1
|
Safiullina AK, Ernazarova DK, Turaev OS, Rafieva FU, Ernazarova ZA, Arslanova SK, Toshpulatov AK, Oripova BB, Kudratova MK, Khalikov KK, Iskandarov AA, Khidirov MT, Yu JZ, Kushanov FN. Genetic Diversity and Subspecific Races of Upland Cotton ( Gossypium hirsutum L.). Genes (Basel) 2024; 15:1533. [PMID: 39766800 PMCID: PMC11675639 DOI: 10.3390/genes15121533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The classification and phylogenetic relationships of Gossypium hirsutum L. landraces, despite their proximity to southern Mexico, remain unresolved. This study aimed to clarify these relationships using SSR markers and hybridization methods, focusing on subspecies and race differentiation within G. hirsutum L. Methods: Seventy polymorphic SSR markers (out of 177 tested) were used to analyze 141 alleles and calculate genetic distances among accessions. Phylogenetic relationships were determined using MEGA software (version 11.0.13) and visualized in a phylogenetic tree. ANOVA in NCSS 12 was used for statistical analysis. Over 1000 inter-race crosses were conducted to assess boll-setting rates. Results: Distinct phylogenetic patterns were identified between G. hirsutum subspecies and races, correlating with boll-setting rates. Latifolium, richmondii, and morilli showed no significant increase in boll-setting rates in reciprocal crosses. Cultivars Omad and Bakht, as paternal parents, yielded higher boll-setting rates. Religiosum and yucatanense displayed high boll- and seed-setting rates as maternal parents but low rates as paternal parents. Additionally, phylogenetic analysis revealed a close relationship between cultivars 'Omad' and 'Bakht' with G. hirsutum race richmondii, indicating their close evolutionary relationship. Conclusions: Reciprocal differentiation characteristics of G. hirsutum subspecies and races, particularly religiosum and yucatanense, should be considered during hybridization for genetic and breeding studies. Understanding the phylogenetic relationships among G. hirsutum taxa is crucial for exploring the genetic diversity of this economically important species.
Collapse
Affiliation(s)
- Asiya K. Safiullina
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Dilrabo K. Ernazarova
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Ozod S. Turaev
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Research Institute of Plant Genetic Resources, National Center for Knowledge and Innovation in Agriculture, Tashkent 100180, Uzbekistan
| | - Feruza U. Rafieva
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Ziraatkhan A. Ernazarova
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Sevara K. Arslanova
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Abdulqahhor Kh. Toshpulatov
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Barno B. Oripova
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Mukhlisa K. Kudratova
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Kuvandik K. Khalikov
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Abdulloh A. Iskandarov
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - Mukhammad T. Khidirov
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
| | - John Z. Yu
- United States Department of Agriculture (USDA)—Agricultural Research Service (ARS), Southern Plains Agricultural Research Center, College Station, TX 77845, USA;
| | - Fakhriddin N. Kushanov
- Institute of Genetics and Plant Experimental Biology Academy of Sciences of Uzbekistan, Tashkent 111208, Uzbekistan
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| |
Collapse
|
2
|
Feng C, Stetina SR, Erpelding JE. Transcriptome Analysis of Resistant Cotton Germplasm Responding to Reniform Nematodes. PLANTS (BASEL, SWITZERLAND) 2024; 13:958. [PMID: 38611488 PMCID: PMC11013486 DOI: 10.3390/plants13070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024]
Abstract
Reniform nematode (Rotylenchulus reniformis) is an important microparasite for Upland cotton (Gossypium hirsutum L.) production. Growing resistant cultivars is the most economical management method, but only a few G. barbadense genotypes and some diploid Gossypium species confer high levels of resistance. This study conducted a transcriptome analysis of resistant genotypes to identify genes involved in host plant defense. Seedlings of G. arboreum accessions PI 529728 (A2-100) and PI 615699 (A2-190), and G. barbadense genotypes PI 608139 (GB 713) and PI 163608 (TX 110), were inoculated with the reniform nematode population MSRR04 and root samples were collected on the fifth (D5) and ninth (D9) day after inoculation. Differentially expressed genes (DEGs) were identified by comparing root transcriptomes from inoculated plants with those from non-inoculated plants. Accessions A2-100 and A2-190 showed 52 and 29 DEGs on D5, respectively, with 14 DEGs in common, and 18 DEGs for A2-100 and 11 DEGs for A2-190 on chromosome 5. On D9, four DEGs were found in A2-100 and two DEGs in A2-190. For GB 713, 52 and 43 DEGs were found, and for TX 110, 29 and 117 DEGs were observed on D5 and D9, respectively. Six DEGs were common at the two sampling times for these genotypes. Some DEGs were identified as Meloidogyne-induced cotton (MIC) 3 and 4, resistance gene analogs, or receptor-like proteins. Other DEGs have potential roles in plant defense, such as peroxidases, programmed cell death, pathogenesis related proteins, and systemic acquired resistance. Further research on these DEGs will aid in understanding the mechanisms of resistance to explore new applications for the development of resistant cultivars.
