1
|
Zhao Z, Wang F, Deng M, Fan G. Identification and Analysis of PPO Gene Family Members in Paulownia fortunei. PLANTS (BASEL, SWITZERLAND) 2024; 13:2033. [PMID: 39124152 PMCID: PMC11313911 DOI: 10.3390/plants13152033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Polyphenol oxidase (PPO) is a common metalloproteinase in plants with important roles in plant responses to abiotic and biotic stresses. There is evidence that PPOs contribute to stress responses in Paulownia fortunei. In this study, PPO gene family members in P. fortunei were comprehensively identified and characterized using bioinformatics methods as well as analyses of phylogenetic relationships, gene and protein structure, codon usage bias, and gene expression in response to stress. The genome contained 10 PPO gene family members encoding 406-593 amino acids, with a G/C bias. Most were localized in chloroplasts. The motif structure was conserved among family members, and α-helices and random coils were the dominant elements in the secondary structure. The promoters contained many cis-acting elements, such as auxin, gibberellin, salicylic acid, abscisic acid, and photoresponsive elements. The formation of genes in this family was linked to evolutionary events, such as fragment replication. Real-time quantitative PCR results showed that PfPPO7, PfPPO10, PfPPO1, PfPPO2, PfPPO3, PfPPO4, PfPPO5, and PfPPO8 may be key genes in drought stress resistance. PfPPO1, PfPPO3, PfPPO4, and PfPPO10 were resistant stress-sensitive genes. These results provide a reliable basis for fully understanding the potential functions of these genes and the selection of resistance breeding.
Collapse
Affiliation(s)
- Zhenli Zhao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Z.Z.); (F.W.); (M.D.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Fei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Z.Z.); (F.W.); (M.D.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Minjie Deng
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Z.Z.); (F.W.); (M.D.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Z.Z.); (F.W.); (M.D.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
2
|
Pompili V, Mazzocchi E, Moglia A, Acquadro A, Comino C, Rotino GL, Lanteri S. Structural and expression analysis of polyphenol oxidases potentially involved in globe artichoke (C. cardunculus var. scolymus L.) tissue browning. Sci Rep 2023; 13:12288. [PMID: 37516733 PMCID: PMC10387078 DOI: 10.1038/s41598-023-38874-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/16/2023] [Indexed: 07/31/2023] Open
Abstract
Globe artichoke capitula are susceptible to browning due to oxidation of phenols caused by the activity of polyphenol oxidases (PPOs), this reduces their suitability for fresh or processed uses. A genome-wide analysis of the globe artichoke PPO gene family was performed. Bioinformatics analyses identified eleven PPOs and their genomic and amino acidic features were annotated. Cis-acting element analysis identified a gene regulatory and functional profile associated to plant growth and development as well as stress response. For some PPOs, phylogenetic analyses revealed a structural and functional conservation with different Asteraceae PPOs, while the allelic variants of the eleven PPOs investigated across four globe artichoke varietal types identified several SNP/Indel variants, some of which having impact on gene translation. By RTqPCR were assessed the expression patterns of PPOs in plant tissues and in vitro calli characterized by different morphologies. Heterogeneous PPO expression profiles were observed and three of them (PPO6, 7 and 11) showed a significant increase of transcripts in capitula tissues after cutting. Analogously, the same three PPOs were significantly up-regulated in calli showing a brown phenotype due to oxidation of phenols. Our results lay the foundations for a future application of gene editing aimed at disabling the three PPOs putatively involved in capitula browning.
