1
|
Kim S, Kim S. An insertion mutation located on putative enhancer regions of the MYB26-like gene induces inhibition of anther dehiscence resulting in novel genic male sterility in radish ( Raphanus sativus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:67. [PMID: 37309318 PMCID: PMC10236041 DOI: 10.1007/s11032-021-01254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
A novel male-sterility trait was identified in a radish (Raphanus sativus L.) population. Although the size of male-sterile anthers was comparable to that of normal flowers, no pollen grain was observed during anther dehiscence. However, dissection of male-sterile anthers revealed an abundance of normal pollen grains. Analysis of segregating populations showed that a single recessive locus, designated RsMs1, conferred male sterility. Based on two radish draft genome sequences, molecular markers were developed to delimit the genomic region harboring the RsMs1. The region was narrowed down to approximately 24 kb after analyzing recombinants selected from 7511 individuals of a segregating population. Sequencing of the delimited region yielded six putative genes including four genes expressed in the floral tissue, and one gene with significant differential expression between male-fertile and male-sterile individuals of a segregating population. This differentially expressed gene was orthologous to the Arabidopsis MYB26 gene, which played a critical role in anther dehiscence. Excluding a synonymous single nucleotide polymorphism in exon3, no polymorphism involving coding and putative promoter regions was detected between alleles. A 955-bp insertion was identified 7.5 kb upstream of the recessive allele. Highly conserved motifs among four Brassicaceae species were identified around this insertion site, suggesting the presence of putative enhancer sequences. A functional marker was developed for genotyping of the RsMs1 based on the 955-bp insertion. A total of 120 PI accessions were analyzed using this marker, and 11 accessions were shown to carry the recessive rsms1 allele. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01254-9.
Collapse
Affiliation(s)
- Seongjun Kim
- Jeollanamdo Agricultural Research and Extension Service, Naju-si, 58213 Republic of Korea
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Sunggil Kim
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
2
|
Mitochondrial Genome Sequencing Reveals orf463a May Induce Male Sterility in NWB Cytoplasm of Radish. Genes (Basel) 2020; 11:genes11010074. [PMID: 31936663 PMCID: PMC7017215 DOI: 10.3390/genes11010074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Radish (Raphanus sativus L.) is an important root vegetable worldwide. The development of F1 hybrids, which are extensively used for commercial radish production, relies on cytoplasmic male sterility (CMS). To identify candidate genes responsible for CMS in NWB cytoplasm, we sequenced the normal and NWB CMS radish mitochondrial genomes via next-generation sequencing. A comparative analysis revealed 18 syntenic blocks and 11 unique regions in the NWB CMS mitogenome. A detailed examination indicated that orf463a was the most likely causal factor for male sterility in NWB cytoplasm. Interestingly, orf463a was identical to orf463, which is responsible for CMS in Dongbu cytoplasmic and genic male sterility (DCGMS) radish. Moreover, only structural variations were detected between the NWB CMS and DCGMS mitochondrial genomes, with no nucleotide polymorphisms (SNPs) or meaningful indels. Further analyses revealed these two mitochondrial genomes are coexisting isomeric forms belonging to the same mitotype. orf463a was more highly expressed in flower buds than in vegetative organs and its expression was differentially regulated in the presence of restorer of fertility (Rf) genes. orf463a was confirmed to originate from Raphanus raphanistrum. In this study, we identified a candidate gene responsible for the CMS in NWB cytoplasm and clarified the relationship between NWB CMS and DCGMS.