Collapse
Affiliation(s)
- Chunda Feng
- USDA Agricultural Research Service, Crop Genetics Research Unit, Stoneville, MS 38776, USA
| | - Salliana R Stetina
- USDA Agricultural Research Service, Crop Genetics Research Unit, Stoneville, MS 38776, USA
| | - John E Erpelding
- USDA Agricultural Research Service, Crop Genetics Research Unit, Stoneville, MS 38776, USA
| |
Collapse
|
3
|
Khidirov MT, Ernazarova DK, Rafieva FU, Ernazarova ZA, Toshpulatov AK, Umarov RF, Kholova MD, Oripova BB, Kudratova MK, Gapparov BM, Khidirova MM, Komilov DJ, Turaev OS, Udall JA, Yu JZ, Kushanov FN. Genomic and Cytogenetic Analysis of Synthetic Polyploids between Diploid and Tetraploid Cotton ( Gossypium) Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:4184. [PMID: 38140511 PMCID: PMC10748080 DOI: 10.3390/plants12244184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Cotton (Gossypium spp.) is the most important natural fiber source in the world. The genetic potential of cotton can be successfully and efficiently exploited by identifying and solving the complex fundamental problems of systematics, evolution, and phylogeny, based on interspecific hybridization of cotton. This study describes the results of interspecific hybridization of G. herbaceum L. (A1-genome) and G. mustelinum Miers ex Watt (AD4-genome) species, obtaining fertile hybrids through synthetic polyploidization of otherwise sterile triploid forms with colchicine (C22H25NO6) treatment. The fertile F1C hybrids were produced from five different cross combinations: (1) G. herbaceum subsp. frutescens × G. mustelinum; (2) G. herbaceum subsp. pseudoarboreum × G. mustelinum; (3) G. herbaceum subsp. pseudoarboreum f. harga × G. mustelinum; (4) G. herbaceum subsp. africanum × G. mustelinum; (5) G. herbaceum subsp. euherbaceum (variety A-833) × G. mustelinum. Cytogenetic analysis discovered normal conjugation of bivalent chromosomes in addition to univalent, open, and closed ring-shaped quadrivalent chromosomes at the stage of metaphase I in the F1C and F2C hybrids. The setting of hybrid bolls obtained as a result of these crosses ranged from 13.8-92.2%, the fertility of seeds in hybrid bolls from 9.7-16.3%, and the pollen viability rates from 36.6-63.8%. Two transgressive plants with long fiber of 35.1-37.0 mm and one plant with extra-long fiber of 39.1-41.0 mm were identified in the F2C progeny of G. herbaceum subsp. frutescens × G. mustelinum cross. Phylogenetic analysis with 72 SSR markers that detect genomic changes showed that tetraploid hybrids derived from the G. herbaceum × G. mustelinum were closer to the species G. mustelinum. The G. herbaceum subsp. frutescens was closer to the cultivated form, and its subsp. africanum was closer to the wild form. New knowledge of the interspecific hybridization and synthetic polyploidization was developed for understanding the genetic mechanisms of the evolution of tetraploid cotton during speciation. The synthetic polyploids of cotton obtained in this study would provide beneficial genes for developing new cotton varieties of the G. hirsutum species, with high-quality cotton fiber and strong tolerance to biotic or abiotic stress. In particular, the introduction of these polyploids to conventional and molecular breeding can serve as a bridge of transferring valuable genes related to high-quality fiber and stress tolerance from different cotton species to the new cultivars.
Collapse
Affiliation(s)
- Mukhammad T. Khidirov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Dilrabo K. Ernazarova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan;
| | - Feruza U. Rafieva
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Ziraatkhan A. Ernazarova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Abdulqahhor Kh. Toshpulatov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Ramziddin F. Umarov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Madina D. Kholova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Barno B. Oripova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Mukhlisa K. Kudratova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | - Bunyod M. Gapparov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
| | | | - Doniyor J. Komilov
- Department of Biology, Namangan State University, Uychi Street-316, Namangan 160100, Uzbekistan;
| | - Ozod S. Turaev
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan;
| | - Joshua A. Udall
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA;
| | - John Z. Yu
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA;
| | - Fakhriddin N. Kushanov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 111226, Uzbekistan; (M.T.K.); (D.K.E.); (F.U.R.); (Z.A.E.); (A.K.T.); (R.F.U.); (M.D.K.); (B.B.O.); (M.K.K.); (B.M.G.); (O.S.T.)