Collapse
Affiliation(s)
- Valerio Pompili
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy.
| | - Elena Mazzocchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Andrea Moglia
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Alberto Acquadro
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Cinzia Comino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | | | - Sergio Lanteri
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy.
| |
Collapse
|
3
|
Filip E, Woronko K, Stępień E, Czarniecka N. An Overview of Factors Affecting the Functional Quality of Common Wheat ( Triticum aestivum L.). Int J Mol Sci 2023; 24:7524. [PMID: 37108683 PMCID: PMC10142556 DOI: 10.3390/ijms24087524] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops worldwide, and, as a resilient cereal, it grows in various climatic zones. Due to changing climatic conditions and naturally occurring environmental fluctuations, the priority problem in the cultivation of wheat is to improve the quality of the crop. Biotic and abiotic stressors are known factors leading to the deterioration of wheat grain quality and to crop yield reduction. The current state of knowledge on wheat genetics shows significant progress in the analysis of gluten, starch, and lipid genes responsible for the synthesis of the main nutrients in the endosperm of common wheat grain. By identifying these genes through transcriptomics, proteomics, and metabolomics studies, we influence the creation of high-quality wheat. In this review, previous works were assessed to investigate the significance of genes, puroindolines, starches, lipids, and the impact of environmental factors, as well as their effects on the wheat grain quality.
Collapse
Affiliation(s)
- Ewa Filip
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Karolina Woronko
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Edyta Stępień
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16, 70-383 Szczecin, Poland
| | - Natalia Czarniecka
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| |
Collapse
|
4
|
Yang S, Ge Q, Wan S, Sun Z, Chen Y, Li Y, Liu Q, Gong J, Xiao X, Lu Q, Shi Y, Peng R, Shang H, Chen G, Li P. Genome-Wide Identification and Characterization of the PPO Gene Family in Cotton ( Gossypium) and Their Expression Variations Responding to Verticillium Wilt Infection. Genes (Basel) 2023; 14:477. [PMID: 36833403 PMCID: PMC9957175 DOI: 10.3390/genes14020477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Polyphenol oxidases (PPOs) are copper-binding metalloproteinases encoded by nuclear genes, ubiquitously existing in the plastids of microorganisms, plants, and animals. As one of the important defense enzymes, PPOs have been reported to participate in the resistant processes that respond to diseases and insect pests in multiple plant species. However, PPO gene identification and characterization in cotton and their expression patterns under Verticillium wilt (VW) treatment have not been clearly studied. In this study, 7, 8, 14, and 16 PPO genes were separately identified from Gossypium arboreum, G. raimondii, G. hirsutum, and G. barbadense, respectively, which were distributed within 23 chromosomes, though mainly gathered in chromosome 6. The phylogenetic tree manifested that all the PPOs from four cotton species and 14 other plants were divided into seven groups, and the analyses of the conserved motifs and nucleotide sequences showed highly similar characteristics of the gene structure and domains in the cotton PPO genes. The dramatically expressed differences were observed among the different organs at various stages of growth and development or under the diverse stresses referred to in the published RNA-seq data. Quantitative real-time PCR (qRT-PCR) experiments were also performed on the GhPPO genes in the roots, stems, and leaves of VW-resistant MBI8255 and VW-susceptible CCRI36 infected with Verticillium dahliae V991, proving the strong correlation between PPO activity and VW resistance. A comprehensive analysis conducted on cotton PPO genes contributes to the screening of the candidate genes for subsequent biological function studies, which is also of great significance for the in-depth understanding of the molecular genetic basis of cotton resistance to VW.