Collapse
|
3
|
Nuzhdina NS, Bondar AA, Dorogina OV. New Data on Taxonomic and Geographic Distribution of the trnLUAA Intron Deletion of Chloroplast DNA in Hedysarum L. (Fabaceae L.). RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418110108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Lee YP, Cho Y, Kim S. A high-resolution linkage map of the Rfd1, a restorer-of-fertility locus for cytoplasmic male sterility in radish (Raphanus sativus L.) produced by a combination of bulked segregant analysis and RNA-Seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2243-52. [PMID: 25119873 DOI: 10.1007/s00122-014-2376-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/02/2014] [Indexed: 05/13/2023]
Abstract
We utilized a combination of BSA and RNA-Seq to identify SNPs linked to the Rfd1 locus, a restorer-of-fertility gene in radish. A high-density linkage map was constructed using this approach. Male fertility of cytoplasmic male sterility conditioned by the Dongbu cytoplasmic and genic male-sterility cytoplasm can be restored by a restorer-of-fertility locus, Rfd1, in radish. To construct a high-density linkage map and to identify a candidate gene for the Rfd1 locus, bulked segregant analysis and RNA-seq approaches were combined. A total of 26 and 28 million reads produced from male-fertile and male-sterile bulked RNA were mapped to the radish reference unigenes. After stringent screening of SNPs, 327 reliable SNPs of 109 unigenes were selected. Arabidopsis homologs for 101 of the 109 genes were clustered around the 4,000 kb region of Arabidopsis chromosome 3, which was syntenic to the Rfd1 flanking region. Since the reference unigene set was incomplete, the contigs were de novo assembled to identify 134 contigs harboring SNPs. Most of SNP-containing contigs were also clustered on the same syntenic region in Arabidopsis chromosome. A total of 21 molecular markers positioned within a 2.1 cM interval including the Rfd1 locus were developed, based on the selected unigenes and contigs. A segregating population consisting of 10,459 individuals was analyzed to identify recombinants containing crossovers within this interval. A total of 284 identified recombinants were then used to construct a high-density map, which delimited the Rfd1 locus into an 83-kb syntenic interval of Arabidopsis chromosome 3. Since no candidate gene, such as a pentatricopeptide repeat (PPR)-coding gene, was found in this interval, 231 unigenes and 491 contigs containing putative PPR motifs were analyzed further, but no PPR gene in linkage disequilibrium with the Rfd1 locus could be found.
Collapse
Affiliation(s)
- Young-Pyo Lee
- Biotech Research Center, Dongbu Advanced Research Institute, Dongbu Hannong Co., Ltd., Daejeon, 305-708, Korea
| | | | | |
Collapse
|
5
|
Jeong YM, Chung WH, Mun JH, Kim N, Yu HJ. De novo assembly and characterization of the complete chloroplast genome of radish (Raphanus sativus L.). Gene 2014; 551:39-48. [PMID: 25151309 DOI: 10.1016/j.gene.2014.08.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 11/28/2022]
Abstract
Radish (Raphanus sativus L.) is an edible root vegetable crop that is cultivated worldwide and whose genome has been sequenced. Here we report the complete nucleotide sequence of the radish cultivar WK10039 chloroplast (cp) genome, along with a de novo assembly strategy using whole genome shotgun sequence reads obtained by next generation sequencing. The radish cp genome is 153,368 bp in length and has a typical quadripartite structure, composed of a pair of inverted repeat regions (26,217 bp each), a large single copy region (83,170 bp), and a small single copy region (17,764 bp). The radish cp genome contains 87 predicted protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Sequence analysis revealed the presence of 91 simple sequence repeats (SSRs) in the radish cp genome. Phylogenetic analysis of 62 protein-coding gene sequences from the 17 cp genomes of the Brassicaceae family suggested that the radish cp genome is most closely related to the cp genomes of Brassica rapa and Brassicanapus. Comparisons with the B. rapa and B. napus cp genomes revealed highly divergent intergenic sequences and introns that can potentially be developed as diagnostic cp markers. Synonymous and nonsynonymous substitutions of cp genes suggested that nucleotide substitutions have occurred at similar rates in most genes. The complete sequence of the radish cp genome would serve as a valuable resource for the development of new molecular markers and the study of the phylogenetic relationships of Raphanus species in the Brassicaceae family.
