1
|
Ventimiglia M, Marturano G, Vangelisti A, Usai G, Simoni S, Cavallini A, Giordani T, Natali L, Zuccolo A, Mascagni F. Genome-wide identification and characterization of exapted transposable elements in the large genome of sunflower (Helianthus annuus L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:734-748. [PMID: 36573648 DOI: 10.1111/tpj.16078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Transposable elements (TEs) are an important source of genome variability, playing many roles in the evolution of eukaryotic species. Besides well-known phenomena, TEs may undergo the exaptation process and generate the so-called exapted transposable element genes (ETEs). Here we present a genome-wide survey of ETEs in the large genome of sunflower (Helianthus annuus L.), in which the massive amount of TEs, provides a significant source for exaptation. A library of sunflower TEs was used to build TE-specific Hidden Markov Model profiles, to search for all available sunflower gene products. In doing so, 20 016 putative ETEs were identified and further investigated for the characteristics that distinguish TEs from genes, leading to the validation of 3530 ETEs. The analysis of ETEs transcription patterns under different stress conditions showed a differential regulation triggered by treatments mimicking biotic and abiotic stress; furthermore, the distribution of functional domains of differentially regulated ETEs revealed a relevant presence of domains involved in many aspects of cellular functions. A comparative genomic investigation was performed including species representative of Asterids and appropriate outgroups: the bulk of ETEs that resulted were specific to the sunflower, while few ETEs presented orthologues in the genome of all analyzed species, making the hypothesis of a conserved function. This study highlights the crucial role played by exaptation, actively contributing to species evolution.
Collapse
Affiliation(s)
- Maria Ventimiglia
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Giovanni Marturano
- Crop Science Research Center, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Samuel Simoni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Zuccolo
- Crop Science Research Center, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
2
|
De novo transcriptome assembly and analysis of genes involved in desiccation tolerance in Grimmia pilifera. Gene 2022; 847:146841. [PMID: 36075326 DOI: 10.1016/j.gene.2022.146841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
Abstract
The anatomically simple plants that transition from the aquatic to the terrestrial have a certain mechanism to deal with the damage caused by the changing living environment. Grimmia pilifera is a type of resurrection plants that can survive a long period of desiccation. To understand the molecular mechanisms of desiccation tolerance, nine cDNA libraries were constructed in triplicate from mRNA obtained from G. pilifera for the 0 h, 6 h and 18 h desiccation treatment. RNA-Seq generated ∼ 666 million reads which were assembled into 135,850 unigenes. The differentially expressed genes (DEGs) were identified between different period of time of desiccation. Gene ontology analysis showed that a significant number of genes involved in water deprivation, chloroplast organization, xyloglucan metabolic process, regulation of signaling pathway. In addition, genes involved in osmotic stress, oxidative stress, accumulation of soluble matter, such as gene encoding antioxidant enzymes, trehalose synthase and channel protein, were up-regulated in response to drought stress. These results will be helpful for further studying on the molecular mechanisms of desiccation responses in G. pilifera.
Collapse
|
3
|
Huang K, Ostevik KL, Elphinstone C, Todesco M, Bercovich N, Owens GL, Rieseberg LH. Mutation load in sunflower inversions is negatively correlated with inversion heterozygosity. Mol Biol Evol 2022; 39:6583099. [PMID: 35535689 PMCID: PMC9127631 DOI: 10.1093/molbev/msac101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombination is critical both for accelerating adaptation and purging deleterious mutations. Chromosomal inversions can act as recombination modifiers that suppress local recombination in heterozygotes and thus, under some conditions, are predicted to accumulate such mutations. In this study, we investigated patterns of recombination, transposable element abundance and coding sequence evolution across the genomes of 1,445 individuals from three sunflower species, as well as within nine inversions segregating within species. We also analyzed the effects of inversion genotypes on 87 phenotypic traits to test for overdominance. We found significant negative correlations of long terminal repeat retrotransposon abundance and deleterious mutations with recombination rates across the genome in all three species. However, we failed to detect an increase in these features in the inversions, except for a modest increase in the proportion of stop codon mutations in several very large or rare inversions. Consistent with this finding, there was little evidence of overdominance of inversions in phenotypes that may relate to fitness. On the other hand, significantly greater load was observed for inversions in populations polymorphic for a given inversion compared to populations monomorphic for one of the arrangements, suggesting that the local state of inversion polymorphism affects deleterious load. These seemingly contradictory results can be explained by the low frequency of inversion heterozygotes in wild sunflower populations, apparently due to divergent selection and associated geographic structure. Inversions contributing to local adaptation represent ideal recombination modifiers, acting to facilitate adaptive divergence with gene flow, while largely escaping the accumulation of deleterious mutations.
Collapse
Affiliation(s)
- Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Kate L Ostevik
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Cassandra Elphinstone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Marco Todesco
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Natalia Bercovich
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Gregory L Owens
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
van Lieshout N, van Kaauwen M, Kodde L, Arens P, Smulders MJM, Visser RGF, Finkers R. De novo whole-genome assembly of Chrysanthemum makinoi, a key wild chrysanthemum. G3 (BETHESDA, MD.) 2022; 12:jkab358. [PMID: 34849775 PMCID: PMC8727959 DOI: 10.1093/g3journal/jkab358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022]
Abstract
Chrysanthemum is among the top 10 cut, potted, and perennial garden flowers in the world. Despite this, to date, only the genomes of two wild diploid chrysanthemums have been sequenced and assembled. Here, we present the most complete and contiguous chrysanthemum de novo assembly published so far, as well as a corresponding ab initio annotation. The cultivated hexaploid varieties are thought to originate from a hybrid of wild chrysanthemums, among which the diploid Chrysanthemum makinoi has been mentioned. Using a combination of Oxford Nanopore long reads, Pacific Biosciences long reads, Illumina short reads, Dovetail sequences, and a genetic map, we assembled 3.1 Gb of its sequence into nine pseudochromosomes, with an N50 of 330 Mb and a BUSCO complete score of 92.1%. Our ab initio annotation pipeline predicted 95,074 genes and marked 80.0% of the genome as repetitive. This genome assembly of C. makinoi provides an important step forward in understanding the chrysanthemum genome, evolution, and history.
Collapse
Affiliation(s)
- Natascha van Lieshout
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Martijn van Kaauwen
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Linda Kodde
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Marinus J M Smulders
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Richard Finkers
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| |
Collapse
|
5
|
Park M, Sarkhosh A, Tsolova V, El-Sharkawy I. Horizontal Transfer of LTR Retrotransposons Contributes to the Genome Diversity of Vitis. Int J Mol Sci 2021; 22:ijms221910446. [PMID: 34638784 PMCID: PMC8508631 DOI: 10.3390/ijms221910446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
While horizontally transferred transposable elements (TEs) have been reported in several groups of plants, their importance for genome evolution remains poorly understood. To understand how horizontally transferred TEs contribute to plant genome evolution, we investigated the composition and activity of horizontally transferred TEs in the genomes of four Vitis species. A total of 35 horizontal transfer (HT) events were identified between the four Vitis species and 21 other plant species belonging to 14 different families. We determined the donor and recipient species for 28 of these HTs, with the Vitis species being recipients of 15 of them. As a result of HTs, 8–10 LTR retrotransposon clusters were newly formed in the genomes of the four Vitis species. The activities of the horizontally acquired LTR retrotransposons differed among Vitis species, showing that the consequences of HTs vary during the diversification of the recipient lineage. Our study provides the first evidence that the HT of TEs contributes to the diversification of plant genomes by generating additional TE subfamilies and causing their differential proliferation in host genomes.