Collapse
Affiliation(s)
- Shuhan Yang
- College of Agriculture, Tarim University, Alar 843300, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Sumei Wan
- College of Agriculture, Tarim University, Alar 843300, China
| | - Zhihao Sun
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yu Chen
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yanfang Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Qiankun Liu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xianghui Xiao
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Quanwei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Guodong Chen
- College of Agriculture, Tarim University, Alar 843300, China
| | - Pengtao Li
- College of Agriculture, Tarim University, Alar 843300, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| |
Collapse
|
5
|
Zhang J, Sun X. Recent advances in polyphenol oxidase-mediated plant stress responses. PHYTOCHEMISTRY 2021; 181:112588. [PMID: 33232863 DOI: 10.1016/j.phytochem.2020.112588] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 05/29/2023]
Abstract
Plant polyphenol oxidases (PPOs) are ubiquitous copper metalloenzymes with a biochemistry that has been known for more than a century. By the 1990s, biologists began to recognize the importance of PPOs in plant response to the infestation of herbivores and pathogens; ideas concerning a defensive role for PPOs arose to address observed evidence, and several testable hypotheses were suggested. Two pivotal discoveries in tomato (Lycopersicon esculentum Miller) plants, an inverse correlation between PPO levels and insect growth and PPO induction by defence signals, have driven many studies of PPO defence functions in the context of abiotic and biotic stresses. During the past three decades, extensive molecular research in transgenic and non-transgenic systems has partly revealed the sophisticated mechanisms underlying PPO defence against herbivores and pathogens. These understandings, rather than theoretical predictions, have driven the development of new hypotheses and advanced PPO-related studies. Here, we review progress in PPO family features, expression regulation and the defensive role of PPOs in plants. We propose assumptions of an extended range of co- and post-transcriptional processes to the regulation of unexplored PPO expression. In addition, the identification of endogenous PPO substrates and downstream targets of PPO action will be useful for elucidating PPO defensive roles. The potential effects of PPO-mediated oxidative defences on herbivore performance ultimately needs to be further investigated. Therefore, expanding multidisciplinary approaches to unexplored dimensions of PPO defence function should be a future priority.
Collapse
Affiliation(s)
- Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, Zhejiang, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, Zhejiang, China.
| |
Collapse
|
6
|
Morris CF. Determinants of wheat noodle color. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5171-5180. [PMID: 29770453 DOI: 10.1002/jsfa.9134] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Noodles are a leading food in the world, and color is a key determinant of consumer acceptance. In this review the two prominent forms of wheat noodles are considered: white salted and alkaline. Many of the preparation and evaluation strategies are the same for both, with prominence placed on 'brightness' (L*) or a lack of discoloration (ΔL*), and the absence of 'specks.' All raw noodles darken over time. Increasing the protein content of flours almost always translates into darker noodles. Greater discoloration is also associated with higher flour extraction rates, higher ash contents, and higher starch damage. Increasing storage time, dough water absorption, and temperature all often lead to greater discoloration. There is a large range in noodle color variation, and much of this variation is associated with genetics. Consequently, much research has been devoted to methods of screening germplasm, either as whole seeds, meals, flours, or noodle sheets. Polyphenol oxidase (PPO) is a primary culprit in noodle discoloration and has guided much of the research on noodle color. It is now possible to select germplasm with very low levels of PPO through the use of efficacious phenotype screens and the use of molecular markers. The success of this research has provided the opportunity to select wheat breeding lines with nil PPO activity, and to combine favorable alleles at multiple PPO loci. Yet, when noodles are prepared, we continue to observe discoloration. As our ability to minimize PPO activity increases, this 'non-PPO' discoloration has become more important. Perhaps the 'holy grail' is a noodle that never discolors, and has the 'perfect' level of a* (redness, zero?) and b* (yellowness/creaminess). Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Craig F Morris
