1
|
Guo G, Pan B, Gong C, Wang S, Liu J, Gao C, Diao W. Transcriptional Comparison Reveals Differential Resistance Mechanisms between CMV-Resistant PBC688 and CMV-Susceptible G29. Genes (Basel) 2024; 15:731. [PMID: 38927667 PMCID: PMC11202605 DOI: 10.3390/genes15060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The Cucumber mosaic virus (CMV) presents a significant threat to pepper cultivation worldwide, leading to substantial yield losses. We conducted a transcriptional comparative study between CMV-resistant (PBC688) and -susceptible (G29) pepper accessions to understand the mechanisms of CMV resistance. PBC688 effectively suppressed CMV proliferation and spread, while G29 exhibited higher viral accumulation. A transcriptome analysis revealed substantial differences in gene expressions between the two genotypes, particularly in pathways related to plant-pathogen interactions, MAP kinase, ribosomes, and photosynthesis. In G29, the resistance to CMV involved key genes associated with calcium-binding proteins, pathogenesis-related proteins, and disease resistance. However, in PBC688, the crucial genes contributing to CMV resistance were ribosomal and chlorophyll a-b binding proteins. Hormone signal transduction pathways, such as ethylene (ET) and abscisic acid (ABA), displayed distinct expression patterns, suggesting that CMV resistance in peppers is associated with ET and ABA. These findings deepen our understanding of CMV resistance in peppers, facilitating future research and variety improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weiping Diao
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (G.G.); (B.P.); (C.G.); (S.W.); (J.L.); (C.G.)
| |
Collapse
|
2
|
Ro N, Lee GA, Ko HC, Oh H, Lee S, Haile M, Lee J. Exploring Disease Resistance in Pepper ( Capsicum spp.) Germplasm Collection Using Fluidigm SNP Genotyping. PLANTS (BASEL, SWITZERLAND) 2024; 13:1344. [PMID: 38794415 PMCID: PMC11125113 DOI: 10.3390/plants13101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
This study utilized a diverse Capsicum accessions (5658) sourced from various species and geographical regions, deposited at the National Agrobiodiversity Center, Genebank. We employed 19 SNP markers through a Fluidigm genotyping system and screened these accessions against eight prevalent diseases of pepper. This study revealed accessions resistant to individual diseases as well as those exhibiting resistance to multiple diseases, including bacterial spot, anthracnose, powdery mildew, phytophthora root rot, and potyvirus. The C. chacoense accessions were identified as resistant materials against bacterial spot, anthracnose, powdery mildew, and phytophthora root rot, underscoring the robust natural defense mechanisms inherent in the wild Capsicum species and its potential uses as sources of resistance for breeding. C. baccatum species also demonstrated to be a promising source of resistance to major pepper diseases. Generally, disease-resistant germplasm has been identified from various Capsicum species. Originating from diverse locations such as Argentina, Bolivia, and the United Kingdom, these accessions consistently demonstrated resistance, indicating the widespread prevalence of disease-resistant traits across varied environments. Additionally, we selected ten pepper accessions based on their resistance to multiple diseases, including CMV, Phytophthora root rot, potyviruses, and TSWV, sourced from diverse geographical regions like Hungary, Peru, the United States, and the Netherlands. This comprehensive analysis provides valuable insights into disease resistance in Capsicum, crucial for fostering sustainable agricultural practices and advancing crop improvement through breeding strategies.
Collapse
Affiliation(s)
- Nayoung Ro
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (N.R.); (G.-A.L.); (H.-C.K.); (H.O.)
| | - Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (N.R.); (G.-A.L.); (H.-C.K.); (H.O.)
| | - Ho-Cheol Ko
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (N.R.); (G.-A.L.); (H.-C.K.); (H.O.)
| | - Hyeonseok Oh
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (N.R.); (G.-A.L.); (H.-C.K.); (H.O.)
| | - Sukyeung Lee
- International Technology Cooperation Center, Rural Development Administration, Jeonju 54875, Republic of Korea;
| | - Mesfin Haile
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (N.R.); (G.-A.L.); (H.-C.K.); (H.O.)
| | - Jundae Lee
- Department of Horticulture, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
3
|
Li N, Yu C, Yin Y, Gao S, Wang F, Jiao C, Yao M. Pepper Crop Improvement Against Cucumber Mosaic Virus (CMV): A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:598798. [PMID: 33362830 PMCID: PMC7758397 DOI: 10.3389/fpls.2020.598798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Cucumber mosaic virus (CMV) is a prevalent virus affecting the quality and yield of pepper, resulting in yield losses of greater than 80% during severe local epidemics. Cultural practices and the heavy use of agrochemicals are the most common control measures for CMV. Sources of resistance provide a practical reference and a basis for breeding for CMV resistance. Genetic factors underlying CMV resistance have been studied and advanced breeding lines and cultivars with improved resistance have been developed by traditional breeding methods. Additionally, QTLs or genes for CMV resistance have been identified and can be utilized for marker-assisted resistance breeding. This review focuses on status and prospect of CMV against different virus strains, host resistance, and its applied genetics. With the advent of novel technologies, more useful markers and precise approaches can facilitate the progress for improving CMV resistance in Capsicum.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunhai Jiao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Minghua Yao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
4
|
Heo KJ, Kwon SJ, Kim MK, Kwak HR, Han SJ, Kwon MJ, Rao ALN, Seo JK. Newly emerged resistance-breaking variants of cucumber mosaic virus represent ongoing host-interactive evolution of an RNA virus. Virus Evol 2020; 6:veaa070. [PMID: 33240527 PMCID: PMC7673075 DOI: 10.1093/ve/veaa070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Understanding the evolutionary history of a virus and the mechanisms influencing the direction of its evolution is essential for the development of more durable strategies to control the virus in crop fields. While the deployment of host resistance in crops is the most efficient means to control various viruses, host resistance itself can act as strong selective pressure and thus play a critical role in the evolution of virus virulence. Cucumber mosaic virus (CMV), a plant RNA virus with high evolutionary capacity, has caused endemic disease in various crops worldwide, including pepper (Capsicum annuum L.), because of frequent emergence of resistance-breaking variants. In this study, we examined the molecular and evolutionary characteristics of recently emerged, resistance-breaking CMV variants infecting pepper. Our population genetics analysis revealed that the high divergence capacity of CMV RNA1 might have played an essential role in the host-interactive evolution of CMV and in shaping the CMV population structure in pepper. We also demonstrated that nonsynonymous mutations in RNA1 encoding the 1a protein enabled CMV to overcome the deployed resistance in pepper. Our findings suggest that resistance-driven selective pressures on RNA1 might have contributed in shaping the unique evolutionary pattern of CMV in pepper. Therefore, deployment of a single resistance gene may reduce resistance durability against CMV and more integrated approaches are warranted for successful control of CMV in pepper.
