1
|
Kaur N, Lozada DN, Bhatta M, Barchenger DW, Khokhar ES, Nourbakhsh SS, Sanogo S. Insights into the genetic architecture of Phytophthora capsici root rot resistance in chile pepper (Capsicum spp.) from multi-locus genome-wide association study. BMC PLANT BIOLOGY 2024; 24:416. [PMID: 38760676 PMCID: PMC11100198 DOI: 10.1186/s12870-024-05097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Phytophthora root rot, a major constraint in chile pepper production worldwide, is caused by the soil-borne oomycete, Phytophthora capsici. This study aimed to detect significant regions in the Capsicum genome linked to Phytophthora root rot resistance using a panel consisting of 157 Capsicum spp. genotypes. Multi-locus genome wide association study (GWAS) was conducted using single nucleotide polymorphism (SNP) markers derived from genotyping-by-sequencing (GBS). Individual plants were separately inoculated with P. capsici isolates, 'PWB-185', 'PWB-186', and '6347', at the 4-8 leaf stage and were scored for disease symptoms up to 14-days post-inoculation. Disease scores were used to calculate disease parameters including disease severity index percentage, percent of resistant plants, area under disease progress curve, and estimated marginal means for each genotype. RESULTS Most of the genotypes displayed root rot symptoms, whereas five accessions were completely resistant to all the isolates and displayed no symptoms of infection. A total of 55,117 SNP markers derived from GBS were used to perform multi-locus GWAS which identified 330 significant SNP markers associated with disease resistance. Of these, 56 SNP markers distributed across all the 12 chromosomes were common across the isolates, indicating association with more durable resistance. Candidate genes including nucleotide-binding site leucine-rich repeat (NBS-LRR), systemic acquired resistance (SAR8.2), and receptor-like kinase (RLKs), were identified within 0.5 Mb of the associated markers. CONCLUSIONS Results will be used to improve resistance to Phytophthora root rot in chile pepper by the development of Kompetitive allele-specific markers (KASP®) for marker validation, genomewide selection, and marker-assisted breeding.
Collapse
Affiliation(s)
- Navdeep Kaur
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
- Current address: Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Dennis N Lozada
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
- Chile Pepper Institute, New Mexico State University, Las Cruces, NM, 88003, USA.
| | | | | | - Ehtisham S Khokhar
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Seyed Shahabeddin Nourbakhsh
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Soum Sanogo
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, 88003, USA
| |
Collapse
|
2
|
Jo J, Kim GW, Back S, Jang S, Kim Y, Han K, Choi H, Lee S, Kwon JK, Lee YJ, Kang BC. Exploring horticultural traits and disease resistance in Capsicum baccatum through segmental introgression lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:233. [PMID: 37878062 DOI: 10.1007/s00122-023-04422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 10/26/2023]
Abstract
KEY MESSAGE Segmental introgression and advanced backcross lines were developed and validated as important tools for improving agronomically important traits in pepper, offering improved sensitivity in detecting quantitative trait loci for breeding. Segmental introgression lines (SILs) and advanced backcross lines (ABs) can accelerate genetics and genomics research and breeding in crop plants. This study presents the development of a complete collection of SILs and ABs in pepper using Capsicum annuum cv. 'CM334' as the recipient parent and Capsicum baccatum 'PBC81', which displays various agronomically important traits including powdery mildew and anthracnose resistance, as donor parent. Using embryo rescue to overcome abortion in interspecific crosses, and marker-assisted selection with genotyping-in-thousands by sequencing (GT-seq) to develop SILs and ABs containing different segments of the C. baccatum genome, we obtained 63 SILs and 44 ABs, covering 94.8% of the C. baccatum genome. We characterized them for traits including powdery mildew resistance, anthracnose resistance, anthocyanin accumulation, trichome density, plant architecture, and fruit morphology. We validated previously known loci for these traits and discovered new sources of variation and quantitative trait loci (QTLs). A total of 15 QTLs were identified, including four for anthracnose resistance with three novel loci, seven for plant architecture, and four for fruit morphology. This is the first complete collection of pepper SILs and ABs validated for agronomic traits and will enhance QTL detection and serve as valuable breeding resources. Further, these SILs and ABs will be useful for comparative genomics and to better understand the genetic mechanisms underlying important agronomic traits in pepper, ultimately leading to improved crop productivity and sustainability.
Collapse
Affiliation(s)
- Jinkwan Jo
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Geon Woo Kim
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seungki Back
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Siyoung Jang
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Youngin Kim
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Koeun Han
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju, Jeonbuk, South Korea
| | - Hayoung Choi
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seyoung Lee
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
3
|
Bongiorno G, Di Noia A, Ciancaleoni S, Marconi G, Cassibba V, Albertini E. Development and Application of a Cleaved Amplified Polymorphic Sequence Marker ( Phyto) Linked to the Pc5.1 Locus Conferring Resistance to Phytophthora capsici in Pepper ( Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2757. [PMID: 37570909 PMCID: PMC10421461 DOI: 10.3390/plants12152757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Phytophthora capsici causes destructive disease in several crop species, including pepper (Capsicum annuum L.). Resistance in this species is physiologically and genetically complex due to many P. capsici virulence phenotypes and different QTLs and R genes among the identified resistance sources. Several primer pairs were designed to follow an SNP (G/A) within the CA_011264 locus linked to the Pc5.1 locus. All primer pairs were designed on DNA sequences derived from CaDMR1, a homoserine kinase (HSK), which is a gene candidate responsible for the major QTL on chromosome P5 for resistance to P. capsici. A panel of 69 pepper genotypes from the Southern Seed germplasm collection was used to screen the primer pairs designed. Of these, two primers (Phyto_for_2 and Phyto_rev_2) surrounding the SNP proved successful in discriminating susceptible and resistant genotypes when combined with a restriction enzyme (BtgI). This new marker (called Phyto) worked as expected in all genotypes tested, proving to be an excellent candidate for marker-assisted selection in breeding programs aimed at introgressing the resistant locus into pure lines.