- USDA-ARS Western Wheat Quality Laboratory, Washington State University, Pullman, WA, USA
| |
Collapse
|
7
|
Kiszonas AM, Ma D, Fuerst EP, Casper J, Engle DA, Morris CF. Color characteristics of white salted, alkaline, and egg noodles prepared from Triticum aestivum
L. and a soft kernel durum T. turgidum
ssp. durum. Cereal Chem 2018. [DOI: 10.1002/cche.10090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alecia M. Kiszonas
- USDA-ARS Western Wheat Quality Laboratory; Washington State University; Pullman Washington
| | - Dongyun Ma
- USDA-ARS Western Wheat Quality Laboratory; Washington State University; Pullman Washington
- National Wheat Engineering Research Center; Henan Agricultural University; Zhengzhou China
| | - Eugene Patrick Fuerst
- USDA-ARS Western Wheat Quality Laboratory; Washington State University; Pullman Washington
- Department of Crop and Soil Sciences; Washington State University; Pullman Washington
| | - Jeff Casper
- Malt Products Corp.; Saddlebrook New Jersey formerly Horizon Milling, LLC, Wayzata, Minnesota
| | - Doug A. Engle
- USDA-ARS Western Wheat Quality Laboratory; Washington State University; Pullman Washington
| | - Craig F. Morris
- USDA-ARS Western Wheat Quality Laboratory; Washington State University; Pullman Washington
| |
Collapse
|
8
|
Morgun B, Stepanenko A, Stepanenko O, Bannikova M, Holubenko A, Nitovska I, Maystrov P, Grodzinsky D. Implementation of Molecular Systems for Identification of Genetic Polymorphism in Winter Wheat to Obtain High-Performance Special Varieties. SCIENCE AND INNOVATION 2016. [DOI: 10.15407/scine12.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Eggplant (Solanum melongena L.) polyphenol oxidase multi-gene family: a phylogenetic evaluation. 3 Biotech 2015; 5:93-99. [PMID: 28324357 PMCID: PMC4327750 DOI: 10.1007/s13205-014-0195-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/09/2014] [Indexed: 11/16/2022] Open
Abstract
Polyphenol oxidases (PPOs) in different Solanum species including eggplant have been studied. PPOs have been implicated in undesirable enzymatic browning of eggplant fruit and also in plant defense. The main objective of this study was to identify and accelerate the further functional characterization of additional eggplant PPOs that are involved in food biochemistry and defense-related functions. Eggplant PPOs identified earlier were used in “Basic local alignment search tool (BLAST)” search against expressed sequence tag and nucleotide databases. We have identified seven additional sequences which were almost complete in length. The sequences of the PPOs were aligned and their phylogenetic and evolutionary relationships established. The sequences are quite diverse, broadly falling into two major clusters; three PPOs form a separate branch/minor cluster. The thirteen sequences had conserved copper A binding sites but copper B binding sites differed considerably in two new PPO sequences (AFJ79642 and ACR61398). A third conserved ‘Histidine-rich’ region has been identified at the ‘C’ terminus of the eggplant PPOs. In addition, all the seven new PPOs exhibited at least one glycosylated sequon in the mature PPO sequence. Identification of additional PPO genes will further help in functional and biological characterization of these PPOs.
Collapse
|
10
|
Fuerst EP, Okubara PA, Anderson JV, Morris CF. Polyphenol oxidase as a biochemical seed defense mechanism. FRONTIERS IN PLANT SCIENCE 2014; 5:689. [PMID: 25540647 PMCID: PMC4261696 DOI: 10.3389/fpls.2014.00689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/18/2014] [Indexed: 05/24/2023]
Abstract
Seed dormancy and resistance to decay are fundamental survival strategies, which allow a population of seeds to germinate over long periods of time. Seeds have physical, chemical, and biological defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. Here, we hypothesize that seeds also possess enzyme-based biochemical defenses, based on induction of the plant defense enzyme, polyphenol oxidase (PPO), when wild oat (Avena fatua L.) caryopses and seeds were challenged with seed-decaying Fusarium fungi. These studies suggest that dormant seeds are capable of mounting a defense response to pathogens. The pathogen-induced PPO activity from wild oat was attributed to a soluble isoform of the enzyme that appeared to result, at least in part, from proteolytic activation of a latent PPO isoform. PPO activity was also induced in wild oat hulls (lemma and palea), non-living tissues that cover and protect the caryopsis. These results are consistent with the hypothesis that seeds possess inducible enzyme-based biochemical defenses arrayed on the exterior of seeds and these defenses represent a fundamental mechanism of seed survival and longevity in the soil. Enzyme-based biochemical defenses may have broader implications since they may apply to other defense enzymes as well as to a diversity of plant species and ecosystems.