- Department of Genetics, National University of Uzbekistan, Tashkent 100174, Uzbekistan;
- Department of Biology, Namangan State University, Uychi Street-316, Namangan 160100, Uzbekistan;
| |
Collapse
|
4
|
Soto-Ramos C, Wheeler TA, Shockey J, Monclova-Santana C. Rotation of Cotton ( Gossypium hirsutum) Cultivars and Fallow on Yield and Rotylenchulus reniformis. J Nematol 2023; 55:20230024. [PMID: 37288386 PMCID: PMC10243494 DOI: 10.2478/jofnem-2023-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 06/09/2023] Open
Abstract
A three-year rotation of cotton (Gossypium hirsutum) cultivars either resistant (R) or susceptible (S) to Rotylenchulus reniformis and fallow (F) was examined for effect on cotton yield and nematode density. In year 1, 2, and 3, the resistant cultivar (DP 2143NR B3XF) yielded 78, 77, and 113% higher than the susceptible cultivar (DP 2044 B3XF). Fallow in year 1 followed by S in year 2 (F1S2) improved yield in year 2 by 24% compared with S1S2, but not as much as R1S2 (41% yield increase over S1S2). One year of fallow followed by R (F1R2) had lower yield in year 2 (11% reduction) than R1R2. The highest yield after three years of these rotations occurred with R1R2R3, followed by R1S2R3 (17% less yield) and F1F2S3 (35% less yield). Rotylenchulus reniformis density in soil averaged 57, 65, and 70% lower (year 1, 2, 3, respectively) in R1R2R3 compared with S1S2S3. In years 1 and 2, LOG10 transformed nematode density (LREN) was lower in F1, and F1F2, than for all other combinations. In year 3, the lowest LREN were associated with R1R2R3, F1S2F3, and F1F2S3. The highest LREN were associated with F1R2S3, F1S2S3, S1S2S3, R1R2S3, and R1S2S3. The combination of higher yield and lower nematode density will be a strong incentive for producers to use the R. reniformis resistant cultivars continuously.
Collapse
Affiliation(s)
| | | | | | - Cecilia Monclova-Santana
- Texas A&M AgriLife Extension Service, Lubbock, TX79403, currently atUnited States Department of Agriculture, 1400 Independence Ave SW, Washington, DC22314
| |
Collapse
|
5
|
Chen Y, Gao Y, Chen P, Zhou J, Zhang C, Song Z, Huo X, Du Z, Gong J, Zhao C, Wang S, Zhang J, Wang F, Zhang J. Genome-wide association study reveals novel quantitative trait loci and candidate genes of lint percentage in upland cotton based on the CottonSNP80K array. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2279-2295. [PMID: 35570221 DOI: 10.1007/s00122-022-04111-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Thirty-four SNPs corresponding with 22 QTLs for lint percentage, including 13 novel QTLs, was detected via GWAS. Two candidate genes underlying this trait were also identified. Cotton (Gossypium spp.) is an important natural textile fiber and oilseed crop cultivated worldwide. Lint percentage (LP, %) is one of the important yield components, and increasing LP is a core goal of cotton breeding improvement. However, the genetic and molecular mechanisms underlying LP in upland cotton remain unclear. Here, we performed a genome-wide association study (GWAS) for LP based on 254 upland cotton accessions in four environments as well as the best linear unbiased predictors using the high-density CottonSNP80K array. In total, 41,413 high-quality single-nucleotide polymorphisms (SNPs) were screened, and 34 SNPs within 22 quantitative trait loci (QTLs) were significantly associated with LP. In total, 175 candidate genes were identified from two major genomic loci (GR1 and GR2), and 50 hub genes were identified through GO enrichment and weighted gene co-expression network analysis. Two candidate genes (Gh_D01G0162 and Gh_D07G0463), which may participate in early fiber development to affect the number of fiber protrusions and LP, were also identified. Their genetic variation and expression were verified by linkage disequilibrium blocks, haplotypes, and quantitative real-time polymerase chain reaction, respectively. The weighted gene interaction network analysis showed that the expression of Gh_D07G0463 was significantly correlated with that of Gh_D01G0162. These identified SNPs, QTLs and candidate genes provide important insights into the genetic and molecular mechanisms underlying variations in LP and serve as a foundation for LP improvement via marker-assisted breeding.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yang Gao
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengyun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Juan Zhou
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chuanyun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Zhangqiang Song
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xuehan Huo
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Zhaohai Du
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chengjie Zhao
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shengli Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jingxia Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Furong Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
6
|
Wang C, Ulloa M, Nichols RL, Roberts PA. Sequence Composition of Bacterial Chromosome Clones in a Transgressive Root-Knot Nematode Resistance Chromosome Region in Tetraploid Cotton. FRONTIERS IN PLANT SCIENCE 2020; 11:574486. [PMID: 33381129 PMCID: PMC7767830 DOI: 10.3389/fpls.2020.574486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/15/2020] [Indexed: 05/08/2023]
Abstract
Plants evolve innate immunity including resistance genes to defend against pest and pathogen attack. Our previous studies in cotton (Gossypium spp.) revealed that one telomeric segment on chromosome (Chr) 11 in G. hirsutum cv. Acala NemX (rkn1 locus) contributed to transgressive resistance to the plant parasitic nematode Meloidogyne incognita, but the highly homologous segment on homoeologous Chr 21 had no resistance contribution. To better understand the resistance mechanism, a bacterial chromosome (BAC) library of Acala N901 (Acala NemX resistance source) was used to select, sequence, and analyze BAC clones associated with SSR markers in the complex rkn1 resistance region. Sequence alignment with the susceptible G. hirsutum cv. TM-1 genome indicated that 23 BACs mapped to TM-1-Chr11 and 18 BACs mapped to TM-1-Chr 21. Genetic and physical mapping confirmed less BAC sequence (53-84%) mapped with the TM-1 genome in the rkn1 region on Chr 11 than to the homologous region (>89%) on Chr 21. A 3.1-cM genetic distance between the rkn1 flanking markers CIR316 and CIR069 was mapped in a Pima S-7 × Acala NemX RIL population with a physical distance ∼1 Mbp in TM-1. NCBI Blast and Gene annotation indicated that both Chr 11 and Chr 21 harbor resistance gene-rich cluster regions, but more multiple homologous copies of Resistance (R) proteins and of adjacent transposable elements (TE) are present within Chr 11 than within Chr 21. (CC)-NB-LRR type R proteins were found in the rkn1 region close to CIR316, and (TIR)-NB-LRR type R proteins were identified in another resistance rich region 10 cM from CIR 316 (∼3.1 Mbp in the TM-1 genome). The identified unique insertion/deletion in NB-ARC domain, different copies of LRR domain, multiple copies or duplication of R proteins, adjacent protein kinases, or TE in the rkn1 region on Chr 11 might be major factors contributing to complex recombination and transgressive resistance.