Collapse
Affiliation(s)
- Minkyu Park
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (M.P.); (V.T.)
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA;
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (M.P.); (V.T.)
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (M.P.); (V.T.)
- Correspondence: ; Tel.: +1-850-599-8685
| |
Collapse
|
6
|
Meng Y, Su W, Ma Y, Liu L, Gu X, Wu D, Shu X, Lai Q, Tang Y, Wu L, Wang Y. Assessment of genetic diversity and variety identification based on developed retrotransposon-based insertion polymorphism (RBIP) markers in sweet potato (Ipomoea batatas (L.) Lam.). Sci Rep 2021; 11:17116. [PMID: 34429441 PMCID: PMC8385064 DOI: 10.1038/s41598-021-95876-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/28/2021] [Indexed: 11/15/2022] Open
Abstract
Sweet potato, a dicotyledonous and perennial plant, is the third tuber/root crop species behind potato and cassava in terms of production. Long terminal repeat (LTR) retrotransposons are highly abundant in sweet potato, contributing to genetic diversity. Retrotransposon-based insertion polymorphism (RBIP) is a high-throughput marker system to study the genetic diversity of plant species. To date, there have been no transposon marker-based genetic diversity analyses of sweet potato. Here, we reported a structure-based analysis of the sweet potato genome, a total of 21555 LTR retrotransposons, which belonged to the main LTR-retrotransposon subfamilies Ty3-gypsy and Ty1-copia were identified. After searching and selecting using Hidden Markov Models (HMMs), 1616 LTR retrotransposon sequences containing at least two models were screened. A total of 48 RBIP primers were synthesized based on the high copy numbers of conserved LTR sequences. Fifty-six amplicons with an average polymorphism of 91.07% were generated in 105 sweet potato germplasm resources based on RBIP markers. A Unweighted Pair Group Method with Arithmatic Mean (UPGMA) dendrogram, a model-based genetic structure and principal component analysis divided the sweet potato germplasms into 3 groups containing 8, 53, and 44 germplasms. All the three analyses produced significant groupwise consensus. However, almost all the germplasms contained only one primary locus. The analysis of molecular variance (AMOVA) among the groups indicated higher intergroup genetic variation (53%) than intrapopulation genetic variation. In addition, long-term self-retention may cause some germplasm resources to exhibit variable segregation. These results suggest that these sweet potato germplasms are not well evolutionarily diversified, although geographic speciation could have occurred at a limited level. This study highlights the utility of RBIP markers for determining the intraspecies variability of sweet potato and have the potential to be used as core primer pairs for variety identification, genetic diversity assessment and linkage map construction. The results could provide a good theoretical reference and guidance for germplasm research and breeding.
Collapse
Affiliation(s)
- Yusha Meng
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.,Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, 310021, People's Republic of China
| | - Wenjin Su
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, People's Republic of China
| | - Yanping Ma
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.,Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, 310021, People's Republic of China
| | - Lei Liu
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.,Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, 310021, People's Republic of China
| | - Xingguo Gu
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.,Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, 310021, People's Republic of China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Institute of Nuclear Agriculture Sciences, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology, Institute of Nuclear Agriculture Sciences, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Qixian Lai
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.,Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, 310021, People's Republic of China
| | - Yong Tang
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.,Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, 310021, People's Republic of China
| | - Liehong Wu
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
| | - Yin Wang
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China. .,Key Laboratory of Creative Agriculture, Ministry of Agriculture, Hangzhou, 310021, People's Republic of China.
| |
Collapse
|
7
|
Vangelisti A, Simoni S, Usai G, Ventimiglia M, Natali L, Cavallini A, Mascagni F, Giordani T. LTR-retrotransposon dynamics in common fig (Ficus carica L.) genome. BMC PLANT BIOLOGY 2021; 21:221. [PMID: 34000996 PMCID: PMC8127270 DOI: 10.1186/s12870-021-02991-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/15/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Long Terminal Repeat retrotransposons (LTR-REs) are repetitive DNA sequences that constitute a large part of the genome. The improvement of sequencing technologies and sequence assembling strategies has achieved genome sequences with much greater reliability than those of the past, especially in relation to repetitive DNA sequences. RESULTS In this study, we analysed the genome of Ficus carica L., obtained using third generation sequencing technologies and recently released, to characterise the complete complement of full-length LTR-REs to study their dynamics during fig genome evolution. A total of 1867 full-length elements were identified. Those belonging to the Gypsy superfamily were the most abundant; among these, the Chromovirus/Tekay lineage was the most represented. For the Copia superfamily, Ale was the most abundant lineage. Measuring the estimated insertion time of each element showed that, on average, Ivana and Chromovirus/Tekay were the youngest lineages of Copia and Gypsy superfamilies, respectively. Most elements were inactive in transcription, both constitutively and in leaves of plants exposed to an abiotic stress, except for some elements, mostly belonging to the Copia/Ale lineage. A relationship between the inactivity of an element and inactivity of genes lying in close proximity to it was established. CONCLUSIONS The data reported in this study provide one of the first sets of information on the genomic dynamics related to LTR-REs in a plant species with highly reliable genome sequence. Fig LTR-REs are highly heterogeneous in abundance and estimated insertion time, and only a few elements are transcriptionally active. In general, the data suggested a direct relationship between estimated insertion time and abundance of an element and an inverse relationship between insertion time (or abundance) and transcription, at least for Copia LTR-REs.
Collapse
Affiliation(s)
- Alberto Vangelisti
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Samuel Simoni
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Gabriele Usai
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Maria Ventimiglia
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lucia Natali
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Cavallini
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Flavia Mascagni
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Tommaso Giordani
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
8
|
Mascagni F, Vangelisti A, Usai G, Giordani T, Cavallini A, Natali L. A computational genome-wide analysis of long terminal repeats retrotransposon expression in sunflower roots (Helianthus annuus L.). Genetica 2020; 148:13-23. [PMID: 31960179 DOI: 10.1007/s10709-020-00085-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 01/17/2020] [Indexed: 11/24/2022]
Abstract
Long terminal repeats (LTR) retrotransposons have a major role in determining genome size, structure and function, thanks to their ability to transpose. We performed a meta-analysis of LTR-retrotransposon expression in roots of sunflower plantlets treated with different plant hormones, chemicals and NaCl. By using Illumina cDNA libraries, available from public repositories, we measured the number of reads matching the retrotranscriptase domains isolated from a whole genome library of retrotransposons. LTR-retrotransposons resulted in general barely expressed, except for 4 elements, all belonging to the AleII lineage, which showed high transcription levels in roots of both control and treated plants. The expression of retrotransposons in treated plants was slightly higher than in the control. Transcribed elements belonged to specific chromosomal loci and were not abundant in the genome. A few elements resulted differentially expressed depending on the treatment. Results suggest that, although most retrotransposons are not expressed, the transcription of such elements is related to their abundance, to their position in the chromosome and to their lineage.
