Australian Grains Genebank, Private Bag 260, Horsham, VIC 3401 Australia
| | - Bob Redden
- Department of Economic Development, Jobs, Transport and Resources, Australian Grains Genebank, Private Bag 260, Horsham, VIC 3401 Australia
| | - Phil A. Salisbury
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010 Australia
- Department of Economic Development, Jobs, Transport and Resources, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, VIC 3083 Australia
| | - Sukhjiwan Kaur
- Department of Economic Development, Jobs, Transport and Resources, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, VIC 3083 Australia
| | - Noel Cogan
- Department of Economic Development, Jobs, Transport and Resources, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, VIC 3083 Australia
| | - Anthony T. Slater
- Department of Economic Development, Jobs, Transport and Resources, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, VIC 3083 Australia
| |
Collapse
|
11
|
Satjarak A, Graham LE. Comparative DNA sequence analyses of Pyramimonas parkeae (Prasinophyceae) chloroplast genomes. JOURNAL OF PHYCOLOGY 2017; 53:415-424. [PMID: 28130930 DOI: 10.1111/jpy.12515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
Prasinophytes form a paraphyletic assemblage of early diverging green algae, which have the potential to reveal the traits of the last common ancestor of the main two green lineages: (i) chlorophyte algae and (ii) streptophyte algae. Understanding the genetic composition of prasinophyte algae is fundamental to understanding the diversification and evolutionary processes that may have occurred in both green lineages. In this study, we sequenced the chloroplast genome of Pyramimonas parkeae NIES254 and compared it with that of P. parkeae CCMP726, the only other fully sequenced P. parkeae chloroplast genome. The results revealed that P. parkeae chloroplast genomes are surprisingly variable. The chloroplast genome of NIES254 was larger than that of CCMP726 by 3,204 bp, the NIES254 large single copy was 288 bp longer, the small single copy was 5,088 bp longer, and the IR was 1,086 bp shorter than that of CCMP726. Similarity values of the two strains were almost zero in four large hot spot regions. Finally, the strains differed in copy number for three protein-coding genes: ycf20, psaC, and ndhE. Phylogenetic analyses using 16S and 18S rDNA and rbcL sequences resolved a clade consisting of these two P. parkeae strains and a clade consisting of these plus other Pyramimonas isolates. These results are consistent with past studies indicating that prasinophyte chloroplast genomes display a higher level of variation than is commonly found among land plants. Consequently, prasinophyte chloroplast genomes may be less useful for inferring the early history of Viridiplantae than has been the case for land plant diversification.
Collapse
Affiliation(s)
- Anchittha Satjarak
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, USA
| | - Linda E Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Ronca S, Allainguillaume J, Ford CS, Warren J, Wilkinson MJ. GM risk assessment: Pollen carriage from Brassica napus to B. rapa varies widely between pollinators. Basic Appl Ecol 2017. [DOI: 10.1016/j.baae.2017.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Qiao J, Cai M, Yan G, Wang N, Li F, Chen B, Gao G, Xu K, Li J, Wu X. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:409-18. [PMID: 26031705 PMCID: PMC11388923 DOI: 10.1111/pbi.12395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 03/26/2015] [Accepted: 04/09/2015] [Indexed: 05/14/2023]
Abstract
Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole-genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C-genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts.