Collapse
Affiliation(s)
- Congli Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| | - Mauricio Ulloa
- United States Department of Agriculture-Agricultural Research Service, Plains Area, Cropping Systems Research Laboratory, Plant Stress and Germplasm Development Research, Lubbock, TX, United States
| | | | - Philip A. Roberts
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Philip A. Roberts,
| |
Collapse
|
7
|
Kumar P, Khanal S, Da Silva M, Singh R, Davis RF, Nichols RL, Chee PW. Transcriptome analysis of a nematode resistant and susceptible upland cotton line at two critical stages of Meloidogyne incognita infection and development. PLoS One 2019; 14:e0221328. [PMID: 31504059 PMCID: PMC6736245 DOI: 10.1371/journal.pone.0221328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/06/2019] [Indexed: 11/18/2022] Open
Abstract
Host plant resistance is the most practical approach to control the Southern root-knot nematode (Meloidogyne incognita; RKN), which has emerged as one of the most serious economic pests of Upland cotton (Gossypium hirsutum L.). Previous QTL analyses have identified a resistance locus on chromosome 11 (qMi-C11) affecting galling and another locus on chromosome-14 (qMi-C14) affecting egg production. Although these two QTL regions were fine mapped and candidate genes identified, expression profiling of genes would assist in further narrowing the list of candidate genes in the QTL regions. We applied the comparative transcriptomic approach to compare expression profiles of genes between RKN susceptible and resistance genotypes at an early stage of RKN development that coincides with the establishment of a feeding site and at the late stage of RKN development that coincides with RKN egg production. Sequencing of cDNA libraries produced over 315 million reads of which 240 million reads (76%) were mapped on to the Gossypium hirsutum genome. A total of 3,789 differentially expressed genes (DEGs) were identified which were further grouped into four clusters based on their expression profiles. A large number of DEGs were found to be down regulated in the susceptible genotype at the late stage of RKN development whereas several genes were up regulated in the resistant genotype. Key enriched categories included transcription factor activity, defense response, response to phyto-hormones, cell wall organization, and protein serine/threonine kinase activity. Our results also show that the DEGs in the resistant genotype at qMi-C11 and qMi-C14 loci displayed higher expression of defense response, detoxification and callose deposition genes, than the DEGs in the susceptible genotype.
Collapse
Affiliation(s)
- Pawan Kumar
- Dept. of Crop and Soil Sciences and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States of America
| | - Sameer Khanal
- Dept. of Crop and Soil Sciences and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States of America
| | - Mychele Da Silva
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States of America
| | - Rippy Singh
- Dept. of Crop and Soil Sciences and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States of America
| | - Richard F. Davis
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States of America
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA, United States of America
- * E-mail: (RFD);(PWC)
| | | | - Peng W. Chee
- Dept. of Crop and Soil Sciences and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States of America
- * E-mail: (RFD);(PWC)
| |
Collapse
|
8
|
Li R, Erpelding JE, Stetina SR. Genome-wide association study of Gossypium arboreum resistance to reniform nematode. BMC Genet 2018; 19:52. [PMID: 30075700 PMCID: PMC6091029 DOI: 10.1186/s12863-018-0662-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 07/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reniform nematode (Rotylenchulus reniformis) has emerged as one of the most destructive root pathogens of upland cotton (Gossypium hirsutum) in the United States. Management of R. reniformis has been hindered by the lack of resistant G. hirsutum cultivars; however, resistance has been frequently identified in germplasm accessions from the G. arboreum collection. To determine the genetic basis of reniform nematode resistance, a genome-wide association study (GWAS) was performed using 246 G. arboreum germplasm accessions that were genotyped with 7220 single nucleotide polymorphic (SNP) sequence markers generated from genotyping-by-sequencing. RESULTS Fifteen SNPs representing 12 genomic loci distributed over eight chromosomes showed association with reniform nematode resistance. For 14 SNPs, major alleles were shown to be associated with resistance. From the 15 significantly associated SNPs, 146 genes containing or physically close to these loci were identified as putative reniform nematode resistance candidate genes. These genes are involved in a broad range of biological pathways, including plant innate immunity, transcriptional regulation, and redox reaction that may have a role in the expression of resistance. Eighteen of these genes corresponded to differentially expressed genes identified from G. hirsutum in response to reniform nematode infection. CONCLUSIONS The identification of multiple genomic loci associated with reniform nematode resistance would indicate that the G. arboreum collection is a significant resource of novel resistance genes. The significantly associated markers identified from this GWAS can be used for the development of molecular tools for breeding improved reniform nematode resistant upland cotton with resistance introgressed from G. arboreum. Additionally, a greater understanding of the molecular mechanisms of reniform nematode resistance can be determined through genetic structure and functional analyses of candidate genes, which will aid in the pyramiding of multiple resistance genes.