Collapse
Affiliation(s)
- Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
9
|
Deng H, Xiang S, Guo Q, Jin W, Cai Z, Liang G. Molecular cytogenetic analysis of genome-specific repetitive elements in Citrus clementina Hort. Ex Tan. and its taxonomic implications. BMC PLANT BIOLOGY 2019; 19:77. [PMID: 30770721 PMCID: PMC6377768 DOI: 10.1186/s12870-019-1676-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 02/07/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Clementine mandarin (Citrus clementina Hort. ex Tan.) is one of the most famous and widely grown citrus cultivars worldwide. Variations in relation to the composition and distribution of repetitive DNA sequences that dominate greatly in eukaryote genomes are considered to be species-, genome-, or even chromosome-specific. Repetitive DNA-based fluorescence in situ hybridization (FISH) is a powerful tool for molecular cytogenetic study. However, to date few studies have involved in the repetitive elements and cytogenetic karyotype of Clementine. RESULTS A graph-based similarity sequence read clustering methodology was performed to analyze the repetitive DNA families in the Clementine genome. The bioinformatics analysis showed that repetitive DNAs constitute 41.95% of the Clementine genome, and the majority of repetitive elements are retrotransposons and satellite DNAs. Sequential multicolor FISH using a probe mix that contained CL17, four satellite DNAs, two rDNAs and an oligonucleotide of (TTTAGGG)3 was performed with Clementine somatic metaphase chromosomes. An integrated karyotype of Clementine was established based on unequivocal and reproducible chromosome discriminations. The distribution patterns of these probes in several Citrus, Poncirus and Fortunella species were summarized through extensive FISH analyses. Polymorphism and heterozygosity were commonly observed in the three genera. Some asymmetrical FISH loci in Clementine were in agreement with its hybrid origin. CONCLUSIONS The composition and abundance of repetitive elements in the Clementine genome were reanalyzed. Multicolor FISH-based karyotyping provided direct visual proof of the heterozygous nature of Clementine chromosomes with conspicuous asymmetrical FISH hybridization signals. We detected some similar and variable distribution patterns of repetitive DNAs in Citrus, Poncirus, and Fortunella, which revealed notable conservation among these genera, as well as obvious polymorphism and heterozygosity, indicating the potential utility of these repetitive element markers for the study of taxonomic, phylogenetic and evolutionary relationships in the future.
Collapse
Affiliation(s)
- Honghong Deng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715 China
| | - Suqiong Xiang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715 China
| | - Qigao Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715 China
| | - Weiwei Jin
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Zexi Cai
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715 China
| |
Collapse
|
10
|
Specific LTR-Retrotransposons Show Copy Number Variations between Wild and Cultivated Sunflowers. Genes (Basel) 2018; 9:genes9090433. [PMID: 30158460 PMCID: PMC6162735 DOI: 10.3390/genes9090433] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/02/2022] Open
Abstract
The relationship between variation of the repetitive component of the genome and domestication in plant species is not fully understood. In previous work, variations in the abundance and proximity to genes of long terminal repeats (LTR)-retrotransposons of sunflower (Helianthus annuus L.) were investigated by Illumina DNA sequencingtocompare cultivars and wild accessions. In this study, we annotated and characterized 22 specific retrotransposon families whose abundance varies between domesticated and wild genotypes. These families mostly belonged to the Chromovirus lineage of the Gypsy superfamily and were distributed overall chromosomes. They were also analyzed in respect to their proximity to genes. Genes close to retrotransposon were classified according to biochemical pathways, and differences between domesticated and wild genotypes are shown. These data suggest that structural variations related to retrotransposons might have occurred to produce phenotypic variation between wild and domesticated genotypes, possibly by affecting the expression of genes that lie close to inserted or deleted retrotransposons and belong to specific biochemical pathways as those involved in plant stress responses.
Collapse
|
11
|
Mascagni F, Cavallini A, Giordani T, Natali L. Different histories of two highly variable LTR retrotransposons in sunflower species. Gene 2017; 634:5-14. [PMID: 28867564 DOI: 10.1016/j.gene.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/15/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022]
Abstract
In the Helianthus genus, very large intra- and interspecific variability related to two specific retrotransposons of Helianthus annuus (Helicopia and SURE) exists. When comparing these two sequences to sunflower sequence databases recently produced by our lab, the Helicopia family was shown to belong to the Maximus/SIRE lineage of the Sirevirus genus of the Copia superfamily, whereas the SURE element (whose superfamily was not even previously identified) was classified as a Gypsy element of the Ogre/Tat lineage of the Metavirus genus. Bioinformatic analysis of the two retrotransposon families revealed their genomic abundance and relative proliferation timing. The genomic abundance of these families differed significantly among 12 Helianthus species. The ratio between the abundance of long terminal repeats and their reverse transcriptases suggested that the SURE family has relatively more solo long terminal repeats than does Helicopia. Pairwise comparisons of Illumina reads encoding the reverse transcriptase domain indicated that SURE amplification may have occurred more recently than that of Helicopia. Finally, the analysis of population structure based on the SURE and Helicopia polymorphisms of 32 Helianthus species evidenced two subpopulations, which roughly corresponded to species of the Helianthus and Divaricati/Ciliares sections. However, a number of species showed an admixed structure, confirming the importance of interspecific hybridisation in the evolution of this genus. In general, these two retrotransposon families differentially contributed to interspecific variability, emphasising the need to refer to specific families when studying genome evolution.
Collapse
Affiliation(s)
- Flavia Mascagni
- Dept. of Agriculture, Food, and Environment, University of Pisa, Via delBorghetto 80, I-56124 Pisa, Italy
| | - Andrea Cavallini
- Dept. of Agriculture, Food, and Environment, University of Pisa, Via delBorghetto 80, I-56124 Pisa, Italy
| | - Tommaso Giordani
- Dept. of Agriculture, Food, and Environment, University of Pisa, Via delBorghetto 80, I-56124 Pisa, Italy
| | - Lucia Natali
- Dept. of Agriculture, Food, and Environment, University of Pisa, Via delBorghetto 80, I-56124 Pisa, Italy.