Collapse
Affiliation(s)
| | - Sun-Jung Kwon
- Institutes of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-ro, Pyeongchang 25354, Republic of Korea
| | - Mi-Kyeong Kim
- Department of Plant Medicine, Chungbuk National University, 1 Chungdae-ro, Cheongju 28644, Republic of Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, 300 Nongsaengmyeong-ro, Wanju 55365, Republic of Korea
| | - Soo-Jung Han
- Department of International Agricultural Technology
| | - Min-Jun Kwon
- Department of International Agricultural Technology
| | - A L N Rao
- Department of Microbiology and Plant Pathology, University of California, Boyce Hall 1463, 900 University Ave, Riverside, CA 92521, USA
| | | |
Collapse
|
5
|
Foong SL, Paek KH. Capsicum annum Hsp26.5 promotes defense responses against RNA viruses via ATAF2 but is hijacked as a chaperone for tobamovirus movement protein. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6142-6158. [PMID: 32640023 DOI: 10.1093/jxb/eraa320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The expression of Capsicum annuum HEAT SHOCK PROTEIN 26.5 (CaHsp26.5) was triggered by the inoculation of Tobacco mosaic virus pathotype P0 (TMV-P0) but its function in the defense response of plants is unknown. We used gene silencing and overexpression approaches to investigate the effect of CaHsp26.5 expression on different plant RNA viruses. Moreover, we performed protein-protein and protein-RNA interaction assays to study the mechanism of CaHsp26.5 function. CaHsp26.5 binding to a short poly-cytosine motif in the 3'-untranslated region of the genome of some viruses triggers the expression of several defense-related genes such as PATHOGENESIS-RELATED GENE 1 with the help of a transcription factor, NAC DOMAIN-CONTAINING PROTEIN 81 (ATAF2). Thus, an elevated CaHsp26.5 level was accompanied by increased plant resistance against plant viruses such as Cucumber mosaic virus strain Korea. However, the movement proteins of Pepper mild mottle virus pathotype P1,2,3 and TMV-P0 were shown to be able to interact with CaHsp26.5 to maintain the integrity of their proteins. Our work shows CaHsp26.5 as a positive player in the plant defense response against several plant RNA viruses. However, some tobamoviruses can hijack CaHsp26.5's chaperone activity for their own benefit.
Collapse
Affiliation(s)
- Siew-Liang Foong
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | | |
Collapse
|
6
|
Lou L, Su X, Liu X, Liu Z. Construction of a high-density genetic linkage map and identification of gene controlling resistance to cucumber mosaic virus in Luffa cylindrica (L.) Roem. based on specific length amplified fragment sequencing. Mol Biol Rep 2020; 47:5831-5841. [PMID: 32700128 DOI: 10.1007/s11033-020-05652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
Luffa cylindrica L. is a cash crop which has important health, medicinal and industrial value, but no high saturation genetic map has been constructed owing to a lack of efficient markers. Furthermore, no genes were reportedly responsible for CMV resistance in Luffa spp. Specific length amplified fragment sequencing (SLAF-seq) is a valuable tool for large-scale discovery of markers and genetic mapping. The present study reported the construction of a high-density genetic map and the mapping of CMV resistant genes by using an F2 population of 130 individuals and their two inbred line parents. A total of 271.01 Mb pair-end reads were generated. 100,077 high-quality SLAFs were detected, and 7404 of them were polymorphic. Finally, 3701 of the polymorphic markers were selected for genetic map construction, and 13 linkage groups were generated. The map spanned 1518.56 cM with an average distance of 0.41 cM between adjacent markers. Based on the newly constructed high-density map, one gene located on chromosome 1 (100.072-100.457 cM) was identified to regulate CMV resistance in L. cylindrica. A gag-polypeptide of LTR copia-type retrotransposon was predicted as the candidate gene responsible for CMV resistance in L. cylindrica. The high-density genetic map and the CMV resistant gene mapped and predicted in this study will be useful in future research.
Collapse
Affiliation(s)
- Lina Lou
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences/Laboratory for Horticultural Crop Genetic Improvement, Zhongling Street 50, Nanjing, 210014, Jiangsu Province, China.
| | - Xiaojun Su
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences/Laboratory for Horticultural Crop Genetic Improvement, Zhongling Street 50, Nanjing, 210014, Jiangsu Province, China
| | - Xiaohong Liu
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences/Laboratory for Horticultural Crop Genetic Improvement, Zhongling Street 50, Nanjing, 210014, Jiangsu Province, China
| | - Zhe Liu
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences/Laboratory for Horticultural Crop Genetic Improvement, Zhongling Street 50, Nanjing, 210014, Jiangsu Province, China
| |
Collapse
|
7
|
Parisi M, Alioto D, Tripodi P. Overview of Biotic Stresses in Pepper ( Capsicum spp.): Sources of Genetic Resistance, Molecular Breeding and Genomics. Int J Mol Sci 2020; 21:E2587. [PMID: 32276403 PMCID: PMC7177692 DOI: 10.3390/ijms21072587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022] Open
Abstract
Pepper (Capsicum spp.) is one of the major vegetable crops grown worldwide largely appreciated for its economic importance and nutritional value. This crop belongs to the large Solanaceae family, which, among more than 90 genera and 2500 species of flowering plants, includes commercially important vegetables such as tomato and eggplant. The genus includes over 30 species, five of which (C. annuum, C. frutescens, C. chinense, C. baccatum, and C. pubescens) are domesticated and mainly grown for consumption as food and for non-food purposes (e.g., cosmetics). The main challenges for vegetable crop improvement are linked to the sustainable development of agriculture, food security, the growing consumers' demand for food. Furthermore, demographic trends and changes to climate require more efficient use of plant genetic resources in breeding programs. Increases in pepper consumption have been observed in the past 20 years, and for maintaining this trend, the development of new resistant and high yielding varieties is demanded. The range of pathogens afflicting peppers is very broad and includes fungi, viruses, bacteria, and insects. In this context, the large number of accessions of domesticated and wild species stored in the world seed banks represents a valuable resource for breeding in order to transfer traits related to resistance mechanisms to various biotic stresses. In the present review, we report comprehensive information on sources of resistance to a broad range of pathogens in pepper, revisiting the classical genetic studies and showing the contribution of genomics for the understanding of the molecular basis of resistance.