Collapse
Affiliation(s)
- Ruijuan Li
- Present address: Department of Plant Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| | - John E. Erpelding
- USDA-ARS, Crop Genetics Research Unit, 141 Experiment Station Road, PO Box 345, Stoneville, MS 38776 USA
| | - Salliana R. Stetina
- USDA-ARS, Crop Genetics Research Unit, 141 Experiment Station Road, PO Box 345, Stoneville, MS 38776 USA
| |
Collapse
|
9
|
Wang C, Ulloa M, Duong T, Roberts PA. Quantitative Trait Loci Mapping of Multiple Independent Loci for Resistance to Fusarium oxysporum f. sp. vasinfectum Races 1 and 4 in an Interspecific Cotton Population. PHYTOPATHOLOGY 2018; 108:759-767. [PMID: 29280416 DOI: 10.1094/phyto-06-17-0208-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Fusarium wilt, caused by the soilborne fungal pathogen Fusarium oxysporum f. sp. vasinfectum, is a vascular disease of cotton (Gossypium spp.). F. oxysporum f. sp. vasinfectum race 1 (FOV1) causes major plant injury and yield loss in G. hirsutum cultivars with coinfection with root-knot nematode (Meloidogyne incognita), while F. oxysporum f. sp. vasinfectum race 4 (FOV4) causes plant damage without nematode coinfection in G. hirsutum and in G. barbadense cultivars. Quantitative trait loci (QTL) analysis of the interspecific cross G. barbadense Pima S-7 × G. hirsutum Acala NemX revealed separate multiple loci determining resistance to FOV1 and FOV4, confirming that race specificity occurs in F. oxysporum f. sp. vasinfectum. Based on the area under the disease progress stairs, six major QTLs on chromosomes (Chrs) 1, 2, 12, 15 (2), and 21 contributing 7 to 15% to FOV1 resistance and two major QTLs on Chrs 14 and 17 contributing 12 to 33% to FOV4 resistance were identified. Minor-effect QTLs contributing to resistance to both FOV1 and FOV4 were also identified. These results define and establish a pathosystem of race-specific resistance under polygenic control. This research also validates the importance of previously reported markers and chromosome regions and adds new information for the location of F. oxysporum f. sp. vasinfectum resistance genes. Some F8 recombinant inbred lines have resistance to both FOV1 and FOV4 and also to root-knot nematode, providing multiple resistance sources for breeding.
Collapse
Affiliation(s)
- Congli Wang
- First, third, and fourth authors: University of California, Riverside, CA 92521; first author: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China; and second author: USDA-ARS, PA, CSRL, Plant Stress and Germplasm Development Research, Lubbock, TX 79415
| | - Mauricio Ulloa
- First, third, and fourth authors: University of California, Riverside, CA 92521; first author: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China; and second author: USDA-ARS, PA, CSRL, Plant Stress and Germplasm Development Research, Lubbock, TX 79415
| | - Tra Duong
- First, third, and fourth authors: University of California, Riverside, CA 92521; first author: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China; and second author: USDA-ARS, PA, CSRL, Plant Stress and Germplasm Development Research, Lubbock, TX 79415
| | - Philip A Roberts
- First, third, and fourth authors: University of California, Riverside, CA 92521; first author: Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China; and second author: USDA-ARS, PA, CSRL, Plant Stress and Germplasm Development Research, Lubbock, TX 79415
| |
Collapse
|
10
|
Khanal C, McGawley EC, Overstreet C, Stetina SR. The Elusive Search for Reniform Nematode Resistance in Cotton. PHYTOPATHOLOGY 2018; 108:532-541. [PMID: 29116883 DOI: 10.1094/phyto-09-17-0320-rvw] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The reniform nematode (Rotylenchulus reniformis Linford and Oliveira) has emerged as the most important plant-parasitic nematode of cotton in the United States cotton belt. Success in the development of reniform nematode-resistant upland cotton cultivars (Gossypium hirsutum L.) has not been realized despite over three decades of breeding efforts. Research approaches ranging from conventional breeding to triple species hybrids to marker-assisted selection have been employed to introgress reniform nematode resistance from other species of cotton into upland cultivars. Reniform nematode-resistant breeding lines derived from G. longicalyx were developed in 2007. However, these breeding lines displayed stunting symptoms and a hypersensitive response to reniform nematode infection. Subsequent breeding efforts focused on G. barbadense, G. aridum, G. armoreanum, and other species that have a high level of resistance to reniform nematode. Marker-assisted selection has greatly improved screening of reniform nematode-resistant lines. The use of advanced molecular techniques such as CRISPER-Cas9 systems and alternative ways such as delivery of suitable "cry" proteins and specific double-stranded RNA to nematodes will assist in developing resistant cultivars of cotton. In spite of the efforts of cotton breeders and nematologists, successes are limited only to the development of reniform nematode-resistant breeding lines. In this article, we provide an overview of the approaches employed to develop reniform nematode-resistant upland cotton cultivars in the past, progress to date, major obstacles, and some promising future research activity.