| |
Collapse
|
12
|
Mascagni F, Giordani T, Ceccarelli M, Cavallini A, Natali L. Genome-wide analysis of LTR-retrotransposon diversity and its impact on the evolution of the genus Helianthus (L.). BMC Genomics 2017; 18:634. [PMID: 28821238 PMCID: PMC5563062 DOI: 10.1186/s12864-017-4050-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/10/2017] [Indexed: 11/18/2022] Open
Abstract
Background Genome divergence by mobile elements activity and recombination is a continuous process that plays a key role in the evolution of species. Nevertheless, knowledge on retrotransposon-related variability among species belonging to the same genus is still limited. Considering the importance of the genus Helianthus, a model system for studying the ecological genetics of speciation and adaptation, we performed a comparative analysis of the repetitive genome fraction across ten species and one subspecies of sunflower, focusing on long terminal repeat retrotransposons at superfamily, lineage and sublineage levels. Results After determining the relative genome size of each species, genomic DNA was isolated and subjected to Illumina sequencing. Then, different assembling and clustering approaches allowed exploring the repetitive component of all genomes. On average, repetitive DNA in Helianthus species represented more than 75% of the genome, being composed mostly by long terminal repeat retrotransposons. Also, the prevalence of Gypsy over Copia superfamily was observed and, among lineages, Chromovirus was by far the most represented. Although nearly all the same sublineages are present in all species, we found considerable variability in the abundance of diverse retrotransposon lineages and sublineages, especially between annual and perennial species. Conclusions This large variability should indicate that different events of amplification or loss related to these elements occurred following species separation and should have been involved in species differentiation. Our data allowed us inferring on the extent of interspecific repetitive DNA variation related to LTR-RE abundance, investigating the relationship between changes of LTR-RE abundance and the evolution of the genus, and determining the degree of coevolution of different LTR-RE lineages or sublineages between and within species. Moreover, the data suggested that LTR-RE abundance in a species was affected by the annual or perennial habit of that species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4050-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Marilena Ceccarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|
13
|
Abstract
LTR retrotransposons are the most abundant group of transposable elements (TEs) in plants. These elements can fall inside or close to genes, and therefore influence their expression and evolution. This review aims to examine how LTR retrotransposons, especially Ty1-copia elements, mediate gene regulation and evolution. Various stimuli, including polyploidization and biotic and abiotic elicitors, result in the transcription and movement of these retrotransposons, and can facilitate adaptation. The presence of cis-regulatory motifs in the LTRs are central to their stress-mediated responses and are shared with host stress-responsive genes, showing a complex evolutionary history in which TEs provide new regulatory units to genes. The presence of retrotransposon remnants in genes that are necessary for normal gene function, demonstrates the importance of exaptation and co-option, and is also a consequence of the abundance of these elements in plant genomes. Furthermore, insertions of LTR retrotransposons in and around genes provide potential for alternative splicing, epigenetic control, transduction, duplication and recombination. These characteristics can become an active part of the evolution of gene families as in the case of resistance genes (R-genes). The character of TEs as exclusively selfish is now being re-evaluated. Since genome-wide reprogramming via TEs is a long evolutionary process, the changes we can examine are case-specific and their fitness advantage may not be evident until TE-derived motifs and domains have been completely co-opted and fixed. Nevertheless, the presence of LTR retrotransposons inside genes and as part of gene promoter regions is consistent with their roles as engines of plant genome evolution.
Collapse
|
14
|
Guyot R, Darré T, Dupeyron M, de Kochko A, Hamon S, Couturon E, Crouzillat D, Rigoreau M, Rakotomalala JJ, Raharimalala NE, Akaffou SD, Hamon P. Partial sequencing reveals the transposable element composition of Coffea genomes and provides evidence for distinct evolutionary stories. Mol Genet Genomics 2016; 291:1979-90. [PMID: 27469896 DOI: 10.1007/s00438-016-1235-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
The Coffea genus, 124 described species, has a natural distribution spreading from inter-tropical Africa, to Western Indian Ocean Islands, India, Asia and up to Australasia. Two cultivated species, C. arabica and C. canephora, are intensively studied while, the breeding potential and the genome composition of all the wild species remained poorly uncharacterized. Here, we report the characterization and comparison of the highly repeated transposable elements content of 11 Coffea species representatives of the natural biogeographic distribution. A total of 994 Mb from 454 reads were produced with a genome coverage ranging between 3.2 and 15.7 %. The analyses showed that highly repeated transposable elements, mainly LTR retrotransposons (LTR-RT), represent between 32 and 53 % of Coffea genomes depending on their biogeographic location and genome size. Species from West and Central Africa (Eucoffea) contained the highest LTR-RT content but with no strong variation relative to their genome size. At the opposite, for the insular species (Mascarocoffea), a strong variation of LTR-RT was observed suggesting differential dynamics of these elements in this group. Two LTR-RT lineages, SIRE and Del were clearly differentially accumulated between African and insular species, suggesting these lineages were associated to the genome divergence of Coffea species in Africa. Altogether, the information obtained in this study improves our knowledge and brings new data on the composition, the evolution and the divergence of wild Coffea genomes.
Collapse
Affiliation(s)
- Romain Guyot
- IRD UMR IPME, CoffeeAdapt, BP 64501, 34394, Montpellier Cedex 5, France.
| | - Thibaud Darré
- IRD UMR DIADE, EvoGeC, BP 64501, 34394, Montpellier Cedex 5, France
| | | | | | - Serge Hamon
- IRD UMR DIADE, EvoGeC, BP 64501, 34394, Montpellier Cedex 5, France
| | | | - Dominique Crouzillat
- Nestlé R&D Tours, 101 AV. G. Eiffel, Notre Dame d'Oe ́, BP 49716, 37097, Tours Cedex 2, France
| | - Michel Rigoreau
- Nestlé R&D Tours, 101 AV. G. Eiffel, Notre Dame d'Oe ́, BP 49716, 37097, Tours Cedex 2, France
| | | | | | | | - Perla Hamon
- IRD UMR DIADE, EvoGeC, BP 64501, 34394, Montpellier Cedex 5, France
| |
Collapse
|
15
|
Mascagni F, Barghini E, Giordani T, Rieseberg LH, Cavallini A, Natali L. Repetitive DNA and Plant Domestication: Variation in Copy Number and Proximity to Genes of LTR-Retrotransposons among Wild and Cultivated Sunflower (Helianthus annuus) Genotypes. Genome Biol Evol 2015; 7:3368-82. [PMID: 26608057 PMCID: PMC4700961 DOI: 10.1093/gbe/evv230] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The sunflower (Helianthus annuus) genome contains a very large proportion of transposable elements, especially long terminal repeat retrotransposons. However, knowledge on the retrotransposon-related variability within this species is still limited. We used next-generation sequencing (NGS) technologies to perform a quantitative and qualitative survey of intraspecific variation of the retrotransposon fraction of the genome across 15 genotypes—7 wild accessions and 8 cultivars—of H. annuus. By mapping the Illumina reads of the 15 genotypes onto a library of sunflower long terminal repeat retrotransposons, we observed considerable variability in redundancy among genotypes, at both superfamily and family levels. In another analysis, we mapped Illumina paired reads to two sets of sequences, that is, long terminal repeat retrotransposons and protein-encoding sequences, and evaluated the extent of retrotransposon proximity to genes in the sunflower genome by counting the number of paired reads in which one read mapped to a retrotransposon and the other to a gene. Large variability among genotypes was also ascertained for retrotransposon proximity to genes. Both long terminal repeat retrotransposon redundancy and proximity to genes varied among retrotransposon families and also between cultivated and wild genotypes. Such differences are discussed in relation to the possible role of long terminal repeat retrotransposons in the domestication of sunflower.