Collapse
Affiliation(s)
- Mario Parisi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy;
| | - Daniela Alioto
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, Naples, Italy;
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy;
| |
Collapse
|
8
|
Comparative Transcriptome Analysis of Two Cucumber Cultivars with Different Sensitivity to Cucumber Mosaic Virus Infection. Pathogens 2020; 9:pathogens9020145. [PMID: 32098056 PMCID: PMC7168641 DOI: 10.3390/pathogens9020145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Cucumber mosaic virus (CMV), with extremely broad host range including both monocots and dicots around the world, belongs to most important viral crop threats. Either natural or genetically constructed sources of resistance are being intensively investigated; for this purpose, exhaustive knowledge of molecular virus-host interaction during compatible and incompatible infection is required. New technologies and computer-based “omics” on various levels contribute markedly to this topic. In this work, two cucumber cultivars with different response to CMV challenge were tested, i.e., sensitive cv. Vanda and resistant cv. Heliana. The transcriptomes were prepared from both cultivars at 18 days after CMV or mock inoculation. Subsequently, four independent comparative analyses of obtained data were performed, viz. mock- and CMV-inoculated samples within each cultivar, samples from mock-inoculated cultivars to each other and samples from virus-inoculated cultivars to each other. A detailed picture of CMV-influenced genes, as well as constitutive differences in cultivar-specific gene expression was obtained. The compatible CMV infection of cv. Vanda caused downregulation of genes involved in photosynthesis, and induction of genes connected with protein production and modification, as well as components of signaling pathways. CMV challenge caused practically no change in the transcription profile of the cv. Heliana. The main differences between constitutive transcription activity of the two cultivars relied in the expression of genes responsible for methylation, phosphorylation, cell wall organization and carbohydrate metabolism (prevailing in cv. Heliana), or chromosome condensation and glucan biosynthesis (prevailing in cv. Vanda). Involvement of several genes in the resistant cucumber phenotype was predicted; this can be after biological confirmation potentially applied in breeding programs for virus-resistant crops.
Collapse
|
9
|
Changkwian A, Venkatesh J, Lee JH, Han JW, Kwon JK, Siddique MI, Solomon AM, Choi GJ, Kim E, Seo Y, Kim YH, Kang BC. Physical Localization of the Root-Knot Nematode ( Meloidogyne incognita) Resistance Locus Me7 in Pepper ( Capsicum annuum). FRONTIERS IN PLANT SCIENCE 2019; 10:886. [PMID: 31354762 PMCID: PMC6629957 DOI: 10.3389/fpls.2019.00886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/21/2019] [Indexed: 05/09/2023]
Abstract
The root-knot nematode (RKN) Meloidogyne incognita severely reduces yields of pepper (Capsicum annuum) worldwide. A single dominant locus, Me7, conferring RKN resistance was previously mapped on the long arm of pepper chromosome P9. In the present study, the Me7 locus was fine mapped using an F2 population of 714 plants derived from a cross between the RKN-susceptible parent C. annuum ECW30R and the RKN-resistant parent C. annuum CM334. CM334 exhibits suppressed RKN juvenile movement, suppressed feeding site enlargement and significant reduction in gall formation compared with ECW30R. RKN resistance screening in the F2 population identified 558 resistant and 156 susceptible plants, which fit a 3:1 ratio confirming that this RKN resistance was controlled by a single dominant gene. Using the C. annuum CM334 reference genome and BAC library sequencing, fine mapping of Me7 markers was performed. The Me7 locus was delimited between two markers G21U3 and G43U3 covering a physical interval of approximately 394.7 kb on the CM334 chromosome P9. Nine markers co-segregated with the Me7 gene. A cluster of 25 putative nucleotide-binding site and leucine-rich repeat (NBS-LRR)-type disease resistance genes were predicted in the delimited Me7 region. We propose that RKN resistance in CM334 is mediated by one or more of these NBS-LRR class R genes. The Me7-linked markers identified here will facilitate marker-assisted selection (MAS) for RKN resistance in pepper breeding programs, as well as functional analysis of Me7 candidate genes in C. annuum.
Collapse
Affiliation(s)
- Amornrat Changkwian
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jelli Venkatesh
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Joung-Ho Lee
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Woong Han
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Muhammad Irfan Siddique
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Abate Mekonnen Solomon
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Gyung-Ja Choi
- Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology, Daejoen, South Korea
| | - Eunji Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yunhee Seo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Young-Ho Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Byoung-Cheorl Kang,
| |
Collapse
|
10
|
|
11
|
Choi S, Lee JH, Kang WH, Kim J, Huy HN, Park SW, Son EH, Kwon JK, Kang BC. Identification of Cucumber mosaic resistance 2 ( cmr2) That Confers Resistance to a New Cucumber mosaic virus Isolate P1 (CMV-P1) in Pepper ( Capsicum spp.). FRONTIERS IN PLANT SCIENCE 2018; 9:1106. [PMID: 30186289 PMCID: PMC6110927 DOI: 10.3389/fpls.2018.01106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/09/2018] [Indexed: 05/09/2023]
Abstract
Cucumber mosaic virus (CMV) is one of the most devastating phytopathogens of Capsicum. The single dominant resistance gene, Cucumber mosaic resistant 1 (Cmr1), that confers resistance to the CMV isolate P0 has been overcome by a new isolate (CMV-P1) after being deployed in pepper (Capsicum annuum) breeding for over 20 years. A recently identified Indian C. annuum cultivar, "Lam32," displays resistance to CMV-P1. In this study, we show that the resistance in "Lam32" is controlled by a single recessive gene, CMV resistance gene 2 (cmr2). We found that cmr2 conferred resistance to CMV strains including CMV-Korean, CMV-Fny, and CMV-P1, indicating that cmr2 provides a broad-spectrum type of resistance. We utilized two molecular mapping approaches to determine the chromosomal location of cmr2. Bulked segregant analysis (BSA) using amplified fragment-length polymorphism (AFLP) (BSA-AFLP) revealed one marker, cmvAFLP, located 16 cM from cmr2. BSA using the Affymetrix pepper array (BSA-Affy) identified a single-nucleotide polymorphism (SNP) marker (Affy4) located 2.3 cM from cmr2 on chromosome 8. We further screened a pepper germplasm collection of 4,197 accessions for additional CMV-P1 resistance sources and found that some accessions contained equivalent levels of resistance to that of "Lam32." Inheritance and allelism tests demonstrated that all the resistance sources examined contained cmr2. Our result thus provide genetic and molecular evidence that cmr2 is a single recessive gene that confers to pepper an unprecedented resistance to the dangerous new isolate CMV-P1 that had overcome Cmr1.