Collapse
Affiliation(s)
- Churamani Khanal
- First, second, and third authors: Louisiana State University AgCenter, Department of Plant Pathology and Crop Physiology, Baton Rouge 70803; and fourth author: United States Department of Agriculture-Agricultural Research Service, Crop Genetics Research Unit, P.O. Box 345, Stoneville, MS 38776
| | - Edward C McGawley
- First, second, and third authors: Louisiana State University AgCenter, Department of Plant Pathology and Crop Physiology, Baton Rouge 70803; and fourth author: United States Department of Agriculture-Agricultural Research Service, Crop Genetics Research Unit, P.O. Box 345, Stoneville, MS 38776
| | - Charles Overstreet
- First, second, and third authors: Louisiana State University AgCenter, Department of Plant Pathology and Crop Physiology, Baton Rouge 70803; and fourth author: United States Department of Agriculture-Agricultural Research Service, Crop Genetics Research Unit, P.O. Box 345, Stoneville, MS 38776
| | - Salliana R Stetina
- First, second, and third authors: Louisiana State University AgCenter, Department of Plant Pathology and Crop Physiology, Baton Rouge 70803; and fourth author: United States Department of Agriculture-Agricultural Research Service, Crop Genetics Research Unit, P.O. Box 345, Stoneville, MS 38776
| |
Collapse
|
11
|
Zhang X, Huang D, Jia X, Zou Z, Wang Y, Zhang Z. Functional analysis of the promoter of the molt-inhibiting hormone (mih) gene in mud crab Scylla paramamosain. Gen Comp Endocrinol 2018; 259:131-140. [PMID: 29170022 DOI: 10.1016/j.ygcen.2017.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/15/2017] [Accepted: 11/18/2017] [Indexed: 11/24/2022]
Abstract
In this study, the 5'-flanking region of molt-inhibiting hormone (MIH) gene was cloned by Tail-PCR. It is 2024 bp starting from the translation initiation site, and 1818 bp starting from the predicted transcription start site. Forecast analysis results by the bioinformatics software showed that the transcription start site is located at 207 bp upstream of the start codon ATG, and TATA box is located at 240 bp upstream of the start codon ATG. Potential transcription factor binding sites include Sp1, NF-1, Oct-1, Sox-2, RAP1, and so on. There are two CpG islands, located at -25- +183 bp and -1451- -1316 bp respectively. The transfection results of luciferase reporter constructs showed that the core promoter region was located in the fragment -308 bp to -26 bp. NF-kappaB and RAP1 were essential for mih basal transcriptional activity. There are three kinds of polymorphism CA in the 5'-flanking sequence, and they can influence mih promoter activity. These findings provide a genetic foundation of the further research of mih transcription regulation.
Collapse
Affiliation(s)
- Xin Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Danping Huang
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiwei Jia
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Zhihua Zou
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Yilei Wang
- Fisheries College, Jimei University, Xiamen 361021, China.
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Li R, Rashotte AM, Singh NK, Lawrence KS, Weaver DB, Locy RD. Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Genotypes That Are Susceptible, Resistant, and Hypersensitive to Reniform Nematode (Rotylenchulus reniformis). PLoS One 2015; 10:e0143261. [PMID: 26571375 PMCID: PMC4646469 DOI: 10.1371/journal.pone.0143261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 11/02/2015] [Indexed: 11/18/2022] Open
Abstract
Reniform nematode is a semi-endoparasitic nematode species causing significant yield loss in numerous crops, including cotton (Gossypium hirsutum L.). An RNA-sequencing analysis was conducted to measure transcript abundance in reniform nematode susceptible (DP90 & SG747), resistant (BARBREN-713), and hypersensitive (LONREN-1) genotypes of cotton (Gossypium hirsutum L.) with and without reniform nematode infestation. Over 90 million trimmed high quality reads were assembled into 84,711 and 80, 353 transcripts using the G. arboreum and the G. raimondii genomes as references. Many transcripts were significantly differentially expressed between the three different genotypes both prior to and during nematode pathogenesis, including transcripts corresponding to the gene ontology categories of cell wall, hormone metabolism and signaling, redox reactions, secondary metabolism, transcriptional regulation, stress responses, and signaling. Further analysis revealed that a number of these differentially expressed transcripts mapped to the G. raimondii and/or the G. arboreum genomes within 1 megabase of quantitative trait loci that had previously been linked to reniform nematode resistance. Several resistance genes encoding proteins known to be strongly linked to pathogen perception and resistance, including LRR-like and NBS-LRR domain-containing proteins, were among the differentially expressed transcripts mapping near these quantitative trait loci. Further investigation is required to confirm a role for these transcripts in reniform nematode susceptibility, hypersensitivity, and/or resistance. This study presents the first systemic investigation of reniform nematode resistance-associated genes using different genotypes of cotton. The candidate reniform nematode resistance-associated genes identified in this study can serve as the basis for further functional analysis and aid in further development of reniform a nematode resistant cotton germplasm.