Collapse
Affiliation(s)
- E. Patrick Fuerst
- Department of Crop and Soil Sciences, Washington State UniversityPullman, WA, USA
| | - Patricia A. Okubara
- Root Disease and Biological Control Research Unit, United States Department of Agriculture – Agricultural Research Service, Washington State UniversityPullman, WA, USA
| | - James V. Anderson
- Biosciences Research Laboratory, United States Department of Agriculture – Agricultural Research ServiceFargo, ND, USA
| | - Craig F. Morris
- Western Wheat Quality Laboratory, United States Department of Agriculture – Agricultural Research Service, Washington State UniversityPullman, WA, USA
| |
Collapse
|
11
|
Morris CF, Fuerst EP, Beecher BS, McLean DJ, James CP, Geng HW. Did the house mouse (Mus musculus L.) shape the evolutionary trajectory of wheat (Triticum aestivum L.)? Ecol Evol 2013; 3:3447-54. [PMID: 24223281 PMCID: PMC3797490 DOI: 10.1002/ece3.724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 11/09/2022] Open
Abstract
Wheat (Triticum aestivum L.) is one of the most successful domesticated plant species in the world. The majority of wheat carries mutations in the Puroindoline genes that result in a hard kernel phenotype. An evolutionary explanation, or selective advantage, for the spread and persistence of these hard kernel mutations has yet to be established. Here, we demonstrate that the house mouse (Mus musculus L.) exerts a pronounced feeding preference for soft over hard kernels. When allele frequencies ranged from 0.5 to 0.009, mouse predation increased the hard allele frequency as much as 10-fold. Studies involving a single hard kernel mixed with ∼1000 soft kernels failed to recover the mutant kernel. Nevertheless, the study clearly demonstrates that the house mouse could have played a role in the evolution of wheat, and therefore the cultural trajectory of humankind.
Collapse
Affiliation(s)
- C F Morris
- USDA-ARS Western Wheat Quality Laboratory Pullman, Washington
| | | | | | | | | | | |
Collapse
|
12
|
Tran LT, Taylor JS, Constabel CP. The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion. BMC Genomics 2012; 13:395. [PMID: 22897796 PMCID: PMC3472199 DOI: 10.1186/1471-2164-13-395] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/03/2012] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Plant polyphenol oxidases (PPOs) are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals. RESULTS Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss) and Glycine max (soybean) each had 11 genes. Populus trichocarpa (poplar) contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae) genomes or Arabidopsis (A. lyrata and A. thaliana). We found that many PPOs contained one or two introns often near the 3' terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes. CONCLUSION Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic relationships based on primary sequence data. The dynamic nature of this gene family differentiates PPO from other oxidative enzymes, and is consistent with a protein important for a diversity of functions relating to environmental adaptation.