Collapse
Affiliation(s)
- Jiangwei Qiao
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Mengxian Cai
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Guixin Yan
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Nian Wang
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Feng Li
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Binyun Chen
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Guizhen Gao
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Kun Xu
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jun Li
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoming Wu
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
14
|
Shu J, Liu Y, Li Z, Zhang L, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H. Organelle Simple Sequence Repeat Markers Help to Distinguish Carpelloid Stamen and Normal Cytoplasmic Male Sterile Sources in Broccoli. PLoS One 2015; 10:e0138750. [PMID: 26407159 PMCID: PMC4583441 DOI: 10.1371/journal.pone.0138750] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023] Open
Abstract
We previously discovered carpelloid stamens when breeding cytoplasmic male sterile lines in broccoli (Brassica oleracea var. italica). In this study, hybrids and multiple backcrosses were produced from different cytoplasmic male sterile carpelloid stamen sources and maintainer lines. Carpelloid stamens caused dysplasia of the flower structure and led to hooked or coiled siliques with poor seed setting, which were inherited in a maternal fashion. Using four distinct carpelloid stamens and twelve distinct normal stamens from cytoplasmic male sterile sources and one maintainer, we used 21 mitochondrial simple sequence repeat (mtSSR) primers and 32 chloroplast SSR primers to identify a mitochondrial marker, mtSSR2, that can differentiate between the cytoplasm of carpelloid and normal stamens. Thereafter, mtSSR2 was used to identify another 34 broccoli accessions, with an accuracy rate of 100%. Analysis of the polymorphic sequences revealed that the mtSSR2 open reading frame of carpelloid stamen sterile sources had a deletion of 51 bases (encoding 18 amino acids) compared with normal stamen materials. The open reading frame is located in the coding region of orf125 and orf108 of the mitochondrial genomes in Brassica crops and had the highest similarity with Raphanus sativus and Brassica carinata. The current study has not only identified a useful molecular marker to detect the cytoplasm of carpelloid stamens during broccoli breeding, but it also provides evidence that the mitochondrial genome is maternally inherited and provides a basis for studying the effect of the cytoplasm on flower organ development in plants.
Collapse
Affiliation(s)
- Jinshuai Shu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yumei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing, 100081, China
- * E-mail:
| | - Zhansheng Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Lili Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing, 100081, China
| |
Collapse
|
15
|
Sarin B, Martín JP, Kaula BC, Mohanty A. Chloroplast DNA Variations in Wild Brassicas and Their Implication in Breeding and Population Genetics Studies. SCIENTIFICA 2015; 2015:952395. [PMID: 26347851 PMCID: PMC4546986 DOI: 10.1155/2015/952395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/22/2015] [Indexed: 06/05/2023]
Abstract
Evaluation of chloroplast DNA (cpDNA) diversity in wild relatives of crop brassicas is important for characterization of cytoplasm and also for population genetics/phylogeographic analyses. The former is useful for breeding programs involving wide hybridization and synthesis of alloplasmic lines, while the latter is important for formulating conservation strategies. Therefore, PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism) technique was applied to study cpDNA diversity in 14 wild brassicas (including 31 accessions) which revealed a total of 219 polymorphic fragments. The combination of polymorphisms obtained by using only two primer pair-restriction enzyme combinations was sufficient to distinguish all 14 wild brassicas. Moreover, 11 primer pairs-restriction enzyme combinations revealed intraspecific polymorphisms in eight wild brassicas (including endemic and endangered species, B. cretica and B. insularis, resp.). Thus, even within a small number of accessions that were screened, intraspecific polymorphisms were observed, which is important for population genetics analyses in wild brassicas and consequently for conservation studies.
Collapse
Affiliation(s)
- Bharti Sarin
- Department of Botany, Gargi College, University of Delhi, Sirifort Road, New Delhi 110049, India
| | - Juan Pedro Martín
- Departamento de Biología Vegetal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Babeeta Chrungu Kaula
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Jawaharlal Nehru Marg, New Delhi 110002, India
| | - Aparajita Mohanty
- Department of Botany, Gargi College, University of Delhi, Sirifort Road, New Delhi 110049, India
| |
Collapse
|
16
|
Maggioni L, von Bothmer R, Poulsen G, Branca F, Bagger Jørgensen R. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy. Hereditas 2015; 151:145-58. [PMID: 25588302 DOI: 10.1111/hrd2.00058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/23/2014] [Indexed: 11/26/2022] Open
Abstract
Local varieties of leafy kales (Brassica oleracea L.) are grown in home gardens in Calabria and Sicily for self-consumption, in the same area where the wild relative Brassica rupestris Raf. also grows. With the use of AFLP markers, comparisons were made of the genetic diversity and population structure of ten wild and 22 cultivated populations, as well as of a hybrid population and of four commercial cultivars of different B. oleracea crops. The level of genetic diversity was higher in leafy kales than in wild populations and this diversity was mainly distributed within populations. Wild populations remained distinct from cultivated material. Additionally, most wild populations were distinctively isolated from each other. On the other hand, it was not possible to molecularly distinguish even geographically distant leafy kale populations from each other or from different B. oleracea crops. It was possible to detect inter-crossing between leafy kales and B. rupestris. Findings from this study illustrate the existing level of genetic diversity in the B. oleracea gene pool. Individual populations (either wild or leafy kales) with higher levels of genetic diversity have been identified and suggestions are given for an informed conservation strategy. Domestication hypotheses are also discussed.