Collapse
Affiliation(s)
- Ruijuan Li
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Aaron M. Rashotte
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Narendra K. Singh
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - David B. Weaver
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Robert D. Locy
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
13
|
Wang C, Ulloa M, Shi X, Yuan X, Saski C, Yu JZ, Roberts PA. Sequence composition of BAC clones and SSR markers mapped to Upland cotton chromosomes 11 and 21 targeting resistance to soil-borne pathogens. FRONTIERS IN PLANT SCIENCE 2015; 6:791. [PMID: 26483808 PMCID: PMC4591483 DOI: 10.3389/fpls.2015.00791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/11/2015] [Indexed: 05/24/2023]
Abstract
Genetic and physical framework mapping in cotton (Gossypium spp.) were used to discover putative gene sequences involved in resistance to common soil-borne pathogens. Chromosome (Chr) 11 and its homoeologous Chr 21 of Upland cotton (G. hirsutum) are foci for discovery of resistance (R) or pathogen-induced R (PR) genes underlying QTLs involved in response to root-knot nematode (Meloidogyne incognita), reniform nematode (Rotylenchulus reniformis), Fusarium wilt (Fusarium oxysporum f.sp. vasinfectum), Verticillium wilt (Verticillium dahliae), and black root rot (Thielaviopsis basicola). Simple sequence repeat (SSR) markers and bacterial artificial chromosome (BAC) clones from a BAC library developed from the Upland cotton Acala Maxxa were mapped on Chr 11 and Chr 21. DNA sequence through Gene Ontology (GO) of 99 of 256 Chr 11 and 109 of 239 Chr 21 previously mapped SSRs revealed response elements to internal and external stimulus, stress, signaling process, and cell death. The reconciliation between genetic and physical mapping of gene annotations from new DNA sequences of 20 BAC clones revealed 467 (Chr 11) and 285 (Chr 21) G. hirsutum putative coding sequences, plus 146 (Chr 11) and 98 (Chr 21) predicted genes. GO functional profiling of Unigenes uncovered genes involved in different metabolic functions and stress response elements (SRE). Our results revealed that Chrs 11 and 21 harbor resistance gene rich genomic regions. Sequence comparisons with the ancestral diploid D5 (G. raimondii), A2 (G. arboreum) and domesticated tetraploid TM-1 AD1 (G. hirsutum) genomes revealed abundance of transposable elements and confirmed the richness of resistance gene motifs in these chromosomes. The sequence information of SSR markers and BAC clones and the genetic mapping of BAC clones provide enhanced genetic and physical frameworks of resistance gene-rich regions of the cotton genome, thereby aiding discovery of R and PR genes and breeding for resistance to cotton diseases.