Collapse
Affiliation(s)
- Young-Min Jeong
- Department of Life Science, The Catholic University of Korea, Bucheon 420-743, Republic of Korea
| | - Won-Hyung Chung
- Korean Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-806, Republic of Korea
| | - Jeong-Hwan Mun
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 449-728, Republic of Korea
| | - Namshin Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-806, Republic of Korea.
| | - Hee-Ju Yu
- Department of Life Science, The Catholic University of Korea, Bucheon 420-743, Republic of Korea.
| |
Collapse
|
6
|
Jung J, Kim KH, Yang K, Bang KH, Yang TJ. Practical application of DNA markers for high-throughput authentication of Panax ginseng and Panax quinquefolius from commercial ginseng products. J Ginseng Res 2014; 38:123-9. [PMID: 24748836 PMCID: PMC3986582 DOI: 10.1016/j.jgr.2013.11.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/06/2013] [Accepted: 11/20/2013] [Indexed: 11/30/2022] Open
Abstract
Korean ginseng (Panax ginseng) and American ginseng (Panax quinquefolius) are widely used medicinal plants with similar morphology but different medicinal efficacy. Roots, flowers, and processed products of Korean and American ginseng can be difficult to differentiate from each other, leading to illegal trade in which one species is sold as the other. This study was carried out to develop convenient and reliable chloroplast genome-derived DNA markers for authentication of Korean and American ginseng in commercial processed products. One codominant marker could reproducibly identify both species and intentional mixtures of the two species. We further developed a set of species-unique dominant DNA markers. Each species-specific dominant marker could detect 1% cross contamination with other species by low resolution agarose gel electrophoresis or quantitative polymerase chain reaction. Both markers were successfully applied to evaluate the original species from various processed ginseng products purchased from markets in Korea and China. We believe that high-throughput application of this marker system will eradicate illegal trade and promote confident marketing for both species to increase the value of Korean as well as American ginseng in Korea and worldwide.
Collapse
Affiliation(s)
- Juyeon Jung
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kyung Hee Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kiwoung Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kyong-Hwan Bang
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
7
|
Park JY, Lee YP, Lee J, Choi BS, Kim S, Yang TJ. Complete mitochondrial genome sequence and identification of a candidate gene responsible for cytoplasmic male sterility in radish (Raphanus sativus L.) containing DCGMS cytoplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1763-74. [PMID: 23539087 DOI: 10.1007/s00122-013-2090-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 03/19/2013] [Indexed: 05/03/2023]
Abstract
A novel cytoplasmic male sterility (CMS) conferred by Dongbu cytoplasmic and genic male-sterility (DCGMS) cytoplasm and its restorer-of-fertility gene (Rfd1) was previously reported in radish (Raphanus sativus L.). Its inheritance of fertility restoration and profiles of mitochondrial DNA (mtDNA)-based molecular markers were reported to be different from those of Ogura CMS, the first reported CMS in radish. The complete mitochondrial genome sequence (239,186 bp; GenBank accession No. KC193578) of DCGMS mitotype is reported in this study. Thirty-four protein-coding genes and three ribosomal RNA genes were identified. Comparative analysis of a mitochondrial genome sequence of DCGMS and previously reported complete sequences of normal and Ogura CMS mitotypes revealed various recombined structures of seventeen syntenic sequence blocks. Short-repeat sequences were identified in almost all junctions between syntenic sequence blocks. Phylogenetic analysis of three radish mitotypes showed that DCGMS was more closely related to the normal mitotype than to the Ogura mitotype. A single 1,551-bp unique region was identified in DCGMS mtDNA sequences and a novel chimeric gene, designated orf463, consisting of 128-bp partial sequences of cox1 gene and 1,261-bp unidentified sequences were found in the unique region. No other genes with a chimeric structure, a major feature of most characterized CMS-associated genes in other plant species, were found in rearranged junctions of syntenic sequence blocks. Like other known CMS-associated mitochondrial genes, the predicted gene product of orf463 contained 12 transmembrane domains. Thus, this gene product might be integrated into the mitochondrial membrane. In total, the results indicate that orf463 is likely to be a casual factor for CMS induction in radish containing the DCGMS cytoplasm.