Collapse
Affiliation(s)
- Lorenzo Maggioni
- Bioversity International, Maccarese (Fiumicino), Roma, Italy; Dept. of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | | | | | | | | |
Collapse
|
17
|
Ford CS, Allainguillaume J, Fu TYR, Mitchley J, Wilkinson MJ. Assessing the value of imperfect biocontainment nationally: rapeseed in the United Kingdom as an exemplar. THE NEW PHYTOLOGIST 2015; 205:1342-1349. [PMID: 25367754 DOI: 10.1111/nph.13131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/21/2014] [Indexed: 06/04/2023]
Abstract
Paternal biocontainment methods (PBMs) act by preventing pollen-mediated transgene flow. They are compromised by transgene escape via the crop-maternal line. We therefore assess the efficacy of PBMs for transgenic rapeseed (Brassica napus) biocontainment across the United Kingdom by estimating crop-maternal hybridization with its two progenitor species. We used remote sensing, field surveys, agricultural statistics, and meta-analysis to determine the extent of sympatry between the crop and populations of riparian and weedy B. rapa and B. oleracea. We then estimated the incidence of crop-maternal hybridization across all settings to predict the efficacy of PBMs. Evidence of crop chloroplast capture by the progenitors was expanded to a national scale, revealing that crop-maternal gene flow occurs at widely variable rates and is dependent on both the recipient and setting. We use these data to explore the value that this kind of biocontainment can bring to genetic modification (GM) risk management in terms of reducing the impact that hybrids have on the environment rather than preventing or reducing hybrid abundance per se.
Collapse
Affiliation(s)
- Caroline S Ford
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Joël Allainguillaume
- Department of Biological, Biomedical and Analytical Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Tzu-Yu Richard Fu
- Department of International Affairs, Council of Agriculture, Executive Yuan, Taipei, Taiwan
| | - Jonathan Mitchley
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AS, UK
| | - Mike J Wilkinson
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
18
|
Zhang Y, Fang Z, Wang Q, Liu Y, Yang L, Zhuang M, Sun P. Chloroplast subspecies-specific SNP detection and its maternal inheritance in Brassica oleracea L. by using a dCAPS marker. ACTA ACUST UNITED AC 2012; 103:606-11. [PMID: 22577190 DOI: 10.1093/jhered/ess006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chloroplast simple sequence repeats amplicons in 5 subspecies of Brassica oleracea were sequenced, and one chloroplast SNP was detected in amplicon ACP43. Through the introduction of an RsaI recognition site by adding one mismatch in the forward primer, combined with the increased primer length and raised annealing temperature, the dCAPS (derived cleaved amplified polymorphic sequences) marker ACP43-93 RsaI was successfully developed. By using the dCAPS marker, the subspecies-specific SNP was assayed in 206 materials representing the wide distribution of B. oleracea. This is the first report of chloroplast DNA (cpDNA) variation in cultivated subspecies of B. oleracea, which showed that chloroplast diversity existed at the intersubspecies level. Unlike other subspecies, most of the broccoli and all of the cauliflower materials sharing the same haplotype showed closer relationships in cpDNA level. Furthermore, the dCAPS haplotype of the offspring from 7 male sterile backcross populations was the same as the female parents, indicating maternal inheritance.