Collapse
Affiliation(s)
- Seula Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Joung-Ho Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Won-Hee Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Joonyup Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hoang N. Huy
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Sung-Woo Park
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Eun-Ho Son
- RDA-Genebank Information Center, Jeonju, South Korea
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
12
|
Zhu C, Li X, Zheng J. Transcriptome profiling using Illumina- and SMRT-based RNA-seq of hot pepper for in-depth understanding of genes involved in CMV infection. Gene 2018; 666:123-133. [PMID: 29730427 DOI: 10.1016/j.gene.2018.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
Abstract
Hot pepper (Capsicum annuum L.) is becoming an increasingly important vegetable crop in the world. Cucumber mosaic virus (CMV) is a destructive virus that can cause leaf distortion and fruit lesions, affecting pepper production. However, studies on the response to CMV infection in pepper at the transcriptional level are limited. In this study, the transcript profiles of pepper leaves after CMV infection were investigated using Illumina and single-molecule real-time (SMRT) RNA-sequencing (RNA-seq). A total of 2143 differentially expressed genes (DEGs) were identified at five different stages. Gene ontology (GO) and KEGG analysis revealed that these DEGs were involved in the response to stress, defense response and plant-pathogen interaction pathways. Among these DEGs, several key genes that consistently appeared in studies of plant-pathogen interactions had increased transcript abundance after inoculation, including chitinase, pathogenesis-related (PR) protein, TMV resistance protein, WRKY transcription factor and jasmonate ZIM-domain protein. Four of these DEGs were further validated by quantitative real-time RT-PCR (qRT-PCR). Furthermore, a total of 73, 597 alternative splicing (AS) events were identified in the pepper leaves after CMV infection, distributed in 12, 615 genes. The intron retention of WRKY33 (Capana09g001251) might be involved in the regulation of CMV infection. Taken together, our study provides a transcriptome-wide insight into the molecular basis of resistance to CMV infection in pepper leaves and potential candidate genes for improving resistance cultivars.
Collapse
Affiliation(s)
- Chunhui Zhu
- Institute of Plant Protection, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xuefeng Li
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Jingyuan Zheng
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410125, China.
| |
Collapse
|
13
|
Li N, Yin Y, Wang F, Yao M. Construction of a high-density genetic map and identification of QTLs for cucumber mosaic virus resistance in pepper ( Capsicum annuum L.) using specific length amplified fragment sequencing (SLAF-seq). BREEDING SCIENCE 2018; 68:233-241. [PMID: 29875607 PMCID: PMC5982177 DOI: 10.1270/jsbbs.17063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/13/2017] [Indexed: 05/09/2023]
Abstract
Pepper (Capsicum) is one of the most important vegetable and spice crops. Aphid-transmitted cucumber mosaic virus (CMV) causes significant damage to pepper crops across the world. The genetic basis of CMV resistance in pepper is complex, and the mechanisms underlying resistance remain largely unknown. Here, we employed a SLAF-seq approach to generate a high-density genetic map of pepper. The map spanned 1,785.46 cM, containing 12,727 markers on 12 chromosomes, with a mean marker distance of 0.16 cM between adjacent markers. We used this map and the interval mapping (IM) and multiple QTL mapping (MQM) procedures to detect genetic regions associated with quantitative trait for CMV resistance. Three QTLs, qcmv11.1, qcmv11.2 and qcmv12.1, conferred resistance to CMV and showed trait variation of 10.2%, 19.2% and 7.3% respectively. Our results will help to develop markers linked to CMV-resistant QTLs to improve pepper resistance to CMV.
Collapse
Affiliation(s)
| | | | - Fei Wang
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences,
Wuhan 430064,
China
| | - Minghua Yao
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences,
Wuhan 430064,
China
| |
Collapse
|
14
|
Manivannan A, Kim JH, Yang EY, Ahn YK, Lee ES, Choi S, Kim DS. Next-Generation Sequencing Approaches in Genome-Wide Discovery of Single Nucleotide Polymorphism Markers Associated with Pungency and Disease Resistance in Pepper. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5646213. [PMID: 29546063 PMCID: PMC5818978 DOI: 10.1155/2018/5646213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/04/2022]
Abstract
Pepper is an economically important horticultural plant that has been widely used for its pungency and spicy taste in worldwide cuisines. Therefore, the domestication of pepper has been carried out since antiquity. Owing to meet the growing demand for pepper with high quality, organoleptic property, nutraceutical contents, and disease tolerance, genomics assisted breeding techniques can be incorporated to develop novel pepper varieties with desired traits. The application of next-generation sequencing (NGS) approaches has reformed the plant breeding technology especially in the area of molecular marker assisted breeding. The availability of genomic information aids in the deeper understanding of several molecular mechanisms behind the vital physiological processes. In addition, the NGS methods facilitate the genome-wide discovery of DNA based markers linked to key genes involved in important biological phenomenon. Among the molecular markers, single nucleotide polymorphism (SNP) indulges various benefits in comparison with other existing DNA based markers. The present review concentrates on the impact of NGS approaches in the discovery of useful SNP markers associated with pungency and disease resistance in pepper. The information provided in the current endeavor can be utilized for the betterment of pepper breeding in future.