Collapse
Affiliation(s)
- Giacomo Bongiorno
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.B.); (A.D.N.); (S.C.); (G.M.); (V.C.)
| | - Annamaria Di Noia
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.B.); (A.D.N.); (S.C.); (G.M.); (V.C.)
- Progene Seed s.s.a., 97019 Vittoria, Italy
| | - Simona Ciancaleoni
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.B.); (A.D.N.); (S.C.); (G.M.); (V.C.)
| | - Gianpiero Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.B.); (A.D.N.); (S.C.); (G.M.); (V.C.)
| | - Vincenzo Cassibba
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.B.); (A.D.N.); (S.C.); (G.M.); (V.C.)
- Southern Seed s.r.l., 97019 Vittoria, Italy
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.B.); (A.D.N.); (S.C.); (G.M.); (V.C.)
| |
Collapse
|
4
|
Zhang Z, Cao Y, Wang Y, Yu H, Wu H, Liu J, An D, Zhu Y, Feng X, Zhang B, Wang L. Development and validation of KASP markers for resistance to Phytophthora capsici in Capsicum annuum L. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:20. [PMID: 37313294 PMCID: PMC10248700 DOI: 10.1007/s11032-023-01367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/25/2023] [Indexed: 06/15/2023]
Abstract
Resistance of Capsicum annuum to Phytophthora blight is dependent on the genetic background of the resistance source and the Phytophthora capsici isolate, which poses challenges for development of generally applicable molecular markers for marker-assisted selection. In this study, the resistance to P. capsici of C. annuum was genetically mapped to chromosome 5 within a 1.68-Mb interval by genome-wide association study analysis of 237 accessions. In this candidate region, 30 KASP markers were developed using genome resequencing data for a P. capsici-resistant line (0601 M) and a susceptible line (77,013). Seven of these KASP markers, located in the coding region of a probable leucine-rich repeats receptor-like serine/threonine-protein kinase gene (Capana05g000704), were validated in the 237 accessions, which showed an average accuracy of 82.7%. The genotyping of the seven KASP markers strongly corresponded with the phenotype of 42 individual plants in a pedigree family (PC83-163) developed from the P. capsici-resistant line CM334. This research provides a set of efficient and high-throughput KASP markers for marker-assisted selection of resistance to P. capsici in C. annuum. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01367-3.
Collapse
Affiliation(s)
- Zhenghai Zhang
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Yacong Cao
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Yongfu Wang
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Hailong Yu
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Huamao Wu
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Jing Liu
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Dongliang An
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Yanshu Zhu
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Xigang Feng
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Baoxi Zhang
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Lihao Wang
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| |
Collapse
|
5
|
Abbas A, Mubeen M, Sohail MA, Solanki MK, Hussain B, Nosheen S, Kashyap BK, Zhou L, Fang X. Root rot a silent alfalfa killer in China: Distribution, fungal, and oomycete pathogens, impact of climatic factors and its management. Front Microbiol 2022; 13:961794. [PMID: 36033855 PMCID: PMC9403511 DOI: 10.3389/fmicb.2022.961794] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Alfalfa plays a significant role in the pasture ecosystems of China's north, northeast, and northwest regions. It is an excellent forage for livestock, improves soil structure, prevents soil erosion, and has ecological benefits. Presently root rot is a significant threat to the alfalfa productivity because of the survival of the pathogens as soil-borne and because of lack of microbial competition in the impoverished nutrient-deficient soils and resistant cultivars. Furthermore, these regions' extreme ecological and environmental conditions predispose alfalfa to root rot. Moisture and temperature, in particular, have a considerable impact on the severity of root rot. Pathogens such as Fusarium spp. and Rhizoctonia solani are predominant, frequently isolated, and of major concern. These pathogens work together as disease complexes, so finding a host genotype resistant to disease complexes is challenging. Approaches to root rot control in these regions include mostly fungicides treatments and cultural practices and very few reports on the usage of biological control agents. As seed treatment, fungicides such as carbendazim are frequently used to combat root rot; however, resistance to fungicides has arisen. However, breeding and transgenic approaches could be more efficient and sustainable long-term control strategies, especially if resistance to disease complexes may be identified. Yet, research in China is mainly limited to field investigation of root rot and disease resistance evaluation. In this review, we describe climatic conditions of pastoral regions and the role of alfalfa therein and challenges of root rot, the distribution of root rot in the world and China, and the impact of root rot pathogens on alfalfa in particular R. solani and Fusarium spp., effects of environmental factors on root rot and summarize to date disease management approach.