Collapse
Affiliation(s)
- Lan T Tran
- Centre for Forest Biology and Department of Biology, University of Victoria, PO BOX 3020,, Station CSC, Victoria, BC, V8W 3N5, Canada
- Department of Biology, University of Victoria, PO BOX 3020,, Station CSC, Victoria, BC, V8W 3N5, Canada
| | - John S Taylor
- Department of Biology, University of Victoria, PO BOX 3020,, Station CSC, Victoria, BC, V8W 3N5, Canada
| | - C Peter Constabel
- Centre for Forest Biology and Department of Biology, University of Victoria, PO BOX 3020,, Station CSC, Victoria, BC, V8W 3N5, Canada
- Department of Biology, University of Victoria, PO BOX 3020,, Station CSC, Victoria, BC, V8W 3N5, Canada
| |
Collapse
|
13
|
Beecher BS, Carter AH, See DR. Genetic mapping of new seed-expressed polyphenol oxidase genes in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1463-73. [PMID: 22311372 DOI: 10.1007/s00122-012-1801-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/05/2012] [Indexed: 05/22/2023]
Abstract
Polyphenol oxidase (PPO) enzymatic activity is a major cause in time-dependent discoloration in wheat dough products. The PPO-A1 and PPO-D1 genes have been shown to contribute to wheat kernel PPO activity. Recently a novel PPO gene family consisting of the PPO-A2, PPO-B2, and PPO-D2 genes has been identified and shown to be expressed in wheat kernels. In this study, the sequences of these five kernel PPO genes were determined for the spring wheat cultivars Louise and Penawawa. The two cultivars were found to be polymorphic at each of the PPO loci. Three novel alleles were isolated from Louise. The Louise X Penawawa mapping population was used to genetically map all five PPO genes. All map to the long arm of homeologous group 2 chromosomes. PPO-A2 was found to be located 8.9 cM proximal to PPO-A1 on the long arm of chromosome 2A. Similarly, PPO-D1 and PPO-D2 were separated by 10.7 cM on the long arm of chromosome 2D. PPO-B2 mapped to the long arm of chromosome 2B and was the site of a novel QTL for polyphenol oxidase activity. Five other PPO QTL were identified in this study. One QTL corresponds to the previously described PPO-D1 locus, one QTL corresponds to the PPO-D2 locus, whereas the remaining three are located on chromosome 2B.
Collapse
Affiliation(s)
- Brian S Beecher
- USDA-ARS, Wheat Genetics, Quality, Physiology and Disease Research, Pullman, WA 99164-6394, USA.
| | | | | |
Collapse
|
14
|
Shetty SM, Chandrashekar A, Venkatesh YP. Eggplant polyphenol oxidase multigene family: cloning, phylogeny, expression analyses and immunolocalization in response to wounding. PHYTOCHEMISTRY 2011; 72:2275-87. [PMID: 21945722 DOI: 10.1016/j.phytochem.2011.08.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/14/2011] [Accepted: 08/31/2011] [Indexed: 05/20/2023]
Abstract
Though polyphenol oxidase (PPO) genes from tomato and potato have been extensively studied, information about PPO genes in eggplant (Solanum melongena) is lacking. The main objective of this study is to understand the structural and functional aspects of eggplant PPO genes. Six eggplant PPO genes (SmePPO1-6) cloned by RACE and genome walking were found to be intronless and correspond to eight eggplant unigenes. Comprehensive sequence analyses indicated that the eggplant PPO genes exhibit considerable variation in the transit peptide regions, copper-binding domains and UTRs, and fall into two distinct structural classes. Further, PPO gene members appear to exist in clusters on eggplant chromosome 8 as seen in the case of tomato and potato PPOs. During normal growth and development, SmePPO1 and 2 are expressed in roots, whereas the transcript levels of all the eggplant PPO genes vary considerably in leaves, flowers and fruits. SmePPO1 was expressed in Escherichia coli as a GST fusion protein, and immunoblot using rabbit polyclonal antiserum to GST-SmePPO1 detected a major protein band (~70 kDa) and a minor band (~67 kDa) in eggplant fruit extract. Tissue printing indicated the predominant presence of PPO in the exocarp and the areas surrounding the seeds in the mesocarp of eggplant fruits. Immunolocalization of PPOs in eggplant infested with shoot-and-fruit borer revealed localization of the PPO at the site of infection in tender shoots and fruits, and further inside the mature tissues. The upregulation of eggplant PPO gene transcripts following mechanical injury shows that all the genes except SmePPO2 are induced in the fruit over 6h. On the contrary, the transcripts of SmePPO2 and PPO3 are not detectable in the stem, and expression seems to be prominent over a 2h period for SmePPO1 and SmePPO4-6. Our results show that eggplant PPO genes are structurally different, and are differentially expressed in various tissues of eggplant indicating their functional diversity.