Collapse
Affiliation(s)
- Abinaya Manivannan
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Jin-Hee Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Eun-Young Yang
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Yul-Kyun Ahn
- Department of Vegetable Crops, Korea National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Eun-Su Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Sena Choi
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| |
Collapse
|
15
|
Venkatesh J, An J, Kang WH, Jahn M, Kang BC. Fine Mapping of the Dominant Potyvirus Resistance Gene Pvr7 Reveals a Relationship with Pvr4 in Capsicum annuum. PHYTOPATHOLOGY 2018; 108:142-148. [PMID: 28945517 DOI: 10.1094/phyto-07-17-0231-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pepper mottle virus (PepMoV) is the most common potyvirus infection of pepper plants and causes significant yield losses. The Pvr7 gene from Capsicum chinense PI159236 and the Pvr4 gene from C. annuum CM334 both have been reported to confer dominant resistance to PepMoV. The Pvr7 locus conferring resistance to PepMoV in C. annuum '9093' was previously mapped to chromosome 10. To develop a high-resolution map of the Pvr7 locus in 9093, we constructed an intraspecific F2 mapping population consisting of 916 individuals by crossing PepMoV-resistant C. annuum '9093' and the PepMoV-susceptible C. annuum 'Jeju'. To delimit the Pvr7 target region, single-nucleotide polymorphism (SNP) markers derived from the Pvr4 region were used for genotyping the F2 population. Molecular mapping delimited the Pvr7 locus to a physical interval of 258 kb, which was the same region as Pvr4 on chromosome 10. Three SNP markers derived from Pvr4 mapping perfectly cosegregated with PepMoV resistance. Sequencing analyses of the Pvr7 flanking markers and the Pvr4-specific gene indicated that Pvr7 and Pvr4 are the same gene. Resistance spectrum analysis of 9093 against pepper potyviruses showed that 9093 has a resistance spectrum similar to that of cultivar CM334. These combined results demonstrate that, unlike previously thought, the dominant PepMoV resistance in 9093 could be derived from C. annuum 'CM334', and that Pvr4 and Pvr7 should be considered as the same locus.
Collapse
Affiliation(s)
- Jelli Venkatesh
- First, second, third, and fifth authors: Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; and fourth author: Department of Agronomy, College of Agriculture and Life Sciences, University of Wisconsin-Madison
| | - Jeongtak An
- First, second, third, and fifth authors: Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; and fourth author: Department of Agronomy, College of Agriculture and Life Sciences, University of Wisconsin-Madison
| | - Won-Hee Kang
- First, second, third, and fifth authors: Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; and fourth author: Department of Agronomy, College of Agriculture and Life Sciences, University of Wisconsin-Madison
| | - Molly Jahn
- First, second, third, and fifth authors: Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; and fourth author: Department of Agronomy, College of Agriculture and Life Sciences, University of Wisconsin-Madison
| | - Byoung-Cheorl Kang
- First, second, third, and fifth authors: Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; and fourth author: Department of Agronomy, College of Agriculture and Life Sciences, University of Wisconsin-Madison
| |
Collapse
|
16
|
Wang R, Du Z, Bai Z, Liang Z. The interaction between endogenous 30S ribosomal subunit protein S11 and Cucumber mosaic virus LS2b protein affects viral replication, infection and gene silencing suppressor activity. PLoS One 2017; 12:e0182459. [PMID: 28806733 PMCID: PMC5555695 DOI: 10.1371/journal.pone.0182459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/18/2017] [Indexed: 11/21/2022] Open
Abstract
Cucumber mosaic virus (CMV) is a model virus for plant-virus protein interaction and mechanism research because of its wide distribution, high-level of replication and simple genome structure. The 2b protein is a multifunctional protein encoded by CMV that suppresses RNA silencing-based antiviral defense and contributes to CMV virulence in host plants. In this report, 12 host proteins were identified as CMV LS2b binding partners using the yeast two-hybrid screen system from the Arabidopsis thaliana cDNA library. Among the host proteins, 30S ribosomal subunit protein S11 (RPS11) was selected for further studies. The interaction between LS2b and full-length RPS11 was confirmed using the yeast two-hybrid system. Bimolecular fluorescence complementation (BIFC) assays observed by confocal laser microscopy and Glutathione S-transferase (GST) pull-down assays were used to verify the interaction between endogenous NbRPS11 and viral CMVLS2b both in vivo and in vitro. TRV-based gene silencing vector was used to knockdown NbRPS11 transcription, and immunoblot analysis revealed a decline in infectious viral RNA replication and a decrease in CMV infection in RPS11 down-regulated Nicotiana benthamiana plants. Thus, the knockdown of RPS11 likely inhibited CMV replication and accumulation. The gene silencing suppressor activity of CMV2b protein was reduced by the RPS11 knockdown. This study demonstrated that the function of viral LS2b protein was remarkably affected by the interaction with host RPS11 protein.
Collapse
Affiliation(s)
- Ruilin Wang
- Northwest Agriculture and Forestry University, College of Life Science, Yangling, Shaanxi, China
- Xian Mision Bio-Tech, Xian, Shaanxi, China
| | - Zhiyou Du
- Zhejiang Sci-Tech University, College of Life Science, Hangzhou, Zhejiang, China
| | - Zhenqing Bai
- Northwest Agriculture and Forestry University, College of Life Science, Yangling, Shaanxi, China
| | - Zongsuo Liang
- Northwest Agriculture and Forestry University, College of Life Science, Yangling, Shaanxi, China
- Zhejiang Sci-Tech University, College of Life Science, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Naresh P, Krishna Reddy M, Reddy AC, Lavanya B, Lakshmana Reddy DC, Madhavi Reddy K. Isolation, characterization and genetic diversity of NBS-LRR class disease-resistant gene analogs in multiple virus resistant line of chilli (Capsicum annuum L.). 3 Biotech 2017; 7:114. [PMID: 28567626 PMCID: PMC5451354 DOI: 10.1007/s13205-017-0720-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/06/2017] [Indexed: 10/19/2022] Open
Abstract
Viruses are serious threat to chilli crop production worldwide. Resistance screening against several viruses resulted in identifying a multiple virus resistant genotype 'IHR 2451'. Degenerate primers based on the conserved regions between P-Loop and GLPL of Resistance genes (R-genes) were used to amplify nucleotide binding sites (NBS)-encoding regions from genotype 'IHR 2451'. Alignment of deduced amino acid sequences and phylogenetic analyses of isolated sequences distinguished into two groups representing toll interleukin-1 receptor (TIR) and non-TIR, and different families within the group confirming the hypotheses that dicots have both the types of NBS-LRR genes. The alignment of deduced amino acid sequences revealed conservation of subdomains P-loop, RNBS-A, kinase2, RNBS-B, and GLPL. The distinctive five RGAs showing specific conserved motifs were subjected to BLASTp and indicated high homology at deduced amino acid level with R genes identified such as Pvr9 gene for potyvirus resistance, putative late blight resistance protein homolog R1B-23 and other disease resistance genes suggesting high correlation with resistance to different pathogens. These pepper RGAs could be regarded as candidate sequences of resistant genes for marker development.