Collapse
Affiliation(s)
- Aqleem Abbas
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Aamir Sohail
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Babar Hussain
- Department of Plant Sciences, Karakoram International University, Gilgit, Gilgit Baltistan, Pakistan
| | - Shaista Nosheen
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, India
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiangling Fang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Ro N, Haile M, Hur O, Geum B, Rhee J, Hwang A, Kim B, Lee J, Hahn BS, Lee J, Kang BC. Genome-Wide Association Study of Resistance to Phytophthora capsici in the Pepper ( Capsicum spp.) Collection. FRONTIERS IN PLANT SCIENCE 2022; 13:902464. [PMID: 35668797 PMCID: PMC9164128 DOI: 10.3389/fpls.2022.902464] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
One of the most serious pepper diseases is Phytophthora blight, which is caused by Phytophthora capsici. It is crucial to assess the resistance of pepper genetic resources to Phytophthora blight, understand the genetic resistances, and develop markers for selecting resistant pepper materials in breeding programs. In this study, the resistance of 342 pepper accessions to P. capsici was evaluated. The disease severity score method was used to evaluate the phenotypic responses of pepper accessions inoculated with the KCP7 isolate. A genome-wide association study (GWAS) was performed to identify single nucleotide polymorphisms (SNPs) linked to P. capsici (isolate KCP7) resistance. The pepper population was genotyped using the genotype-by-sequencing (GBS) method, and 45,481 SNPs were obtained. A GWAS analysis was performed using resistance evaluation data and SNP markers. Significantly associated SNPs for P. capsici resistance at 4 weeks after inoculation of the GWAS pepper population were selected. These SNPs for Phytophthora blight resistance were found on all chromosomes except Chr.05, Chr.09, and Chr.11. One of the SNPs found on Chr.02 was converted into a high-resolution melting (HRM) marker, and another marker (QTL5-1) from the previous study was applied to pepper accessions and breeding lines for validation and comparison. This SNP marker was selected because the resistance phenotype and the HRM marker genotype matched well. The selected SNP was named Chr02-1126 and was located at 112 Mb on Chr.02. The Chr02-1126 marker predicted P. capsici resistance with 78.5% accuracy, while the QTL5-1 marker predicted resistance with 80.2% accuracy. Along with the marker for major quantitative traits loci (QTLs) on Chr.05, this Chr02-1126 marker could be used to accurately predict Phytophthora blight resistance in pepper genetic resources. Therefore, this study will assist in the selection of resistant pepper plants in order to breed new phytophthora blight-resistant varieties.
Collapse
Affiliation(s)
- Nayoung Ro
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Mesfin Haile
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Onsook Hur
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Bora Geum
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Juhee Rhee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Aejin Hwang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Bitsam Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Jeaeun Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Bum-Soo Hahn
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Jundae Lee
- Department of Horticulture, Chonbuk National University, Jeonju, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Du JS, Hang LF, Hao Q, Yang HT, Ali S, Badawy RSE, Xu XY, Tan HQ, Su LH, Li HX, Zou KX, Li Y, Sun B, Lin LJ, Lai YS. The dissection of R genes and locus Pc5.1 in Phytophthora capsici infection provides a novel view of disease resistance in peppers. BMC Genomics 2021; 22:372. [PMID: 34016054 PMCID: PMC8139160 DOI: 10.1186/s12864-021-07705-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023] Open
Abstract
Background Phytophthora capsici root rot (PRR) is a disastrous disease in peppers (Capsicum spp.) caused by soilborne oomycete with typical symptoms of necrosis and constriction at the basal stem and consequent plant wilting. Most studies on the QTL mapping of P. capsici resistance suggested a consensus broad-spectrum QTL on chromosome 5 named Pc.5.1 regardless of P. capsici isolates and resistant resources. In addition, all these reports proposed NBS-ARC domain genes as candidate genes controlling resistance. Results We screened out 10 PRR-resistant resources from 160 Capsicum germplasm and inspected the response of locus Pc.5.1 and NBS-ARC genes during P. capsici infection by comparing the root transcriptomes of resistant pepper 305R and susceptible pepper 372S. To dissect the structure of Pc.5.1, we anchored genetic markers onto pepper genomic sequence and made an extended Pc5.1 (Ext-Pc5.1) located at 8.35Mb38.13Mb on chromosome 5 which covered all Pc5.1 reported in publications. A total of 571 NBS-ARC genes were mined from the genome of pepper CM334 and 34 genes were significantly affected by P. capsici infection in either 305R or 372S. Only 5 inducible NBS-ARC genes had LRR domains and none of them was positioned at Ext-Pc5.1. Ext-Pc5.1 did show strong response to P. capsici infection and there were a total of 44 differentially expressed genes (DEGs), but no candidate genes proposed by previous publications was included. Snakin-1 (SN1), a well-known antimicrobial peptide gene located at Pc5.1, was significantly decreased in 372S but not in 305R. Moreover, there was an impressive upregulation of sugar pathway genes in 305R, which was confirmed by metabolite analysis of roots. The biological processes of histone methylation, histone phosphorylation, DNA methylation, and nucleosome assembly were strongly activated in 305R but not in 372S, indicating an epigenetic-related defense mechanism. Conclusions Those NBS-ARC genes that were suggested to contribute to Pc5.1 in previous publications did not show any significant response in P. capsici infection and there were no significant differences of these genes in transcription levels between 305R and 372S. Other pathogen defense-related genes like SN1 might account for Pc5.1. Our study also proposed the important role of sugar and epigenetic regulation in the defense against P. capsici. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07705-z.
Collapse
Affiliation(s)
- Jin-Song Du
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin-Feng Hang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Hao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hai-Tao Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyad Ali
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | | | - Xiao-Yu Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hua-Qiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li-Hong Su
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huan-Xiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai-Xi Zou
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li-Jin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yun-Song Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
8
|
Abstract
Root rot diseases remain a major global threat to the productivity of agricultural crops. They are usually caused by more than one type of pathogen and are thus often referred to as a root rot complex. Fungal and oomycete species are the predominant participants in the complex, while bacteria and viruses are also known to cause root rot. Incorporating genetic resistance in cultivated crops is considered the most efficient and sustainable solution to counter root rot, however, resistance is often quantitative in nature. Several genetics studies in various crops have identified the quantitative trait loci associated with resistance. With access to whole genome sequences, the identity of the genes within the reported loci is becoming available. Several of the identified genes have been implicated in pathogen responses. However, it is becoming apparent that at the molecular level, each pathogen engages a unique set of proteins to either infest the host successfully or be defeated or contained in attempting so. In this review, a comprehensive summary of the genes and the potential mechanisms underlying resistance or susceptibility against the most investigated root rots of important agricultural crops is presented.