Collapse
Affiliation(s)
- Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Irwin JA, Lister C, Soumpourou E, Zhang Y, Howell EC, Teakle G, Dean C. Functional alleles of the flowering time regulator FRIGIDA in the Brassica oleracea genome. BMC PLANT BIOLOGY 2012; 12:21. [PMID: 22333192 PMCID: PMC3299615 DOI: 10.1186/1471-2229-12-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/14/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plants adopt different reproductive strategies as an adaptation to growth in a range of climates. In Arabidopsis thaliana FRIGIDA (FRI) confers a vernalization requirement and thus winter annual habit by increasing the expression of the MADS box transcriptional repressor FLOWERING LOCUS C (FLC). Variation at FRI plays a major role in A. thaliana life history strategy, as independent loss-of-function alleles that result in a rapid-cycling habit in different accessions, appear to have evolved many times. The aim of this study was to identify and characterize orthologues of FRI in Brassica oleracea. RESULTS We describe the characterization of FRI from Brassica oleracea and identify the two B. oleracea FRI orthologues (BolC.FRI.a and BolC.FRI.b). These show extensive amino acid conservation in the central and C-terminal regions to FRI from other Brassicaceae, including A. thaliana, but have a diverged N-terminus. The genes map to two of the three regions of B. oleracea chromosomes syntenic to part of A. thaliana chromosome 5 suggesting that one of the FRI copies has been lost since the ancient triplication event that formed the B. oleracea genome. This genomic position is not syntenic with FRI in A. thaliana and comparative analysis revealed a recombination event within the A. thaliana FRI promoter. This relocated A. thaliana FRI to chromosome 4, very close to the nucleolar organizer region, leaving a fragment of FRI in the syntenic location on A. thaliana chromosome 5. Our data show this rearrangement occurred after the divergence from A. lyrata. We explored the allelic variation at BolC.FRI.a within cultivated B. oleracea germplasm and identified two major alleles, which appear equally functional both to each other and A. thaliana FRI, when expressed as fusions in A. thaliana. CONCLUSIONS We identify the two Brassica oleracea FRI genes, one of which we show through A. thaliana complementation experiments is functional, and show their genomic location is not syntenic with A. thaliana FRI due to an ancient recombination event. This has complicated previous association analyses of FRI with variation in life history strategy in the Brassica genus.
Collapse
Affiliation(s)
- Judith A Irwin
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Clare Lister
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Eleni Soumpourou
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yanwen Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Elaine C Howell
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Graham Teakle
- School of Life Sciences, University of Warwick, Wellesbourne CV35 9EF, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
20
|
Tian X, Strassmann JE, Queller DC. Genome nucleotide composition shapes variation in simple sequence repeats. Mol Biol Evol 2010; 28:899-909. [PMID: 20943830 DOI: 10.1093/molbev/msq266] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Simple sequence repeats (SSRs) or microsatellites are a common component of genomes but vary greatly across species in their abundance. We tested the hypothesis that this variation is due in part to AT/GC content of genomes, with genomes biased toward either high AT or high CG generating more short random repeats that are long enough to enhance expansion through slippage during replication. To test this hypothesis, we identified repeats with perfect tandem iterations of 1-6 bp from 25 protists with complete or near-complete genome sequences. As expected, the density and the frequency are highly related to genome AT content, with excellent fits to quadratic regressions with minima near a 50% AT content and rising toward both extremes. Within species, the same trends hold, except the limited variation in AT content within each species places each mainly on the descending (GC rich), middle, or ascending (AT rich) part of the curve. The base usages of repeat motifs are also significantly correlated with genome nucleotide compositions: Percentages of AT-rich motifs rise with the increase of genome AT content but vice versa for GC-rich subgroups. Amino acid homopolymer repeats also show the expected quadratic relationship, with higher abundance in species with AT content biased in either direction. Our results show that genome nucleotide composition explains up to half of the variance in the abundance and motif constitution of SSRs.