Collapse
Affiliation(s)
- Flavia Mascagni
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Pisa, Italy
| | - Elena Barghini
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Pisa, Italy
| | - Tommaso Giordani
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Pisa, Italy
| | - Loren H Rieseberg
- The Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Andrea Cavallini
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Pisa, Italy
| | - Lucia Natali
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Staton SE, Burke JM. Evolutionary transitions in the Asteraceae coincide with marked shifts in transposable element abundance. BMC Genomics 2015; 16:623. [PMID: 26290182 PMCID: PMC4546089 DOI: 10.1186/s12864-015-1830-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/07/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The transposable element (TE) content of the genomes of plant species varies from near zero in the genome of Utricularia gibba to more than 80% in many species. It is not well understood whether this variation in genome composition results from common mechanisms or stochastic variation. The major obstacles to investigating mechanisms of TE evolution have been a lack of comparative genomic data sets and efficient computational methods for measuring differences in TE composition between species. In this study, we describe patterns of TE evolution in 14 species in the flowering plant family Asteraceae and 1 outgroup species in the Calyceraceae to investigate phylogenetic patterns of TE dynamics in this important group of plants. RESULTS Our findings indicate that TE families in the Asteraceae exhibit distinct patterns of non-neutral evolution, and that there has been a directional increase in copy number of Gypsy retrotransposons since the origin of the Asteraceae. Specifically, there is marked increase in Gypsy abundance at the origin of the Asteraceae and at the base of the tribe Heliantheae. This latter shift in genome composition has had a significant impact on the diversity and abundance distribution of TEs in a lineage-specific manner. CONCLUSIONS We show that the TE-driven expansion of plant genomes can be facilitated by just a few TE families, and is likely accompanied by the modification and/or replacement of the TE community. Importantly, large shifts in TE composition may be correlated with major of phylogenetic transitions.
Collapse
Affiliation(s)
- S Evan Staton
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
- Current address: Beaty Biodiversity Research Centre and Department of Botany, 3529-6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
17
|
Barghini E, Natali L, Cossu RM, Giordani T, Pindo M, Cattonaro F, Scalabrin S, Velasco R, Morgante M, Cavallini A. The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome. Genome Biol Evol 2015; 6:776-91. [PMID: 24671744 PMCID: PMC4007544 DOI: 10.1093/gbe/evu058] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome.
Collapse
Affiliation(s)
- Elena Barghini
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Barghini E, Natali L, Giordani T, Cossu RM, Scalabrin S, Cattonaro F, Šimková H, Vrána J, Doležel J, Morgante M, Cavallini A. LTR retrotransposon dynamics in the evolution of the olive (Olea europaea) genome. DNA Res 2014; 22:91-100. [PMID: 25428895 PMCID: PMC4379980 DOI: 10.1093/dnares/dsu042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Improved knowledge of genome composition, especially of its repetitive component, generates important information for both theoretical and applied research. The olive repetitive component is made up of two main classes of sequences: tandem repeats and retrotransposons (REs). In this study, we provide characterization of a sample of 254 unique full-length long terminal repeat (LTR) REs. In the sample, Ty1-Copia elements were more numerous than Ty3-Gypsy elements. Mapping a large set of Illumina whole-genome shotgun reads onto the identified retroelement set revealed that Gypsy elements are more redundant than Copia elements. The insertion time of intact retroelements was estimated based on sister LTR’s divergence. Although some elements inserted relatively recently, the mean insertion age of the isolated retroelements is around 18 million yrs. Gypsy and Copia retroelements showed different waves of transposition, with Gypsy elements especially active between 10 and 25 million yrs ago and nearly inactive in the last 7 million yrs. The occurrence of numerous solo-LTRs related to isolated full-length retroelements was ascertained for two Gypsy elements and one Copia element. Overall, the results reported in this study show that RE activity (both retrotransposition and DNA loss) has impacted the olive genome structure in more ancient times than in other angiosperms.
Collapse
Affiliation(s)
- Elena Barghini
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Pisa I-56124, Italy
| | - Lucia Natali
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Pisa I-56124, Italy
| | - Tommaso Giordani
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Pisa I-56124, Italy
| | - Rosa Maria Cossu
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Pisa I-56124, Italy Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Michele Morgante
- Department of Crop and Environmental Sciences, University of Udine, Udine, Italy Institute of Applied Genomics, Udine, Italy
| | - Andrea Cavallini
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Pisa I-56124, Italy
| |
Collapse
|
19
|
Menzel G, Heitkam T, Seibt KM, Nouroz F, Müller-Stoermer M, Heslop-Harrison JS, Schmidt T. The diversification and activity of hAT transposons in Musa genomes. Chromosome Res 2014; 22:559-71. [DOI: 10.1007/s10577-014-9445-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/10/2014] [Accepted: 10/20/2014] [Indexed: 11/29/2022]
|
20
|
Jiang S, Zong Y, Yue X, Postman J, Teng Y, Cai D. Prediction of retrotransposons and assessment of genetic variability based on developed retrotransposon-based insertion polymorphism (RBIP) markers in Pyrus L. Mol Genet Genomics 2014; 290:225-37. [PMID: 25216935 DOI: 10.1007/s00438-014-0914-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/02/2014] [Indexed: 01/10/2023]
Abstract
Interspecific hybridization has been considered the major mode of evolution in Pyrus (pear), and thus, the genetic relationships within this genus have not been well documented. Retrotransposons are ubiquitous components of plant genomes and 42.4 % of the pear genome was reported to be long terminal repeat (LTR) retrotransposons, implying that retrotransposons might be significant in the evolution of Pyrus. In this study, 1,836 putative full-length LTR retrotransposons were isolated and 196 retrotransposon-based insertion polymorphism (RBIP) primers were developed, of which 24 pairs to the Ppcr1 subfamily of copia retrotransposons were used to analyze genetic diversity among 110 Pyrus accessions from Eurasia. Our results showed that Ppcr1 replicated many times in the development of cultivated Asian pears. The genetic structure analysis and the unweighted pair group method with arithmetic mean (UPGMA) dendrogram indicated that all accessions could be divided into Oriental and Occidental groups. In Oriental pears, wild pea pears clustered separately into independent groups in accordance with their morphological classifications. Cultivars of P. ussuriensis Maxim, P. pyrifolia Nakai, and P. pyrifolia Chinese white pear were mingled together, which inferred that hybridization events occurred during the development of the cultivated Asian pears. In Occidental pears, two clades were obtained in the UPGMA dendrogram in accordance with their geographical distribution; one contained the European species and the other included species from North Africa and West Asia. New findings in this study will be important to further understand the phylogeny of Pyrus and origins of cultivated pears.