Collapse
|
9
|
Parisi M, Alioto D, Tripodi P. Overview of Biotic Stresses in Pepper ( Capsicum spp.): Sources of Genetic Resistance, Molecular Breeding and Genomics. Int J Mol Sci 2020; 21:E2587. [PMID: 32276403 PMCID: PMC7177692 DOI: 10.3390/ijms21072587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022] Open
Abstract
Pepper (Capsicum spp.) is one of the major vegetable crops grown worldwide largely appreciated for its economic importance and nutritional value. This crop belongs to the large Solanaceae family, which, among more than 90 genera and 2500 species of flowering plants, includes commercially important vegetables such as tomato and eggplant. The genus includes over 30 species, five of which (C. annuum, C. frutescens, C. chinense, C. baccatum, and C. pubescens) are domesticated and mainly grown for consumption as food and for non-food purposes (e.g., cosmetics). The main challenges for vegetable crop improvement are linked to the sustainable development of agriculture, food security, the growing consumers' demand for food. Furthermore, demographic trends and changes to climate require more efficient use of plant genetic resources in breeding programs. Increases in pepper consumption have been observed in the past 20 years, and for maintaining this trend, the development of new resistant and high yielding varieties is demanded. The range of pathogens afflicting peppers is very broad and includes fungi, viruses, bacteria, and insects. In this context, the large number of accessions of domesticated and wild species stored in the world seed banks represents a valuable resource for breeding in order to transfer traits related to resistance mechanisms to various biotic stresses. In the present review, we report comprehensive information on sources of resistance to a broad range of pathogens in pepper, revisiting the classical genetic studies and showing the contribution of genomics for the understanding of the molecular basis of resistance.
Collapse
Affiliation(s)
- Mario Parisi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy;
| | - Daniela Alioto
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, Naples, Italy;
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy;
| |
Collapse
|
10
|
Li Y, Yu T, Wu T, Wang R, Wang H, Du H, Xu X, Xie D, Xu X. The dynamic transcriptome of pepper (Capsicum annuum) whole roots reveals an important role for the phenylpropanoid biosynthesis pathway in root resistance to Phytophthora capsici. Gene 2020; 728:144288. [DOI: 10.1016/j.gene.2019.144288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
|
11
|
Siddique MI, Lee HY, Ro NY, Han K, Venkatesh J, Solomon AM, Patil AS, Changkwian A, Kwon JK, Kang BC. Identifying candidate genes for Phytophthora capsici resistance in pepper (Capsicum annuum) via genotyping-by-sequencing-based QTL mapping and genome-wide association study. Sci Rep 2019; 9:9962. [PMID: 31292472 PMCID: PMC6620314 DOI: 10.1038/s41598-019-46342-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/24/2019] [Indexed: 01/16/2023] Open
Abstract
Phytophthora capsici (Leon.) is a globally prevalent, devastating oomycete pathogen that causes root rot in pepper (Capsicum annuum). Several studies have identified quantitative trait loci (QTL) underlying resistance to P. capsici root rot (PcRR). However, breeding for pepper cultivars resistant to PcRR remains challenging due to the complexity of PcRR resistance. Here, we combined traditional QTL mapping with GWAS to broaden our understanding of PcRR resistance in pepper. Three major-effect loci (5.1, 5.2, and 5.3) conferring broad-spectrum resistance to three isolates of P. capsici were mapped to pepper chromosome P5. In addition, QTLs with epistatic interactions and minor effects specific to isolate and environment were detected on other chromosomes. GWAS detected 117 significant SNPs across the genome associated with PcRR resistance, including SNPs on chromosomes P5, P7, and P11 that colocalized with the QTLs identified here and in previous studies. Clusters of candidate nucleotide-binding site-leucine-rich repeat (NBS-LRR) and receptor-like kinase (RLK) genes were predicted within the QTL and GWAS regions; such genes often function in disease resistance. These candidate genes lay the foundation for the molecular dissection of PcRR resistance. SNP markers associated with QTLs for PcRR resistance will be useful for marker-assisted breeding and genomic selection in pepper breeding.