Collapse
Affiliation(s)
- Santoshkumar M Shetty
- Department of Biochemistry & Nutrition, Central Food Technological Research Institute (a CSIR Laboratory), Mysore, Karnataka, India
| | | | | |
Collapse
|
15
|
Tran LT, Constabel CP. The polyphenol oxidase gene family in poplar: phylogeny, differential expression and identification of a novel, vacuolar isoform. PLANTA 2011; 234:799-813. [PMID: 21633811 DOI: 10.1007/s00425-011-1441-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 05/14/2011] [Indexed: 05/30/2023]
Abstract
Polyphenol oxidases (PPOs) are oxidative enzymes that convert monophenols and o-diphenols to o-quinones using molecular oxygen. The quinone products are highly reactive following tissue damage and can interact with cellular constituents and cause oxidative browning and cross-linking. The induction of PPO in some plants as a result of wounding, herbivore attack, or pathogen infection has implicated them in defense. However, PPO-like enzymes that act as specific hydroxylases, for example in lignan and pigment biosynthesis, have also been discovered. Here, we present the first genome-enabled analysis of a PPO gene family. The Populus trichocarpa genome was found to contain a minimum of nine complete PPO genes, and seven of these were characterized further. The PPO gene family includes both recently duplicated and divergent sequences that are 36-98% identical at the amino acid level. Gene expression profiling in poplar tissues and organs revealed that the PPO genes are all differentially expressed during normal development, but that only a small subset of PPO genes are significantly upregulated by wounding, methyl jasmonate or pathogen infection. Our studies also identified PtrPPO13, a novel PPO gene that is predicted to encode an N-terminal signal peptide. Transient expression of green fluorescent protein fusions demonstrated its localization to the vacuolar lumen. Together, our findings show that the poplar PPO family is diverse and is likely linked to diverse physiological functions.
Collapse
Affiliation(s)
- Lan T Tran
- Centre for Forest Biology, Department of Biology, University of Victoria, Stn CSC, PO Box 3020, Victoria, BC V8W 3N5, Canada
| | | |
Collapse
|
16
|
Beecher B, Skinner DZ. Molecular cloning and expression analysis of multiple polyphenol oxidase genes in developing wheat (Triticum aestivum) kernels. J Cereal Sci 2011. [DOI: 10.1016/j.jcs.2011.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Taketa S, Matsuki K, Amano S, Saisho D, Himi E, Shitsukawa N, Yuo T, Noda K, Takeda K. Duplicate polyphenol oxidase genes on barley chromosome 2H and their functional differentiation in the phenol reaction of spikes and grains. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3983-93. [PMID: 20616156 PMCID: PMC2935872 DOI: 10.1093/jxb/erq211] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/24/2010] [Accepted: 06/18/2010] [Indexed: 05/22/2023]
Abstract
Polyphenol oxidases (PPOs) are copper-containing metalloenzymes encoded in the nucleus and transported into the plastids. Reportedly, PPOs cause time-dependent discoloration (browning) of end-products of wheat and barley, which impairs their appearance quality. For this study, two barley PPO homologues were amplified using PCR with a primer pair designed in the copper binding domains of the wheat PPO genes. The full-lengths of the respective PPO genes were cloned using a BAC library, inverse-PCR, and 3'-RACE. Linkage analysis showed that the polymorphisms in PPO1 and PPO2 co-segregated with the phenol reaction phenotype of awns. Subsequent RT-PCR experiments showed that PPO1 was expressed in hulls and awns, and that PPO2 was expressed in the caryopses. Allelic variation of PPO1 and PPO2 was analysed in 51 barley accessions with the negative phenol reaction of awns. In PPO1, amino acid substitutions of five types affecting functionally important motif(s) or C-terminal region(s) were identified in 40 of the 51 accessions tested. In PPO2, only one mutant allele with a precocious stop codon resulting from an 8 bp insertion in the first exon was found in three of the 51 accessions tested. These observations demonstrate that PPO1 is the major determinant controlling the phenol reaction of awns. Comparisons of PPO1 single mutants and the PPO1PPO2 double mutant indicate that PPO2 controls the phenol reaction in the crease on the ventral side of caryopses. An insertion of a hAT-family transposon in the promoter region of PPO2 may be responsible for different expression patterns of the duplicate PPO genes in barley.