Collapse
Affiliation(s)
- P Naresh
- Central Horticultural Experiment Station (ICAR-Indian Institute of Horticultural Research Regional Station), Bhubaneswar, India
| | - M Krishna Reddy
- Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore, Karnataka, 560089, India
| | - Anand C Reddy
- Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore, Karnataka, 560089, India
| | - B Lavanya
- Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore, Karnataka, 560089, India
| | - D C Lakshmana Reddy
- Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore, Karnataka, 560089, India
| | - K Madhavi Reddy
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore, Karnataka, 560089, India.
| |
Collapse
|
18
|
Guo G, Wang S, Liu J, Pan B, Diao W, Ge W, Gao C, Snyder JC. Rapid identification of QTLs underlying resistance to Cucumber mosaic virus in pepper (Capsicum frutescens). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:41-52. [PMID: 27650192 DOI: 10.1007/s00122-016-2790-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 09/12/2016] [Indexed: 05/14/2023]
Abstract
Next-generation sequencing enabled a fast discovery of QTLs controlling CMV resistant in pepper. The gene CA02g19570 as a possible candidate gene of qCmr2.1 was identified for resistance to CMV in pepper. Cucumber mosaic virus (CMV) is one of the most important viruses infecting pepper, but the genetic basis of CMV resistance in pepper is elusive. In this study, we identified a candidate gene for CMV resistance QTL, qCmr2.1 through SLAF-seq. Segregation analysis in F2, BC1 and F2:3 populations derived from a cross between two inbred lines 'PBC688' (CMV-resistant) and 'G29' (CMV-susceptible) suggested quantitative inheritance of resistance to CMV in pepper. Genome-wide comparison of SNP profiles between the CMV-resistant and CMV-susceptible bulks constructed from an F2 population identified two QTLs, designated as qCmr2.1 on chromosome 2 and qCmr11.1 on chromosome 11 for resistance to CMV in PBC688, which were confirmed by InDel marker-based classical QTL mapping in the F2 population. As a major QTL, joint SLAF-seq and traditional QTL analysis delimited qCmr2.1 to a 330 kb genomic region. Two pepper genes, CA02g19570 and CA02g19600, were identified in this region, which are homologous with the genes LOC104113703, LOC104248995, LOC102603934 and LOC101248357, which were predicted to encode N-like protein associated with TMV-resistant in Solanum crops. Quantitative RT-PCR revealed higher expression levels of CA02g19570 in CMV resistance genotypes. The CA02g19600 did not exhibit obvious regularity in expression patterns. Higher relative expression levels of CA02g19570 in PBC688 and F1 were compared with those in G29 during days after inoculation. These results provide support for CA02g19570 as a possible candidate gene of qCmr2.1 for resistance to CMV in pepper.
Collapse
Affiliation(s)
- Guangjun Guo
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Shubin Wang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China.
| | - Jinbing Liu
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Baogui Pan
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Weiping Diao
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Wei Ge
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Changzhou Gao
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - John C Snyder
- Department of Horticulture, University of Kentucky, Lexington, KY, 40546-0091, USA
| |
Collapse
|
19
|
Kim SB, Kang WH, Huy HN, Yeom SI, An JT, Kim S, Kang MY, Kim HJ, Jo YD, Ha Y, Choi D, Kang BC. Divergent evolution of multiple virus-resistance genes from a progenitor in Capsicum spp. THE NEW PHYTOLOGIST 2017; 213:886-899. [PMID: 27612097 DOI: 10.1111/nph.14177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/31/2016] [Indexed: 05/11/2023]
Abstract
Plants have evolved hundreds of nucleotide-binding and leucine-rich domain proteins (NLRs) as potential intracellular immune receptors, but the evolutionary mechanism leading to the ability to recognize specific pathogen effectors is elusive. Here, we cloned Pvr4 (a Potyvirus resistance gene in Capsicum annuum) and Tsw (a Tomato spotted wilt virus resistance gene in Capsicum chinense) via a genome-based approach using independent segregating populations. The genes both encode typical NLRs and are located at the same locus on pepper chromosome 10. Despite the fact that these two genes recognize completely different viral effectors, the genomic structures and coding sequences of the two genes are strikingly similar. Phylogenetic studies revealed that these two immune receptors diverged from a progenitor gene of a common ancestor. Our results suggest that sequence variations caused by gene duplication and neofunctionalization may underlie the evolution of the ability to specifically recognize different effectors. These findings thereby provide insight into the divergent evolution of plant immune receptors.
Collapse
Affiliation(s)
- Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Won-Hee Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
- Department of Horticulture, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 660-701, Korea
| | - Hoang Ngoc Huy
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Seon-In Yeom
- Department of Horticulture, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 660-701, Korea
| | - Jeong-Tak An
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Min-Young Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Hyun Jung Kim
- Department of Eco-Friendly Horticulture, Cheonan Yonam College, Cheonan, 331-709, Korea
| | - Yeong Deuk Jo
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
- Korea Atomic Energy Research Institute, Jeongeup, 580-185, Korea
| | - Yeaseong Ha
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| |
Collapse
|
20
|
Kang WH, Kim S, Lee HA, Choi D, Yeom SI. Genome-wide analysis of Dof transcription factors reveals functional characteristics during development and response to biotic stresses in pepper. Sci Rep 2016; 6:33332. [PMID: 27653666 PMCID: PMC5032028 DOI: 10.1038/srep33332] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/25/2016] [Indexed: 11/10/2022] Open
Abstract
The DNA-binding with one zinc finger proteins (Dofs) are a plant-specific family of transcription factors. The Dofs are involved in a variety of biological processes such as phytohormone production, seed development, and environmental adaptation. Dofs have been previously identified in several plants, but not in pepper. We identified 33 putative Dof genes in pepper (CaDofs). To gain an overview of the CaDofs, we analyzed phylogenetic relationships, protein motifs, and evolutionary history. We divided the 33 CaDofs, containing 25 motifs, into four major groups distributed on eight chromosomes. We discovered an expansion of the CaDofs dated to a recent duplication event. Segmental duplication that occurred before the speciation of the Solanaceae lineages was predominant among the CaDofs. The global gene-expression profiling of the CaDofs by RNA-seq analysis showed distinct temporal and pathogen-specific variation during development and response to biotic stresses (two TMV strains, PepMoV, and Phytophthora capsici), suggesting functional diversity among the CaDofs. These results will provide the useful clues into the responses of Dofs in biotic stresses and promote a better understanding of their multiple function in pepper and other species.