Collapse
Affiliation(s)
- Muhammad Irfan Siddique
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hea-Young Lee
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Na-Young Ro
- National Academy of Agricultural Science, National Agrobiodiversity Center, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Koeun Han
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jelli Venkatesh
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Abate Mekonnen Solomon
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Abhinandan Surgonda Patil
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Amornrat Changkwian
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Kyung Kwon
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Kim N, Kang WH, Lee J, Yeom SI. Development of Clustered Resistance Gene Analogs-Based Markers of Resistance to Phytophthora capsici in Chili Pepper. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1093186. [PMID: 30719438 PMCID: PMC6335758 DOI: 10.1155/2019/1093186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/24/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022]
Abstract
The soil-borne pathogen Phytophthora capsici causes severe destruction of Capsicum spp. Resistance in Capsicum against P. capsici is controlled by numerous minor quantitative trait loci (QTLs) and a consistent major QTL on chromosome 5. Molecular markers on Capsicum chromosome 5 have been developed to identify the predominant genetic contributor to resistance but have achieved little success. In this study, previously reported molecular markers were used to reanalyze the major QTL region on chromosome 5 (6.2 Mbp to 139.2 Mbp). Candidate resistance gene analogs (RGAs) were identified in the extended major QTL region including 14 nucleotide binding site leucine-rich repeats, 3 receptor-like kinases, and 1 receptor-like protein. Sequence comparison of the candidate RGAs was performed between two Capsicum germplasms that are resistant and susceptible, respectively, to P. capsici. 11 novel RGA-based markers were developed through high-resolution melting analysis which were closely linked to the major QTL for P. capsici resistance. Among the markers, CaNB-5480 showed the highest cosegregation rate at 86.9% and can be applied to genotyping of the germplasms that were not amenable by previous markers. With combination of three markers such as CaNB-5480, CaRP-5130 and CaNB-5330 increased genotyping accuracy for 61 Capsicum accessions. These could be useful to facilitate high-throughput germplasm screening and further characterize resistance genes against P. capsici in pepper.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Won-Hee Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jundae Lee
- Department of Horticulture, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
13
|
Lee J. Development and Evolution of Molecular Markers and Genetic Maps in Capsicum Species. COMPENDIUM OF PLANT GENOMES 2019. [DOI: 10.1007/978-3-319-97217-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
|
15
|
Barchenger DW, Lamour KH, Bosland PW. Challenges and Strategies for Breeding Resistance in Capsicum annuum to the Multifarious Pathogen, Phytophthora capsici. FRONTIERS IN PLANT SCIENCE 2018; 9:628. [PMID: 29868083 PMCID: PMC5962783 DOI: 10.3389/fpls.2018.00628] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/20/2018] [Indexed: 05/20/2023]
Abstract
Phytophthora capsici is the most devastating pathogen for chile pepper production worldwide and current management strategies are not effective. The population structure of the pathogen is highly variable and few sources of widely applicable host resistance have been identified. Recent genomic advancements in the host and the pathogen provide important insights into the difficulties reported by epidemiological and physiological studies published over the past century. This review highlights important challenges unique to this complex pathosystem and suggests strategies for resistance breeding to help limit losses associated with P. capsici.
Collapse
Affiliation(s)
- Derek W. Barchenger
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Kurt H. Lamour
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Paul W. Bosland
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
16
|
Xu X, Chao J, Cheng X, Wang R, Sun B, Wang H, Luo S, Xu X, Wu T, Li Y. Mapping of a Novel Race Specific Resistance Gene to Phytophthora Root Rot of Pepper (Capsicum annuum) Using Bulked Segregant Analysis Combined with Specific Length Amplified Fragment Sequencing Strategy. PLoS One 2016; 11:e0151401. [PMID: 26992080 PMCID: PMC4798474 DOI: 10.1371/journal.pone.0151401] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/26/2016] [Indexed: 11/19/2022] Open
Abstract
Phytophthora root rot caused by Phytophthora capsici (P. capsici) is a serious limitation to pepper production in Southern China, with high temperature and humidity. Mapping PRR resistance genes can provide linked DNA markers for breeding PRR resistant varieties by molecular marker-assisted selection (MAS). Two BC1 populations and an F2 population derived from a cross between P. capsici-resistant accession, Criollo de Morelos 334 (CM334) and P. capsici-susceptible accession, New Mexico Capsicum Accession 10399 (NMCA10399) were used to investigate the genetic characteristics of PRR resistance. PRR resistance to isolate Byl4 (race 3) was controlled by a single dominant gene, PhR10, that was mapped to an interval of 16.39Mb at the end of the long arm of chromosome 10. Integration of bulked segregant analysis (BSA) and Specific Length Amplified Fragment sequencing (SLAF-seq) provided an efficient genetic mapping strategy. Ten polymorphic Simple Sequence Repeat (SSR) markers were found within this region and used to screen the genotypes of 636 BC1 plants, delimiting PhR10 to a 2.57 Mb interval between markers P52-11-21 (1.5 cM away) and P52-11-41 (1.1 cM). A total of 163 genes were annotated within this region and 31 were predicted to be associated with disease resistance. PhR10 is a novel race specific gene for PRR, and this paper describes linked SSR markers suitable for marker-assisted selection of PRR resistant varieties, also laying a foundation for cloning the resistance gene.