Collapse
Affiliation(s)
- Shuang Jiang
- Department of Horticulture, The State Agricultural Ministry Key Laboratory of Horticultural Plant Growth, Development of Quality Improvement, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | | | | | | | | | | |
Collapse
|
21
|
Fambrini M, Basile A, Salvini M, Pugliesi C. Excisions of a defective transposable CACTA element (Tetu1) generate new alleles of a CYCLOIDEA-like gene of Helianthus annuus. Gene 2014; 549:198-207. [PMID: 25046140 DOI: 10.1016/j.gene.2014.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 01/17/2023]
Abstract
Tubular ray flower (turf) is a sunflower mutant that caught attention because it bears actinomorphic ray flowers, due to the presence of an active, although non-autonomous CACTA transposon (Tetu1) in the TCP domain of a CYCLOIDEA-like gene, HaCYC2c, a major regulator of sunflower floral symmetry. Here, we analyzed its excision rates in F3 population deriving from independent crosses of turf with common sunflower accessions. Our results suggest that the excision rate, ranging from 1.21 to 6.29%, depends on genetic background; moreover, the absence of somatic sectors in inflorescences of revertant individuals analyzed (182) and genetic analyses suggests a tight developmental control of Tetu1 excision, likely restricted to germinal cells. We individuate events of Tetu1 excision through molecular analysis that restore the wild type (WT) HaCYC2c allele, but even transposon excisions during which footprints are left. All mutations we detected occurred at the TCP basic motif and cause a change in ray flower phenotype. In particular, we selected five mutants with a one-to-four amino acid change that influence the capacity of reproductive organ development and ray flower corolla shaping (MUT-1, -2, -3, -4, -5). Revertant alleles not affecting turf phenotype (i.e. reading frame mutations) have also been identified (MUT-6). In all mutants, Real-time quantitative PCR (qPCR) experiments revealed variations of the steady state level of HaCYC2c mRNA. MUT-1 and MUT-4 showed a significant HaCYC2c down-regulation with respect to WT. A large variation within the biological replicates of MUT-2, MUT-3 and MUT-5 was detected and not significant differences in transcription levels between mutants and WT were observed. We detected low steady state level of HaCYC2c mRNA both in turf as in MUT-6. A three dimensional (3D) structure prediction tool let us predict an incorrect folding of the TCP protein already after a single amino acid deletion. This in turn is detectable as the restore of traits that are not peculiar of WT ray flowers, such as male fertility. Our analysis of an active TE sheds light on the TCP motif of the HaCYC2c gene and suggests that Tetu1 may be useful to obtain new natural mutants and for transposon tagging in different inbred lines of sunflower.
Collapse
Affiliation(s)
- Marco Fambrini
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Pisa, Italy
| | - Alice Basile
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mariangela Salvini
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Pisa, Italy; Scuola Normale Superiore, Pisa, Italy
| | - Claudio Pugliesi
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Pisa, Italy.
| |
Collapse
|
22
|
Carnelossi EAG, Lerat E, Henri H, Martinez S, Carareto CMA, Vieira C. Specific activation of an I-like element in Drosophila interspecific hybrids. Genome Biol Evol 2014; 6:1806-17. [PMID: 24966182 PMCID: PMC4122939 DOI: 10.1093/gbe/evu141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2014] [Indexed: 12/29/2022] Open
Abstract
The non-long terminal repeat (LTR) retrotransposon I, which belongs to the I superfamily of non-LTR retrotransposons, is well known in Drosophila because it transposes at a high frequency in the female germline cells in I-R hybrid dysgenic crosses of Drosophila melanogaster. Here, we report the occurrence and the upregulation of an I-like element in the hybrids of two sister species belonging to the repleta group of the genus Drosophila, D. mojavensis, and D. arizonae. These two species display variable degrees of pre- and postzygotic isolation, depending on the geographic origin of the strains. We took advantage of these features to explore the transposable element (TE) dynamics in interspecific crosses. We fully characterized the copies of this TE family in the D. mojavensis genome and identified at least one complete copy. We showed that this element is transcriptionally active in the ovaries and testes of both species and in their hybrids. Moreover, we showed that this element is upregulated in hybrid males, which could be associated with the male-sterile phenotype.
Collapse
Affiliation(s)
- Elias A G Carnelossi
- UNESP-Universidade Estadual Paulista, Laboratório de Evolução Molecular, Departamento de Biologia, São José do Rio Preto, São Paulo, BrazilUniversité de Lyon, Université Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne
| | - Emmanuelle Lerat
- Université de Lyon, Université Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne
| | - Hélène Henri
- Université de Lyon, Université Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne
| | - Sonia Martinez
- Université de Lyon, Université Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne
| | - Claudia M A Carareto
- UNESP-Universidade Estadual Paulista, Laboratório de Evolução Molecular, Departamento de Biologia, São José do Rio Preto, São Paulo, Brazil
| | - Cristina Vieira
- Université de Lyon, Université Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, VilleurbanneInstitut Universitaire de France, Paris, France
| |
Collapse
|
23
|
Gill N, Buti M, Kane N, Bellec A, Helmstetter N, Berges H, Rieseberg LH. Sequence-Based Analysis of Structural Organization and Composition of the Cultivated Sunflower (Helianthus annuus L.) Genome. BIOLOGY 2014; 3:295-319. [PMID: 24833511 PMCID: PMC4085609 DOI: 10.3390/biology3020295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/16/2014] [Accepted: 03/25/2014] [Indexed: 12/19/2022]
Abstract
Sunflower is an important oilseed crop, as well as a model system for evolutionary studies, but its 3.6 gigabase genome has proven difficult to assemble, in part because of the high repeat content of its genome. Here we report on the sequencing, assembly, and analyses of 96 randomly chosen BACs from sunflower to provide additional information on the repeat content of the sunflower genome, assess how repetitive elements in the sunflower genome are organized relative to genes, and compare the genomic distribution of these repeats to that found in other food crops and model species. We also examine the expression of transposable element-related transcripts in EST databases for sunflower to determine the representation of repeats in the transcriptome and to measure their transcriptional activity. Our data confirm previous reports in suggesting that the sunflower genome is >78% repetitive. Sunflower repeats share very little similarity to other plant repeats such as those of Arabidopsis, rice, maize and wheat; overall 28% of repeats are “novel” to sunflower. The repetitive sequences appear to be randomly distributed within the sequenced BACs. Assuming the 96 BACs are representative of the genome as a whole, then approximately 5.2% of the sunflower genome comprises non TE-related genic sequence, with an average gene density of 18kbp/gene. Expression levels of these transposable elements indicate tissue specificity and differential expression in vegetative and reproductive tissues, suggesting that expressed TEs might contribute to sunflower development. The assembled BACs will also be useful for assessing the quality of several different draft assemblies of the sunflower genome and for annotating the reference sequence.