Collapse
Affiliation(s)
- Xiangjun Tian
- Department of Ecology and Evolutionary Biology, Rice University, USA
| | | | | |
Collapse
|
21
|
Allender CJ, King GJ. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC PLANT BIOLOGY 2010; 10:54. [PMID: 20350303 PMCID: PMC2923528 DOI: 10.1186/1471-2229-10-54] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 03/29/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND The amphiploid species Brassica napus (oilseed rape, Canola) is a globally important oil crop yielding food, biofuels and industrial compounds such as lubricants and surfactants. Identification of the likely ancestors of each of the two genomes (designated A and C) found in B. napus would facilitate incorporation of novel alleles from the wider Brassica genepool in oilseed rape crop genetic improvement programmes. Knowledge of the closest extant relatives of the genotypes involved in the initial formation of B. napus would also allow further investigation of the genetic factors required for the formation of a stable amphiploid and permit the more efficient creation of fully fertile re-synthesised B. napus. We have used a combination of chloroplast and nuclear genetic markers to investigate the closest extant relatives of the original maternal progenitors of B. napus. This was based on a comprehensive sampling of the relevant genepools, including 83 accessions of A genome B. rapa L. (both wild and cultivated types), 94 accessions of B. napus and 181 accessions of C genome wild and cultivated B. oleracea L. and related species. RESULTS Three chloroplast haplotypes occurred in B. napus. The most prevalent haplotype (found in 79% of accessions) was not present within the C genome accessions but was found at low frequencies in B. rapa. Chloroplast haplotypes characteristic of B. napus were found in a small number of wild and weedy B. rapa populations, and also in two accessions of cultivated B. rapa 'brocoletto'. Whilst introgression of the B. napus chloroplast type in the wild and weedy B. rapa populations has been proposed by other studies, the presence of this haplotype within the two brocoletto accessions is unexplained. CONCLUSIONS The distribution of chloroplast haplotypes eliminate any of the C genome species as being the maternal ancestor of the majority of the B. napus accessions. The presence of multiple chloroplast haplotypes in B. napus and B. rapa accessions was not correlated with nuclear genetic diversity as determined by AFLPs, indicating that such accessions do not represent recent hybrids. Whilst some chloroplast diversity observed within B. napus can be explained by introgression from inter-specific crosses made during crop improvement programmes, there is evidence that the original hybridisation event resulting in to B. napus occurred on more than one occasion, and involved different maternal genotypes.
Collapse
Affiliation(s)
| | - Graham J King
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
22
|
Allainguillaume J, Harwood T, Ford CS, Cuccato G, Norris C, Allender CJ, Welters R, King GJ, Wilkinson MJ. Rapeseed cytoplasm gives advantage in wild relatives and complicates genetically modified crop biocontainment. THE NEW PHYTOLOGIST 2009; 183:1201-1211. [PMID: 19496946 DOI: 10.1111/j.1469-8137.2009.02877.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biocontainment methods for genetically modified crops closest to commercial reality (chloroplast transformation, male sterility) would be compromised (in absolute terms) by seed-mediated gene flow leading to chloroplast capture. Even in these circumstances, however, it can be argued that biocontainment still represses transgene movement, with the efficacy depending on the relative frequency of seed- and pollen-mediated gene flow. In this study, we screened for crop-specific chloroplast markers from rapeseed (Brassica napus) amongst sympatric and allopatric populations of wild B. oleracea in natural cliff-top populations and B. rapa in riverside and weedy populations. We found only modest crop chloroplast presence in wild B. oleracea and in weedy B. rapa, but a surprisingly high incidence in sympatric (but not in allopatric) riverside B. rapa populations. Chloroplast inheritance models indicate that elevated crop chloroplast acquisition is best explained if crop cytoplasm confers selective advantage in riverside B. rapa populations. Our results therefore imply that chloroplast transformation may slow transgene recruitment in two settings, but actually accelerate transgene spread in a third. This finding suggests that the appropriateness of chloroplast transformation for biocontainment policy depends on both context and geographical location.