Collapse
Affiliation(s)
- Xiaomei Xu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Lab for New Technology Research of Vegetables, Guangzhou, China
| | - Juan Chao
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Lab for New Technology Research of Vegetables, Guangzhou, China
| | - Xueli Cheng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Lab for New Technology Research of Vegetables, Guangzhou, China
| | - Rui Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Lab for New Technology Research of Vegetables, Guangzhou, China
| | - Baojuan Sun
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Lab for New Technology Research of Vegetables, Guangzhou, China
| | - Hengming Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shaobo Luo
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Lab for New Technology Research of Vegetables, Guangzhou, China
| | - Xiaowan Xu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tingquan Wu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Lab for New Technology Research of Vegetables, Guangzhou, China
| | - Ying Li
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
17
|
Jin JH, Zhang HX, Tan JY, Yan MJ, Li DW, Khan A, Gong ZH. A New Ethylene-Responsive Factor CaPTI1 Gene of Pepper (Capsicum annuum L.) Involved in the Regulation of Defense Response to Phytophthora capsici. FRONTIERS IN PLANT SCIENCE 2016; 6:1217. [PMID: 26779241 PMCID: PMC4705296 DOI: 10.3389/fpls.2015.01217] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/17/2015] [Indexed: 05/18/2023]
Abstract
Ethylene-responsive factors (ERF) are usually considered to play diverse roles in plant response to biotic and abiotic stresses. In this study, an ERF gene CaPTI1 was isolated from pepper transcriptome database. CaPTI1 contains an open reading frame (ORF) of 543 bp, which encodes a putative polypeptide of 180 amino acids with a theoretical molecular weight of 20.30 kDa. Results of expression profile showed that CaPTI1 had a highest expression level in roots and this gene could not only response to the infection of Phytophthora capsici and the stresses of cold and drought, but also be induced by the signaling molecule (salicylic acid, Methyl Jasmonate, Ethephon, and hydogen peroxide). Furthermore, virus-induce gene silencing (VIGS) of CaPTI1 in pepper weakened the defense response significantly by reducing the expression of defense related genes CaPR1, CaDEF1 and CaSAR82 and also the root activity. These results suggested that CaPTI1 is involved in the regulation of defense response to P. capsici in pepper.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F UniversityYangling, China
| |
Collapse
|
18
|
Wang P, Liu X, Guo J, Liu C, Fu N, Shen H. Identification and Expression Analysis of Candidate Genes Associated with Defense Responses to Phytophthora capsici in Pepper Line "PI 201234". Int J Mol Sci 2015; 16:11417-38. [PMID: 25993303 PMCID: PMC4463708 DOI: 10.3390/ijms160511417] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 11/16/2022] Open
Abstract
Phytophthora capsici (Leonian), classified as an oomycete, seriously threatens the production of pepper (Capsicum annuum). Current understanding of the defense responses in pepper to P. capsici is limited. In this study, RNA-sequencing analysis was utilized to identify differentially expressed genes in the resistant line "PI 201234", with 1220 differentially expressed genes detected. Of those genes, 480 were up-regulated and 740 were down-regulated, with 211 candidate genes found to be involved in defense responses based on the gene annotations. Furthermore, the expression patterns of 12 candidate genes were further validated via quantitative real-time PCR (qPCR). These genes were found to be significantly up-regulated at different time points post-inoculation (6 hpi, 24 hpi, and 5 dpi) in the resistant line "PI 201234" and susceptible line "Qiemen". Seven genes were found to be involved in cell wall modification, phytoalexin biosynthesis, symptom development, and phytohormone signaling pathways, thus possibly playing important roles in combating exogenous pathogens. The genes identified herein will provide a basis for further gene cloning and functional verification studies and will aid in an understanding of the regulatory mechanism of pepper resistance to P. capsici.
Collapse
Affiliation(s)
- Pingyong Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| | - Xiaodan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| | - Jinju Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| | - Chen Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| | - Nan Fu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| | - Huolin Shen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Liu WY, Kang JH, Jeong HS, Choi HJ, Yang HB, Kim KT, Choi D, Choi GJ, Jahn M, Kang BC. Combined use of bulked segregant analysis and microarrays reveals SNP markers pinpointing a major QTL for resistance to Phytophthora capsici in pepper. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2503-13. [PMID: 25208646 DOI: 10.1007/s00122-014-2394-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/28/2014] [Indexed: 05/03/2023]
Abstract
Bulked segregant analysis (BSA) using Affymetrix GeneChips revealed candidate genes underlying the major QTL for Phytophthora capsici resistance in Capsicum. Using the candidate genes, reliable markers for Phytophthora resistance were developed and validated. Phytophthora capsici L. is one of the most destructive pathogens of pepper (Capsicum spp.). Resistance of pepper against P. capsici is controlled by quantitative trait loci (QTL), including a major QTL on chromosome 5 that is the predominant contributor to resistance. Here, to maximize the effect of this QTL and study its underlying genes, an F2 population and recombinant inbred lines were inoculated with P. capsici strain JHAI1-7 zoospores at a low concentration (3 × 10(3)/mL). Resistance phenotype segregation ratios for the populations fit a 3:1 and 1:1 (resistant:susceptible) segregation model, respectively, consistent with a single dominant gene model. Bulked segregant analysis (BSA) using Affymetrix GeneChips revealed a single position polymorphism (SPP) marker mapping to the major QTL. When this SPP marker (Phyto5SAR) together with other SNP markers located on chromosome 5 was used to confirm the position of the major QTL, Phyto5SAR showed the highest LOD value at the QTL. A scaffold sequence (scaffold194) containing Phyto5SAR was identified from the C. annuum genome database. The scaffold contained two putative NBS-LRR genes and one SAR 8.2A gene as candidates for contributing to P. capsici resistance. Markers linked to these genes were developed and validated by testing 100 F1 commercial cultivars. Among the markers, Phyto5NBS1 showed about 90% accuracy in predicting resistance phenotypes to a low-virulence P. capsici isolate. These results suggest that Phyto5NBS1 is a reliable marker for P. capsici resistance and can be used for identification of a gene(s) underlying the major QTL on chromosome 5.
Collapse
Affiliation(s)
- Wing-Yee Liu
- Department of Plant Science, Plant Genomics and Breeding Institute and Research Institute for Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro Gwank-gu, 151-921, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
A Novel Peroxidase CanPOD Gene of Pepper Is Involved in Defense Responses to Phytophtora capsici Infection as well as Abiotic Stress Tolerance. Int J Mol Sci 2013; 14:3158-77. [PMID: 23380961 PMCID: PMC3588037 DOI: 10.3390/ijms14023158] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/30/2013] [Accepted: 01/30/2013] [Indexed: 11/29/2022] Open
Abstract
Peroxidases are involved in many plant processes including plant defense responses to biotic and abiotic stresses. We isolated a novel peroxidase gene CanPOD from leaves of pepper cultivar A3. The full-length gene has a 1353-bp cDNA sequence and contains an open reading frame (ORF) of 975-bp, which encodes a putative polypeptide of 324 amino acids with a theoretical protein size of 34.93 kDa. CanPOD showed diverse expression levels in different tissues of pepper plants. To evaluate the role of CanPOD in plant stress responses, the expression patterns of CanPOD were examined using Real-Time RT-PCR. The results indicated that CanPOD was significantly induced by Phytophtora capsici. Moreover, CanPOD was also up-regulated in leaves after salt and drought stress treatments. In addition, CanPOD expression was strongly induced by signaling hormones salicylic acid (SA). In contrast, CanPOD was not highly expressed after treatment with cold. Meanwhile, in order to further assess the role of gene CanPOD in defense response to P. capsici attack, we performed a loss-of-function experiment using the virus-induced gene silencing (VIGS) technique in pepper plants. In comparison to the control plant, the expression levels of CanPOD were obviously decreased in CanPOD-silenced pepper plants. Furthermore, we analyzed the effect of P. capsici on detached-leaves and found that the CanPOD-silenced plant leaves were highly susceptible to P. capsici infection. Taken together, our results suggested that CanPOD is involved in defense responses to P. capsici infection as well as abiotic stresses in pepper plants.