Collapse
Affiliation(s)
- Navdeep Gill
- Department of Botany and The Biodiversity Research Centre, University of British Columbia, Vancouver V6T 1Z4, BC, Canada.
| | - Matteo Buti
- Applied Rosaceous Genomics Group, Centre for Research and Innovation, Michele all'Adige (TN) P.IVA 020384102, Italy.
| | - Nolan Kane
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Arnaud Bellec
- French Plant Genomic Resource Centre, INRA-CNRGV, Chemin de Borde Rouge, CS 52627, 31326 Castanet Tolosan, France.
| | - Nicolas Helmstetter
- French Plant Genomic Resource Centre, INRA-CNRGV, Chemin de Borde Rouge, CS 52627, 31326 Castanet Tolosan, France.
| | - Hélène Berges
- French Plant Genomic Resource Centre, INRA-CNRGV, Chemin de Borde Rouge, CS 52627, 31326 Castanet Tolosan, France.
| | - Loren H Rieseberg
- Department of Botany and The Biodiversity Research Centre, University of British Columbia, Vancouver V6T 1Z4, BC, Canada.
| |
Collapse
|
24
|
Natali L, Cossu RM, Barghini E, Giordani T, Buti M, Mascagni F, Morgante M, Gill N, Kane NC, Rieseberg L, Cavallini A. The repetitive component of the sunflower genome as shown by different procedures for assembling next generation sequencing reads. BMC Genomics 2013; 14:686. [PMID: 24093210 PMCID: PMC3852528 DOI: 10.1186/1471-2164-14-686] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 10/03/2013] [Indexed: 11/12/2022] Open
Abstract
Background Next generation sequencing provides a powerful tool to study genome structure in species whose genomes are far from being completely sequenced. In this work we describe and compare different computational approaches to evaluate the repetitive component of the genome of sunflower, by using medium/low coverage Illumina or 454 libraries. Results By varying sequencing technology (Illumina or 454), coverage (0.55 x-1.25 x), assemblers and assembly procedures, six different genomic databases were produced. The annotation of these databases showed that they were composed of different proportions of repetitive DNA families. The final assembly of the sequences belonging to the six databases produced a whole genome set of 283,800 contigs. The redundancy of each contig was estimated by mapping the whole genome set with a large Illumina read set and measuring the number of matched Illumina reads. The repetitive component amounted to 81% of the sunflower genome, that is composed mainly of numerous families of Gypsy and Copia retrotransposons. Also many families of non autonomous retrotransposons and DNA transposons (especially of the Helitron superfamily) were identified. Conclusions The results substantially matched those previously obtained by using a Sanger-sequenced shotgun library and a standard 454 whole-genome-shotgun approach, indicating the reliability of the proposed procedures also for other species. The repetitive sequences were collected to produce a database, SUNREP, that will be useful for the annotation of the sunflower genome sequence and for studying the genome evolution in dicotyledons.
Collapse
Affiliation(s)
- Lucia Natali
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hertweck KL. Assembly and comparative analysis of transposable elements from low coverage genomic sequence data in Asparagales. Genome 2013; 56:487-94. [PMID: 24168669 DOI: 10.1139/gen-2013-0042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The research field of comparative genomics is moving from a focus on genes to a more holistic view including the repetitive complement. This study aimed to characterize relative proportions of the repetitive fraction of large, complex genomes in a nonmodel system. The monocotyledonous plant order Asparagales (onion, asparagus, agave) comprises some of the largest angiosperm genomes and represents variation in both genome size and structure (karyotype). Anonymous, low coverage, single-end Illumina data from 11 exemplar Asparagales taxa were assembled using a de novo method. Resulting contigs were annotated using a reference library of available monocot repetitive sequences. Mapping reads to contigs provided rough estimates of relative proportions of each type of transposon in the nuclear genome. The results were parsed into general repeat types and synthesized with genome size estimates and a phylogenetic context to describe the pattern of transposable element evolution among these lineages. The major finding is that although some lineages in Asparagales exhibit conservation in repeat proportions, there is generally wide variation in types and frequency of repeats. This approach is an appropriate first step in characterizing repeats in evolutionary lineages with a paucity of genomic resources.
Collapse
Affiliation(s)
- Kate L Hertweck
- National Evolutionary Synthesis Center, 2024 West Main Street, Suite A200, Durham, NC 27705, USA
| |
Collapse
|
26
|
González LG, Deyholos MK. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome. BMC Genomics 2012; 13:644. [PMID: 23171245 PMCID: PMC3544724 DOI: 10.1186/1471-2164-13-644] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 11/15/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Flax (Linum usitatissimum L.) is an important crop for the production of bioproducts derived from its seed and stem fiber. Transposable elements (TEs) are widespread in plant genomes and are a key component of their evolution. The availability of a genome assembly of flax (Linum usitatissimum) affords new opportunities to explore the diversity of TEs and their relationship to genes and gene expression. RESULTS Four de novo repeat identification algorithms (PILER, RepeatScout, LTR_finder and LTR_STRUC) were applied to the flax genome assembly. The resulting library of flax repeats was combined with the RepBase Viridiplantae division and used with RepeatMasker to identify TEs coverage in the genome. LTR retrotransposons were the most abundant TEs (17.2% genome coverage), followed by Long Interspersed Nuclear Element (LINE) retrotransposons (2.10%) and Mutator DNA transposons (1.99%). Comparison of putative flax TEs to flax transcript databases indicated that TEs are not highly expressed in flax. However, the presence of recent insertions, defined by 100% intra-element LTR similarity, provided evidence for recent TE activity. Spatial analysis showed TE-rich regions, gene-rich regions as well as regions with similar genes and TE density. Monte Carlo simulations for the 71 largest scaffolds (≥ 1 Mb each) did not show any regional differences in the frequency of TE overlap with gene coding sequences. However, differences between TE superfamilies were found in their proximity to genes. Genes within TE-rich regions also appeared to have lower transcript expression, based on EST abundance. When LTR elements were compared, Copia showed more diversity, recent insertions and conserved domains than the Gypsy, demonstrating their importance in genome evolution. CONCLUSIONS The calculated 23.06% TE coverage of the flax WGS assembly is at the low end of the range of TE coverages reported in other eudicots, although this estimate does not include TEs likely found in unassembled repetitive regions of the genome. Since enrichment for TEs in genomic regions was associated with reduced expression of neighbouring genes, and many members of the Copia LTR superfamily are inserted close to coding regions, we suggest Copia elements have a greater influence on recent flax genome evolution while Gypsy elements have become residual and highly mutated.
Collapse
|
27
|
Staton SE, Bakken BH, Blackman BK, Chapman MA, Kane NC, Tang S, Ungerer MC, Knapp SJ, Rieseberg LH, Burke JM. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:142-53. [PMID: 22691070 DOI: 10.1111/j.1365-313x.2012.05072.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Aside from polyploidy, transposable elements are the major drivers of genome size increases in plants. Thus, understanding the diversity and evolutionary dynamics of transposable elements in sunflower (Helianthus annuus L.), especially given its large genome size (∼3.5 Gb) and the well-documented cases of amplification of certain transposons within the genus, is of considerable importance for understanding the evolutionary history of this emerging model species. By analyzing approximately 25% of the sunflower genome from random sequence reads and assembled bacterial artificial chromosome (BAC) clones, we show that it is composed of over 81% transposable elements, 77% of which are long terminal repeat (LTR) retrotransposons. Moreover, the LTR retrotransposon fraction in BAC clones harboring genes is disproportionately composed of chromodomain-containing Gypsy LTR retrotransposons ('chromoviruses'), and the majority of the intact chromoviruses contain tandem chromodomain duplications. We show that there is a bias in the efficacy of homologous recombination in removing LTR retrotransposon DNA, thereby providing insight into the mechanisms associated with transposable element (TE) composition in the sunflower genome. We also show that the vast majority of observed LTR retrotransposon insertions have likely occurred since the origin of this species, providing further evidence that biased LTR retrotransposon activity has played a major role in shaping the chromatin and DNA landscape of the sunflower genome. Although our findings on LTR retrotransposon age and structure could be influenced by the selection of the BAC clones analyzed, a global analysis of random sequence reads indicates that the evolutionary patterns described herein apply to the sunflower genome as a whole.