Collapse
Affiliation(s)
- J Allainguillaume
- School of Biological Sciences, The University of Reading, Reading, Berkshire RG6 6AS, UK
| | - T Harwood
- Centre for Environmental Policy, Imperial College London, London SL5 7PY, UK
| | - C S Ford
- School of Biological Sciences, The University of Reading, Reading, Berkshire RG6 6AS, UK
| | - G Cuccato
- School of Biological Sciences, The University of Reading, Reading, Berkshire RG6 6AS, UK
| | - C Norris
- National Institute of Agricultural Botany (NIAB), Cambridge, Cambridgeshire CB3 0LE, UK
| | - C J Allender
- Warwick HRI, Wellesbourne, Warwickshire CV35 9EF, UK
| | - R Welters
- Natural Environment Research Council, Swindon, Berkshire SN2 1EU, UK
| | - G J King
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - M J Wilkinson
- School of Biological Sciences, The University of Reading, Reading, Berkshire RG6 6AS, UK
- Present address: Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, UK
| |
Collapse
|
23
|
Broadley MR, Hammond JP, King GJ, Astley D, Bowen HC, Meacham MC, Mead A, Pink DAC, Teakle GR, Hayden RM, Spracklen WP, White PJ. Shoot calcium and magnesium concentrations differ between subtaxa, are highly heritable, and associate with potentially pleiotropic loci in Brassica oleracea. PLANT PHYSIOLOGY 2008; 146:1707-20. [PMID: 18281414 PMCID: PMC2287345 DOI: 10.1104/pp.107.114645] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 02/13/2008] [Indexed: 05/18/2023]
Abstract
Calcium (Ca) and magnesium (Mg) are the most abundant group II elements in both plants and animals. Genetic variation in shoot Ca and shoot Mg concentration (shoot Ca and Mg) in plants can be exploited to biofortify food crops and thereby increase dietary Ca and Mg intake for humans and livestock. We present a comprehensive analysis of within-species genetic variation for shoot Ca and Mg, demonstrating that shoot mineral concentration differs significantly between subtaxa (varietas). We established a structured diversity foundation set of 376 accessions to capture a high proportion of species-wide allelic diversity within domesticated Brassica oleracea, including representation of wild relatives (C genome, 1n = 9) from natural populations. These accessions and 74 modern F(1) hybrid cultivars were grown in glasshouse and field environments. Shoot Ca and Mg varied 2- and 2.3-fold, respectively, and was typically not inversely correlated with shoot biomass, within most subtaxa. The closely related capitata (cabbage) and sabauda (Savoy cabbage) subtaxa consistently had the highest mean shoot Ca and Mg. Shoot Ca and Mg in glasshouse-grown plants was highly correlated with data from the field. To understand and dissect the genetic basis of variation in shoot Ca and Mg, we studied homozygous lines from a segregating B. oleracea mapping population. Shoot Ca and Mg was highly heritable (up to 40%). Quantitative trait loci (QTL) for shoot Ca and Mg were detected on chromosomes C2, C6, C7, C8, and, in particular, C9, where QTL accounted for 14% to 55% of the total genetic variance. The presence of QTL on C9 was substantiated by scoring recurrent backcross substitution lines, derived from the same parents. This also greatly increased the map resolution, with strong evidence that a 4-cM region on C9 influences shoot Ca. This region corresponds to a 0.41-Mb region on Arabidopsis (Arabidopsis thaliana) chromosome 5 that includes 106 genes. There is also evidence that pleiotropic loci on C8 and C9 affect shoot Ca and Mg. Map-based cloning of these loci will reveal how shoot-level phenotypes relate to Ca(2+) and Mg(2+) uptake and homeostasis at the molecular level.
Collapse
Affiliation(s)
- Martin R Broadley
- Plant Sciences Division, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
CUI XM, DONG YX, HOU XL, CHENG Y, ZHANG JY, JIN MF. Development and Characterization of Microsatellite Markers in Brassica rapa ssp. chinensis and Transferability Among Related Species. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1671-2927(08)60018-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Edh K, Widén B, Ceplitis A. Nuclear and chloroplast microsatellites reveal extreme population differentiation and limited gene flow in the Aegean endemic Brassica cretica (Brassicaceae). Mol Ecol 2007; 16:4972-83. [PMID: 17956541 DOI: 10.1111/j.1365-294x.2007.03585.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nuclear and chloroplast microsatellite markers were used to study population structure and gene flow among seven Cretan populations of the Aegean endemic plant species Brassica cretica (Brassicaceae). Both nuclear and chloroplast markers revealed exceptionally high levels of population differentiation (overall F(ST)=0.628 and 1.000, respectively) and relatively little within-population diversity (overall H(S)=0.211 and 0.000, respectively). Maximum-likelihood estimates of directional migration rates were low among all pairs of populations (average Nm=0.286). There was no evidence that differences in flower colour between populations had any influence on historical levels of gene flow. In addition, a haplotype network showed that all five chloroplast haplotypes found in the sample were closely related. Together, these results suggest that current patterns of diversification in B. cretica are mainly a result of genetic drift during the last half million years. The main conclusions from the present study are consistent with the prevailing hypothesis that plant diversification in the Aegean region is driven by random rather than adaptive differentiation among isolated populations.
Collapse
Affiliation(s)
- Kristina Edh
- Department of Cell and Organism Biology, Lund University, Sölvegatan 29, SE-22362, Lund, Sweden
| | | | | |
Collapse
|