Collapse
|
21
|
Liu S, Li W, Wu Y, Chen C, Lei J. De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids. PLoS One 2013; 8:e48156. [PMID: 23349661 PMCID: PMC3551913 DOI: 10.1371/journal.pone.0048156] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/21/2012] [Indexed: 12/04/2022] Open
Abstract
The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.). We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts) using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum) ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT), which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. A significant number of SSR (Simple Sequence Repeat) and SNP (Single Nucleotide Polymorphism) markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies.
Collapse
Affiliation(s)
- Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wanshun Li
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yimin Wu
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Changming Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianjun Lei
- College of Horticulture, South China Agricultural University, Guangzhou, China
- * E-mail:
| |
Collapse
|
22
|
Lu FH, Kwon SW, Yoon MY, Kim KT, Cho MC, Yoon MK, Park YJ. SNP marker integration and QTL analysis of 12 agronomic and morphological traits in F₈ RILs of pepper (Capsicum annuum L.). Mol Cells 2012; 34:25-34. [PMID: 22684870 PMCID: PMC3887781 DOI: 10.1007/s10059-012-0018-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 01/05/2023] Open
Abstract
Red pepper, Capsicum annuum L., has been attracting geneticists' and breeders' attention as one of the important agronomic crops. This study was to integrate 41 SNP markers newly developed from comparative transcriptomes into a previous linkage map, and map 12 agronomic and morphological traits into the integrated map. A total of 39 markers found precise position and were assigned to 13 linkage groups (LGs) as well as the unassigned LGe, leading to total 458 molecular markers present in this genetic map. Linkage mapping was supported by the physical mapping to tomato and potato genomes using BLAST retrieving, revealing at least two-thirds of the markers mapped to the corresponding LGs. A sum of 23 quantitative trait loci from 11 traits was detected using the composite interval mapping algorithm. A consistent interval between a035_1 and a170_1 on LG5 was detected as a main-effect locus among the resistance QTLs to Phytophthora capsici at high-, intermediate- and low-level tests, and interactions between the QTLs for high-level resistance test were found. Considering the epistatic effect, those QTLs could explain up to 98.25% of the phenotype variations of resistance. Moreover, 17 QTLs for another eight traits were found to locate on LG3, 4, and 12 mostly with varying phenotypic contribution. Furthermore, the locus for corolla color was mapped to LG10 as a marker. The integrated map and the QTLs identified would be helpful for current genetics research and crop breeding, especially in the Solanaceae family.
Collapse
Affiliation(s)
- Fu-Hao Lu
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 340-702,
Korea
| | - Soon-Wook Kwon
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 340-702,
Korea
- Legume Bio-Resource Center of Green Manure (LBRCGM), Kongju National University, Yesan 340-702,
Korea
| | - Min-Young Yoon
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 340-702,
Korea
| | - Ki-Taek Kim
- The Foundation of Agricultural Technology Commercialization and Transfer, Suwon 441-100,
Korea
| | - Myeong-Cheoul Cho
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 441-440,
Korea
| | - Moo-Kyung Yoon
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 441-440,
Korea
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 340-702,
Korea
- Legume Bio-Resource Center of Green Manure (LBRCGM), Kongju National University, Yesan 340-702,
Korea
| |
Collapse
|
23
|
Lu FH, Cho MC, Park YJ. Transcriptome profiling and molecular marker discovery in red pepper, Capsicum annuum L. TF68. Mol Biol Rep 2011; 39:3327-35. [PMID: 21706160 DOI: 10.1007/s11033-011-1102-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 06/15/2011] [Indexed: 12/01/2022]
Abstract
Transcriptome from high throughput sequencing-by-synthesis is a good resource of molecular markers. In this study, we present utility of massively parallel sequencing by synthesis for profiling the transcriptome of red pepper (Capsicum annuum L. TF68) using 454 GS-FLX pyrosequencing. Through the generation of approximately 30.63 megabases (Mb) of expressed sequence tag (EST) data with the average length of 375 base pairs (bp), 9,818 contigs and 23,712 singletons were obtained by raw reads assembly. Using BLAST alignment against NCBI non-redundant and a UniProt protein database, 30% of the tentative consensus sequences were assigned to specific function annotation, while 24% returned alignments of unknown function, leaving up to 46% with no alignment. Functional classification using FunCat revealed that sequences with putative known function were distributed cross 18 categories. All unigenes have an approximately equal distribution on chromosomes by aligning with tomato (Solanum lycopersicum) pseudomolecules. Furthermore, 1,536 high quality single nucleotide discrepancies were discovered using the Bukang mature fruit cDNA collection (dbEST ID: 23667) as a reference. Moreover, 758 simple sequence repeat (SSR) motif loci were mined from 614 contigs, from which 572 primer sets were designed. The SSR motifs corresponded to di- and tri- nucleotide motifs (27.03 and 61.92%, respectively). These molecular markers may be of great value for application in linkage mapping and association mapping research.