Collapse
Affiliation(s)
- S Evan Staton
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Menzel G, Krebs C, Diez M, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T. Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives. PLANT MOLECULAR BIOLOGY 2012; 78:393-405. [PMID: 22246381 DOI: 10.1007/s11103-011-9872-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/20/2011] [Indexed: 05/03/2023]
Abstract
Genome-wide analyses of repetitive DNA suggest a significant impact particularly of transposable elements on genome size and evolution of virtually all eukaryotic organisms. In this study, we analyzed the abundance and diversity of the hAT transposon superfamily of the sugar beet (B. vulgaris) genome, using molecular, bioinformatic and cytogenetic approaches. We identified 81 transposase-coding sequences, three of which are part of structurally intact but nonfunctional hAT transposons (BvhAT), in a B. vulgaris BAC library as well as in whole genome sequencing-derived data sets. Additionally, 116 complete and 497 truncated non-autonomous BvhAT derivatives lacking the transposase gene were in silico-detected. The 116 complete derivatives were subdivided into four BvhATpin groups each characterized by a distinct terminal inverted repeat motif. Both BvhAT and BvhATpin transposons are specific for species of the genus Beta and closely related species, showing a localization on B. vulgaris chromosomes predominantely in euchromatic regions. The lack of any BvhAT transposase function together with the high degree of degeneration observed for the BvhAT and the BvhATpin genomic fraction contrasts with the abundance and activity of autonomous and non-autonomous hAT transposons revealed in other plant species. This indicates a possible genus-specific structural and functional repression of the hAT transposon superfamily during Beta diversification and evolution.
Collapse
Affiliation(s)
- Gerhard Menzel
- Institute of Botany, Dresden University of Technology, 01062 Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Buti M, Giordani T, Cattonaro F, Cossu RM, Pistelli L, Vukich M, Morgante M, Cavallini A, Natali L. Temporal dynamics in the evolution of the sunflower genome as revealed by sequencing and annotation of three large genomic regions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:779-91. [PMID: 21647740 DOI: 10.1007/s00122-011-1626-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 05/09/2011] [Indexed: 05/02/2023]
Abstract
Improved knowledge of genome composition, especially of its repetitive component, generates important informations in both theoretical and applied research. In this study, we provide the first insight into the local organization of the sunflower genome by sequencing and annotating 349,380 bp from 3 BAC clones, each including one single-copy gene. These analyses resulted in the identification of 11 putative gene sequences, 18 full-length LTR retrotransposons, 6 incomplete LTR retrotransposons, 2 non-autonomous LTR-retroelements (LINEs), 2 putative DNA transposons fragments and one putative helitron. Among LTR-retrotransposons, non-autonomous elements (the so-called LARDs), which do not carry any protein-encoding sequence, were discovered for the first time in the sunflower. The insertion time of intact retroelements was measured, based on sister LTRs divergence. All isolated elements were inserted relatively recently, especially those belonging to the Gypsy superfamily. Retrotransposon families related to those identified in the BAC clones are present also in other species of Helianthus, both annual and perennial, and even in other Asteraceae. In one of the three BAC clones, we found five copies of a lipid transfer protein (LTP) encoding gene within less than 100,000 bp, four of which are potentially functional. Two of these are interrupted by LTR retrotransposons, in the intron and in the coding sequence, respectively. The divergence between sister LTRs of the retrotransposons inserted within the genes indicates that LTP gene duplication started earlier than 1.749 MYRS ago. On the whole, the results reported in this study confirm that the sunflower is an excellent system to study transposons dynamics and evolution.
Collapse
Affiliation(s)
- M Buti
- Department of Crop Plant Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Straub SCK, Fishbein M, Livshultz T, Foster Z, Parks M, Weitemier K, Cronn RC, Liston A. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing. BMC Genomics 2011; 12:211. [PMID: 21542930 PMCID: PMC3116503 DOI: 10.1186/1471-2164-12-211] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 05/04/2011] [Indexed: 01/05/2023] Open
Abstract
Background Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. Results A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. Conclusions The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first step in the development of a community resource for further study of plant-insect co-evolution, anti-herbivore defense, floral developmental genetics, reproductive biology, chemical evolution, population genetics, and comparative genomics using milkweeds, and A. syriaca in particular, as ecological and evolutionary models.
Collapse
Affiliation(s)
- Shannon C K Straub
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Fambrini M, Mariotti L, Parlanti S, Picciarelli P, Salvini M, Ceccarelli N, Pugliesi C. The extreme dwarf phenotype of the GA-sensitive mutant of sunflower, dwarf2, is generated by a deletion in the ent-kaurenoic acid oxidase1 (HaKAO1) gene sequence. PLANT MOLECULAR BIOLOGY 2011; 75:431-50. [PMID: 21279813 DOI: 10.1007/s11103-011-9740-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 01/15/2011] [Indexed: 05/25/2023]
Abstract
A dwarf mutant, dw arf 2 (dw2), was isolated from sunflower (Helianthus annuus). The most obvious alterations of dw2 plants were the lack of stem growth, reduced size of leaves, petioles and flower organs, retarded flower development. Pollen and ovules were produced but the filaments failed to extrude the anthers from the corolla. The dw2 phenotype was mainly because of reduced cell size. In dw2 leaves, the dark-green color was not so much due to higher pigment content, but was correlated with a changed leaf morphology. The mutant responded to the application of bioactive gibberellins (GAs). The levels of ent-7α-hydroxykaurenoic acid, GA(19), GA(20) and GA(1) in dw2 seedlings were severely decreased relative to those in its wild type (WT). ent-Kaurenoic acid was actively converted to ent-7α-hydroxykaurenoic acid in WT plants but quite poorly in dw2 plants. All together these data suggested that the dw2 mutation severely reduced the flux through the biosynthetic pathway leading to active GAs by hampering the conversion of ent-kaurenoic acid to GA(12). Two ent-kaurenoic acid oxidase (KAO) genes were identified. HaKAO1 was expressed everywhere in sunflower organs, while HaKAO2 was mainly expressed in roots. We demonstrated that a DNA deletion in HaKAO1 of dw2 generated aberrant mRNA-splicing, causing a premature stop codon in the amino acid sequence. In dw2 calli, Agrobacterium-mediated transfer of WT HaKAO1 cDNA restored the WT endogenous levels of GAs. In segregating BC(1) progeny, the deletion co-segregated with the dwarf phenotype. The deletion was generated near to a breakpoint of a more complex chromosome rearrangement.
Collapse
Affiliation(s)
- Marco Fambrini
- Dipartimento di Biologia delle Piante Agrarie, Sezione di Genetica, Università di Pisa, Via Matteotti 1B, 56124, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|