Collapse
Affiliation(s)
- Jee Young Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | | | |
Collapse
|
8
|
Cho Y, Lee YP, Park BS, Han TH, Kim S. Construction of a high-resolution linkage map of Rfd1, a restorer-of-fertility locus for cytoplasmic male sterility conferred by DCGMS cytoplasm in radish (Raphanus sativus L.) using synteny between radish and Arabidopsis genomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:467-477. [PMID: 22434503 DOI: 10.1007/s00122-012-1846-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/05/2012] [Indexed: 05/31/2023]
Abstract
Cytoplasmic male sterility caused by Dongbu cytoplasmic and genic male-sterility (DCGMS) cytoplasm and its nuclear restorer-of-fertility locus (Rfd1) with a linked molecular marker (A137) have been reported in radish (Raphanus sativus L.). To construct a linkage map of the Rfd1 locus, linked amplified fragment length polymorphism (AFLP) markers were screened using bulked segregant analysis. A 220-bp linked AFLP fragment sequence from radish showed homology with an Arabidopsis coding sequence. Using this Arabidopsis gene sequence, a simple PCR marker (A220) was developed. The A137 and A220 markers flanked the Rfd1 locus. Two homologous Arabidopsis genes with both marker sequences were positioned on Arabidopsis chromosome-3 with an interval of 2.4 Mb. To integrate the Rfd1 locus into a previously reported expressed sequence tag (EST)-simple sequence repeat (SSR) linkage map, the radish EST sequences located in three syntenic blocks within the 2.4-Mb interval were used to develop single nucleotide polymorphism (SNP) markers for tagging each block. The SNP marker in linkage group-2 co-segregated with male fertility in an F(2) population. Using radish ESTs positioned in linkage group-2, five intron length polymorphism (ILP) markers and one cleaved amplified polymorphic sequence (CAPS) marker were developed and used to construct a linkage map of the Rfd1 locus. Two closely linked markers delimited the Rfd1 locus within a 985-kb interval of Arabidopsis chromosome-3. Synteny between the radish and Arabidopsis genomes in the 985-kb interval were used to develop three ILP and three CAPS markers. Two ILP markers further delimited the Rfd1 locus to a 220-kb interval of Arabidopsis chromosome-3.
Collapse
Affiliation(s)
- Youngcho Cho
- Department of Plant Biotechnology, Biotechnology Research Institute, Chonnam National University, Gwangju, 500-757, Korea
| | | | | | | | | |
Collapse
|
9
|
Comparison of mitochondrial and chloroplast genome segments from three onion (Allium cepa L.) cytoplasm types and identification of a trans-splicing intron of cox2. Curr Genet 2010; 56:177-88. [PMID: 20127247 DOI: 10.1007/s00294-010-0290-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/11/2010] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
To study genetic relatedness of two male sterility-inducing cytotypes, the phylogenetic relationship among three cytotypes of onions (Allium cepa L.) was assessed by analyzing polymorphisms of the mitochondrial DNA organization and chloroplast sequences. The atp6 gene and a small open reading frame, orf22, did not differ between the normal and CMS-T cytotypes, but two SNPs and one 4-bp insertion were identified in CMS-S cytotype. Partial sequences of the chloroplast ycf2 gene were integrated in the upstream sequence of the cob gene via short repeat sequence-mediated recombination. However, this chloroplast DNA-integrated organization was detected only in CMS-S. Interestingly, disruption of a group II intron of cox2 was identified for the first time in this study. Like other trans-splicing group II introns in mitochondrial genomes, fragmentation of the intron occurred in domain IV. Two variants of each exon1 and exon2 flanking sequences were identified. The predominant types of four variants were identical in both the normal and the CMS-T cytotypes. These predominant types existed as sublimons in CMS-S cytotypes. Altogether, no differences were identified between normal and CMS-T, but significant differences in gene organization and nucleotide sequences were identified in CMS-S, suggesting recent origin of CMS-T male-sterility from the normal cytotype.
Collapse
|