Collapse
Affiliation(s)
- Fu-Hao Lu
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 340-802, Republic of Korea
| | | | | |
Collapse
|
24
|
Yeom SI, Baek HK, Oh SK, Kang WH, Lee SJ, Lee JM, Seo E, Rose JKC, Kim BD, Choi D. Use of a secretion trap screen in pepper following Phytophthora capsici infection reveals novel functions of secreted plant proteins in modulating cell death. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:671-84. [PMID: 21542767 DOI: 10.1094/mpmi-08-10-0183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In plants, the primary defense against pathogens is mostly inducible and associated with cell wall modification and defense-related gene expression, including many secreted proteins. To study the role of secreted proteins, a yeast-based signal-sequence trap screening was conducted with the RNA from Phytophthora capsici-inoculated root of Capsicum annuum 'Criollo de Morelos 334' (CM334). In total, 101 Capsicum annuum secretome (CaS) clones were isolated and identified, of which 92 were predicted to have a secretory signal sequence at their N-terminus. To identify differences in expressed CaS genes between resistant and susceptible cultivars of pepper, reverse Northern blots and real-time reverse-transcription polymerase chain reaction were performed with RNA samples isolated at different time points following P. capsici inoculation. In an attempt to assign biological functions to CaS genes, we performed in planta knock-down assays using the Tobacco rattle virus-based gene-silencing method. Silencing of eight CaS genes in pepper resulted in suppression of the cell death induced by the non-host bacterial pathogen (Pseudomonas syringae pv. tomato T1). Three CaS genes induced phenotypic abnormalities in silenced plants and one, CaS259 (PR4-l), caused both cell death suppression and perturbed phenotypes. These results provide evidence that the CaS genes may play important roles in pathogen defense as well as developmental processes.
Collapse
Affiliation(s)
- Seon-In Yeom
- Department of Plant Science, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Quincke MC, Peterson CJ, Zemetra RS, Hansen JL, Chen J, Riera-Lizarazu O, Mundt CC. Quantitative trait loci analysis for resistance to Cephalosporium stripe, a vascular wilt disease of wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1339-1349. [PMID: 21258997 DOI: 10.1007/s00122-011-1535-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/06/2011] [Indexed: 05/30/2023]
Abstract
Cephalosporium stripe, caused by Cephalosporium gramineum, can cause severe loss of wheat (Triticum aestivum L.) yield and grain quality and can be an important factor limiting adoption of conservation tillage practices. Selecting for resistance to Cephalosporium stripe is problematic; however, as optimum conditions for disease do not occur annually under natural conditions, inoculum levels can be spatially heterogeneous, and little is known about the inheritance of resistance. A population of 268 recombinant inbred lines (RILs) derived from a cross between two wheat cultivars was characterized using field screening and molecular markers to investigate the inheritance of resistance to Cephalosporium stripe. Whiteheads (sterile heads caused by pathogen infection) were measured on each RIL in three field environments under artificially inoculated conditions. A linkage map for this population was created based on 204 SSR and DArT markers. A total of 36 linkage groups were resolved, representing portions of all chromosomes except for chromosome 1D, which lacked a sufficient number of polymorphic markers. Quantitative trait locus (QTL) analysis identified seven regions associated with resistance to Cephalosporium stripe, with approximately equal additive effects. Four QTL derived from the more susceptible parent (Brundage) and three came from the more resistant parent (Coda), but the cumulative, additive effect of QTL from Coda was greater than that of Brundage. Additivity of QTL effects was confirmed through regression analysis and demonstrates the advantage of accumulating multiple QTL alleles to achieve high levels of resistance.
Collapse
Affiliation(s)
- Martin C Quincke
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Lee HR, Bae IH, Park SW, Kim HJ, Min WK, Han JH, Kim KT, Kim BD. Construction of an integrated pepper map using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC end sequences. Mol Cells 2009; 27:21-37. [PMID: 19214431 DOI: 10.1007/s10059-009-0002-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 11/29/2022] Open
Abstract
Map-based cloning to find genes of interest, markerassisted selection (MAS), and marker-assisted breeding (MAB) all require good genetic maps with high reproducible markers. For map construction as well as chromosome assignment, development of single copy PCR-based markers and map integration process are necessary. In this study, the 132 markers (57 STS from BAC-end sequences, 13 STS from RFLP, and 62 SSR) were newly developed as single copy type PCR-based markers. They were used together with 1830 markers previously developed in our lab to construct an integrated map with the Joinmap 3.0 program. This integrated map contained 169 SSR, 354 RFLP, 23 STS from BAC-end sequences, 6 STS from RFLP, 152 AFLP, 51 WRKY, and 99 rRAMP markers on 12 chromosomes. The integrated map contained four genetic maps of two interspecific (Capsicum annuum 'TF68' and C. chinense 'Habanero') and two intraspecific (C. annuum 'CM334' and C. annuum 'Chilsungcho') populations of peppers. This constructed integrated map consisted of 805 markers (map distance of 1858 cM) in interspecific populations and 745 markers (map distance of 1892 cM) in intraspecific populations. The used pepper STS were first developed from end sequences of BAC clones from Capsicum annuum 'CM334'. This integrated map will provide useful information for construction of future pepper genetic maps and for assignment of linkage groups to pepper chromosomes.
Collapse
Affiliation(s)
- Heung-Ryul Lee
- Department of Plant Science, Seoul National University, Seoul, 151-921, Korea
| | | | | | | | | | | | | | | |
Collapse
|