Collapse
Affiliation(s)
- Won-Hee Kang
- Department of Agricultural Plant Science, Institute of Agriculture &Life Science, Gyeongsang National University, 660-701, South Korea
| | - Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Institute of Agriculture &Life Science, Gyeongsang National University, 660-701, South Korea
| |
Collapse
|
21
|
Isolation and Characterization of Pepper Genes Interacting with the CMV-P1 Helicase Domain. PLoS One 2016; 11:e0146320. [PMID: 26751216 PMCID: PMC4709182 DOI: 10.1371/journal.pone.0146320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/14/2015] [Indexed: 01/04/2023] Open
Abstract
Cucumber mosaic virus (CMV) is a destructive pathogen affecting Capsicum annuum (pepper) production. The pepper Cmr1 gene confers resistance to most CMV strains, but is overcome by CMV-P1 in a process dependent on the CMV-P1 RNA1 helicase domain (P1 helicase). Here, to identify host factors involved in CMV-P1 infection in pepper, a yeast two-hybrid library derived from a C. annuum ‘Bukang’ cDNA library was screened, producing a total of 76 potential clones interacting with the P1 helicase. Beta-galactosidase filter lift assay, PCR screening, and sequencing analysis narrowed the candidates to 10 genes putatively involved in virus infection. The candidate host genes were silenced in Nicotiana benthamiana plants that were then inoculated with CMV-P1 tagged with the green fluorescent protein (GFP). Plants silenced for seven of the genes showed development comparable to N. benthamiana wild type, whereas plants silenced for the other three genes showed developmental defects including stunting and severe distortion. Silencing formate dehydrogenase and calreticulin-3 precursor led to reduced virus accumulation. Formate dehydrogenase-silenced plants showed local infection in inoculated leaves, but not in upper (systemic) leaves. In the calreticulin-3 precursor-silenced plants, infection was not observed in either the inoculated or the upper leaves. Our results demonstrate that formate dehydrogenase and calreticulin-3 precursor are required for CMV-P1 infection.
Collapse
|
22
|
de Ronde D, Butterbach P, Kormelink R. Dominant resistance against plant viruses. FRONTIERS IN PLANT SCIENCE 2014; 5:307. [PMID: 25018765 PMCID: PMC4073217 DOI: 10.3389/fpls.2014.00307] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/10/2014] [Indexed: 05/17/2023]
Abstract
To establish a successful infection plant viruses have to overcome a defense system composed of several layers. This review will overview the various strategies plants employ to combat viral infections with main emphasis on the current status of single dominant resistance (R) genes identified against plant viruses and the corresponding avirulence (Avr) genes identified so far. The most common models to explain the mode of action of dominant R genes will be presented. Finally, in brief the hypersensitive response (HR) and extreme resistance (ER), and the functional and structural similarity of R genes to sensors of innate immunity in mammalian cell systems will be described.
Collapse
Affiliation(s)
- Dryas de Ronde
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| | - Patrick Butterbach
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| |
Collapse
|
23
|
Abstract
The number of virus species infecting pepper (Capsicum spp.) crops and their incidences has increased considerably over the past 30 years, particularly in tropical and subtropical pepper production systems. This is probably due to a combination of factors, including the expansion and intensification of pepper cultivation in these regions, the increased volume and speed of global trade of fresh produce (including peppers) carrying viruses and vectors to new locations, and perhaps climate change expanding the geographic range suitable for the viruses and vectors. With the increased incidences of diverse virus species comes increased incidences of coinfection with two or more virus species in the same plant. There is then greater chance of synergistic interactions between virus species, increasing symptom severity and weakening host resistance, as well as the opportunity for genetic recombination and component exchange and a possible increase in aggressiveness, virulence, and transmissibility. The main virus groups infecting peppers are transmitted by aphids, whiteflies, or thrips, and a feature of many populations of these vector groups is that they can develop resistance to some of the commonly used insecticides relatively quickly. This, coupled with the increasing concern over the impact of over- or misuse of insecticides on the environment, growers, and consumers, means that there should be less reliance on insecticides to control the vectors of viruses infecting pepper crops. To improve the durability of pepper crop protection measures, there should be a shift away from the broadscale use of insecticides and the use of single, major gene resistance to viruses. Instead, integrated and pragmatic virus control measures should be sought that combine (1) cultural practices that reduce sources of virus inoculum and decrease the rate of spread of viruliferous vectors into the pepper crop, (2) synthetic insecticides, which should be used judiciously and only when the plants are young and most susceptible to infection, (3) appropriate natural products and biocontrol agents to induce resistance in the plants, affect the behavior of the vector insects, or augment the local populations of parasites or predators of the virus vectors, and (4) polygenic resistances against viruses and vector insects with pyramided single-gene virus resistances to improve resistance durability.
Collapse
|
24
|
Application of the ASLP technology to a novel platform for rapid and noise-free multiplexed SNP genotyping. Biosens Bioelectron 2013; 54:687-94. [PMID: 24362043 DOI: 10.1016/j.bios.2013.10.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/30/2013] [Accepted: 10/30/2013] [Indexed: 11/30/2022]
Abstract
A novel multiplexing method, which relies on universal amplification of separated ligation-dependent probes (ASLP), has been developed to genotype single-nucleotide polymorphisms (SNPs). The ASLP technique employs two allele-specific oligonucleotides (ASO), modified with universal forward primer sequences at the 5'-end and a common locus-specific oligonucleotide (LSO) extended with a universal separation (US) sequence at the 3'-end. In the process, allele-specific ligation first takes place when target genomic DNA is hybridized by perfectly matching the ASO together with the LSO. A separation probe, which consists of a universal reverse primer sequence labeled with biotin at the 5'-end and complementary sequence of US at the 3'-end, is then applied to the resulting ligation product. During the extension reaction of the separation probe, the ligated probes dissociate from target genomic DNA in the form of a double-stranded DNA and are separated from the reaction mixture, which includes genomic DNA and unligated probes, by simply using streptavidin-coated magnetic beads. PCR amplification of the separated ligation products is then carried out by using universal primers and the PCR products are hybridized on a DNA microarray using the RecA protein. The advantageous features of the new method were demonstrated by using it to genotype 15 SNP markers for cultivar identification of pepper in a convenient and correct manner.