Collapse
Affiliation(s)
- Shin Taketa
- Institute of Plant Science and Resources, 2-20-1 Chuo, Okayama University, Kurashiki 710-0046, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Allelic variations of functional markers for polyphenol oxidase (PPO) genes in Indian bread wheat (Triticum aestivum L.) cultivars. J Genet 2010; 88:325-9. [PMID: 20086299 DOI: 10.1007/s12041-009-0047-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Winters A, Heywood S, Farrar K, Donnison I, Thomas A, Webb KJ. Identification of an extensive gene cluster among a family of PPOs in Trifolium pratense L. (red clover) using a large insert BAC library. BMC PLANT BIOLOGY 2009; 9:94. [PMID: 19619287 PMCID: PMC3224681 DOI: 10.1186/1471-2229-9-94] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 07/20/2009] [Indexed: 05/23/2023]
Abstract
BACKGROUND Polyphenol oxidase (PPO) activity in plants is a trait with potential economic, agricultural and environmental impact. In relation to the food industry, PPO-induced browning causes unacceptable discolouration in fruit and vegetables: from an agriculture perspective, PPO can protect plants against pathogens and environmental stress, improve ruminant growth by increasing nitrogen absorption and decreasing nitrogen loss to the environment through the animal's urine. The high PPO legume, red clover, has a significant economic and environmental role in sustaining low-input organic and conventional farms. Molecular markers for a range of important agricultural traits are being developed for red clover and improved knowledge of PPO genes and their structure will facilitate molecular breeding. RESULTS A bacterial artificial chromosome (BAC) library comprising 26,016 BAC clones with an average 135 Kb insert size, was constructed from Trifolium pratense L. (red clover), a diploid legume with a haploid genome size of 440-637 Mb. Library coverage of 6-8 genome equivalents ensured good representation of genes: the library was screened for polyphenol oxidase (PPO) genes.Two single copy PPO genes, PPO4 and PPO5, were identified to add to a family of three, previously reported, paralogous genes (PPO1-PPO3). Multiple PPO1 copies were identified and characterised revealing a subfamily comprising three variants PPO1/2, PPO1/4 and PPO1/5. Six PPO genes clustered within the genome: four separate BAC clones could be assembled onto a predicted 190-510 Kb single BAC contig. CONCLUSION A PPO gene family in red clover resides as a cluster of at least 6 genes. Three of these genes have high homology, suggesting a more recent evolutionary event. This PPO cluster covers a longer region of the genome than clusters detected in rice or previously reported in tomato. Full-length coding sequences from PPO4, PPO5, PPO1/5 and PPO1/4 will facilitate functional studies and provide genetic markers for plant breeding.
Collapse
Affiliation(s)
- Ana Winters
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Sue Heywood
- CNAP Artemisia Research Project, Department of Biology – Area 7, University of York, Heslington, PO Box 373, York, YO10 5YW, UK
| | - Kerrie Farrar
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Iain Donnison
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Ann Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - K Judith Webb
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| |
Collapse
|
20
|
Petersen G, Seberg O. StowawayMITEs inHordeum(Poaceae): evolutionary history, ancestral elements and classification. Cladistics 2009; 25:198-208. [DOI: 10.1111/j.1096-0031.2008.00245.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
21
|
Fuerst EP, Xu SS, Beecher B. Genetic characterization of kernel polyphenol oxidases in wheat and related species. J Cereal Sci 2008. [DOI: 10.1016/j.jcs.2007.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|