Collapse
|
25
|
Kang WH, Seo JK, Chung BN, Kim KH, Kang BC. Helicase domain encoded by Cucumber mosaic virus RNA1 determines systemic infection of Cmr1 in pepper. PLoS One 2012; 7:e43136. [PMID: 22905216 PMCID: PMC3419664 DOI: 10.1371/journal.pone.0043136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/17/2012] [Indexed: 11/24/2022] Open
Abstract
The Cmr1 gene in peppers confers resistance to Cucumber mosaic virus isolate-P0 (CMV-P0). Cmr1 restricts the systemic spread of CMV strain-Fny (CMV-Fny), whereas this gene cannot block the spread of CMV isolate-P1 (CMV-P1) to the upper leaves, resulting in systemic infection. To identify the virulence determinant of CMV-P1, six reassortant viruses and six chimeric viruses derived from CMV-Fny and CMV-P1 cDNA clones were used. Our results demonstrate that the C-terminus of the helicase domain encoded by CMV-P1 RNA1 determines susceptibility to systemic infection, and that the helicase domain contains six different amino acid substitutions between CMV-Fny and CMV-P1(.) To identify the key amino acids of the helicase domain determining systemic infection with CMV-P1, we then constructed amino acid substitution mutants. Of the mutants tested, amino acid residues at positions 865, 896, 957, and 980 in the 1a protein sequence of CMV-P1 affected the systemic infection. Virus localization studies with GFP-tagged CMV clones and in situ localization of virus RNA revealed that these four amino acid residues together form the movement determinant for CMV-P1 movement from the epidermal cell layer to mesophyll cell layers. Quantitative real-time PCR revealed that CMV-P1 and a chimeric virus with four amino acid residues of CMV-P1 accumulated more genomic RNA in inoculated leaves than did CMV-Fny, indicating that those four amino acids are also involved in virus replication. These results demonstrate that the C-terminal region of the helicase domain is responsible for systemic infection by controlling virus replication and cell-to-cell movement. Whereas four amino acids are responsible for acquiring virulence in CMV-Fny, six amino acid (positions at 865, 896, 901, 957, 980 and 993) substitutions in CMV-P1 were required for complete loss of virulence in 'Bukang'.
Collapse
Affiliation(s)
- Won-Hee Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jang-Kyun Seo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Bong Nam Chung
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon, Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
26
|
Abstract
Cucumber mosaic virus (CMV) is an important virus because of its agricultural impact in the Mediterranean Basin and worldwide, and also as a model for understanding plant-virus interactions. This review focuses on those areas where most progress has been made over the past decade in our understanding of CMV. Clearly, a deep understanding of the role of the recently described CMV 2b gene in suppression of host RNA silencing and viral virulence is the most important discovery. These findings have had an impact well beyond the virus itself, as the 2b gene is an important tool in the studies of eukaryotic gene regulation. Protein 2b was shown to be involved in most of the steps of the virus cycle and to interfere with several basal host defenses. Progress has also been made concerning the mechanisms of virus replication and movement. However, only a few host proteins that interact with viral proteins have been identified, making this an area of research where major efforts are still needed. Another area where major advances have been made is CMV population genetics, where contrasting results were obtained. On the one hand, CMV was shown to be prone to recombination and to show high genetic diversity based on sequence data of different isolates. On the other hand, populations did not exhibit high genetic variability either within plants, or even in a field and the nearby wild plants. The situation was partially clarified with the finding that severe bottlenecks occur during both virus movement within a plant and transmission between plants. Finally, novel studies were undertaken to elucidate mechanisms leading to selection in virus population, according to the host or its environment, opening a new research area in plant-virus coevolution.
Collapse
|
27
|
Abstract
Compared to other vegetable crops, the major viral constraints affecting pepper crops in the Mediterranean basin have been remarkably stable for the past 20 years. Among these viruses, the most prevalent ones are the seed-transmitted tobamoviruses; the aphid-transmitted Potato virus Y and Tobacco etch virus of the genus Potyvirus, and Cucumber mosaic virus member of the genus Cucumovirus; and thrips-transmitted tospoviruses. The last major viral emergence concerns the tospovirus Tomato spotted wilt virus (TSWV), which has undergone major outbreaks since the end of the 1980s and the worldwide dispersal of the thrips vector Frankliniella occidentalis from the western part of the USA. TSWV outbreaks in the Mediterranean area might have been the result of both viral introductions from Northern America and local reemergence of indigenous TSWV isolates. In addition to introductions of new viruses, resistance breakdowns constitute the second case of viral emergences. Notably, the pepper resistance gene Tsw toward TSWV has broken down a few years after its deployment in several Mediterranean countries while there has been an expansion of L³-resistance breaking pepper mild mottle tobamovirus isolates. Beyond the agronomical and economical concerns induced by the breakdowns of virus resistance genes in pepper, they also constitute original models to understand plant-virus interactions and (co)evolution.
Collapse
Affiliation(s)
- Benoît Moury
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, Montfavet, France
| | | |
Collapse
|
28
|
Tan X, Zhang D, Wintgens C, Willingmann P, Adam G, Heinze C. A Comparative Testing of <i>Cucumber mosaic virus</i> (CMV)-Based Constructs to Generate Virus Resistant Plants. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ajps.2012.34055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Ohnishi S, Echizenya I, Yoshimoto E, Boumin K, Inukai T, Masuta C. Multigenic system controlling viral systemic infection determined by the interactions between Cucumber mosaic virus genes and quantitative trait loci of soybean cultivars. PHYTOPATHOLOGY 2011; 101:575-82. [PMID: 21171888 DOI: 10.1094/phyto-06-10-0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Soybean 'Harosoy' is resistant to Cucumber mosaic virus soybean strain C (CMV-SC) and susceptible to CMV-S strain D (CMV-SD). Using enzyme-linked immunosorbent assay and Northern hybridization, we characterized the Harosoy resistance and found that CMV-SC did not spread systemically but was restricted to the inoculated leaves in Harosoy. Harosoy resistance was not controlled by either a dominant or recessive single gene. To dissect this system controlling long-distance movement of CMV in soybean, we constructed infectious cDNA clones of CMV-SC and CMV-SD. Using these constructs and the chimeric RNAs, we demonstrated that two viral components were required for systemic infection by the virus. The region including the entire 2b gene and the 5' region of RNA3 (mainly the 5' untranslated region) together were required. By quantitative trait locus (QTL) analysis using an F(2) population and the F(3) families derived from Harosoy and susceptible 'Nemashirazu', we also showed that at least three QTLs affected systemic infection of CMV in soybean. Our study on Harosoy resistance to CMV-SC revealed an interesting mechanism, in which multiple host and viral genes coordinately controlled viral systemic infection.
Collapse
|