Collapse
Affiliation(s)
- Congli Wang
- Department of Nematology, University of California, RiversideRiverside, CA, USA
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesHarbin, China
| | - Mauricio Ulloa
- Plant Stress and Germplasm Development Research Unit, USA - Agricultural Research ServiceLubbock, TX, USA
| | - Xinyi Shi
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesHarbin, China
| | - Xiaohui Yuan
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesHarbin, China
| | | | - John Z. Yu
- USA - Agricultural Research Service, Southern Plains Agricultural Research Center, College StationTX, USA
| | - Philip A. Roberts
- Department of Nematology, University of California, RiversideRiverside, CA, USA
| |
Collapse
|
14
|
Zhang J, Yu J, Pei W, Li X, Said J, Song M, Sanogo S. Genetic analysis of Verticillium wilt resistance in a backcross inbred line population and a meta-analysis of quantitative trait loci for disease resistance in cotton. BMC Genomics 2015; 16:577. [PMID: 26239843 PMCID: PMC4524102 DOI: 10.1186/s12864-015-1682-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/01/2015] [Indexed: 12/12/2022] Open
Abstract
Background Verticillium wilt (VW) and Fusarium wilt (FW), caused by the soil-borne fungi Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, respectively, are two most destructive diseases in cotton production worldwide. Root-knot nematodes (Meloidogyne incognita, RKN) and reniform nematodes (Rotylenchulus reniformis, RN) cause the highest yield loss in the U.S. Planting disease resistant cultivars is the most cost effective control method. Numerous studies have reported mapping of quantitative trait loci (QTLs) for disease resistance in cotton; however, very few reliable QTLs were identified for use in genomic research and breeding. Results This study first performed a 4-year replicated test of a backcross inbred line (BIL) population for VW resistance, and 10 resistance QTLs were mapped based on a 2895 cM linkage map with 392 SSR markers. The 10 VW QTLs were then placed to a consensus linkage map with other 182 VW QTLs, 75 RKN QTLs, 27 FW QTLs, and 7 RN QTLs reported from 32 publications. A meta-analysis of QTLs identified 28 QTL clusters including 13, 8 and 3 QTL hotspots for resistance to VW, RKN and FW, respectively. The number of QTLs and QTL clusters on chromosomes especially in the A-subgenome was significantly correlated with the number of nucleotide-binding site (NBS) genes, and the distribution of QTLs between homeologous A- and D- subgenome chromosomes was also significantly correlated. Conclusions Ten VW resistance QTL identified in a 4-year replicated study have added useful information to the understanding of the genetic basis of VW resistance in cotton. Twenty-eight disease resistance QTL clusters and 24 hotspots identified from a total of 306 QTLs and linked SSR markers provide important information for marker-assisted selection and high resolution mapping of resistance QTLs and genes. The non-overlapping of most resistance QTL hotspots for different diseases indicates that their resistances are controlled by different genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1682-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of China, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of China, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.
| | - Xingli Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of China, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.
| | - Joseph Said
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Mingzhou Song
- Department of Computer Science, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Soum Sanogo
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
15
|
Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations. Mol Genet Genomics 2015. [PMID: 25758743 DOI: 10.1007/s00438‐015‐1021‐y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
KEY MESSAGE A specialized database currently containing more than 2200 QTL is established, which allows graphic presentation, visualization and submission of QTL. In cotton quantitative trait loci (QTL), studies are focused on intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. These two populations are commercially important for the textile industry and are evaluated for fiber quality, yield, seed quality, resistance, physiological, and morphological trait QTL. With meta-analysis data based on the vast amount of QTL studies in cotton it will be beneficial to organize the data into a functional database for the cotton community. Here we provide a tool for cotton researchers to visualize previously identified QTL and submit their own QTL to the Cotton QTLdb database. The database provides the user with the option of selecting various QTL trait types from either the G. hirsutum or G. hirsutum × G. barbadense populations. Based on the user's QTL trait selection, graphical representations of chromosomes of the population selected are displayed in publication ready images. The database also provides users with trait information on QTL, LOD scores, and explained phenotypic variances for all QTL selected. The CottonQTLdb database provides cotton geneticist and breeders with statistical data on cotton QTL previously identified and provides a visualization tool to view QTL positions on chromosomes. Currently the database (Release 1) contains 2274 QTLs, and succeeding QTL studies will be updated regularly by the curators and members of the cotton community that contribute their data to keep the database current. The database is accessible from http://www.cottonqtldb.org.
Collapse
|
16
|
Said JI, Knapka JA, Song M, Zhang J. Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations. Mol Genet Genomics 2015; 290:1615-25. [PMID: 25758743 DOI: 10.1007/s00438-015-1021-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/24/2015] [Indexed: 11/29/2022]
Abstract
KEY MESSAGE A specialized database currently containing more than 2200 QTL is established, which allows graphic presentation, visualization and submission of QTL. In cotton quantitative trait loci (QTL), studies are focused on intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. These two populations are commercially important for the textile industry and are evaluated for fiber quality, yield, seed quality, resistance, physiological, and morphological trait QTL. With meta-analysis data based on the vast amount of QTL studies in cotton it will be beneficial to organize the data into a functional database for the cotton community. Here we provide a tool for cotton researchers to visualize previously identified QTL and submit their own QTL to the Cotton QTLdb database. The database provides the user with the option of selecting various QTL trait types from either the G. hirsutum or G. hirsutum × G. barbadense populations. Based on the user's QTL trait selection, graphical representations of chromosomes of the population selected are displayed in publication ready images. The database also provides users with trait information on QTL, LOD scores, and explained phenotypic variances for all QTL selected. The CottonQTLdb database provides cotton geneticist and breeders with statistical data on cotton QTL previously identified and provides a visualization tool to view QTL positions on chromosomes. Currently the database (Release 1) contains 2274 QTLs, and succeeding QTL studies will be updated regularly by the curators and members of the cotton community that contribute their data to keep the database current. The database is accessible from http://www.cottonqtldb.org.
Collapse
Affiliation(s)
- Joseph I Said
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA,
| | | | | | | |
Collapse
|
17
|
Sousa CCD, Figueirêdo LCD, Arrais MDGM, Valente SEDS. Genetic Map of Cotton with Molecular Markers. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.62033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Li R, Rashotte AM, Singh NK, Weaver DB, Lawrence KS, Locy RD. Integrated signaling networks in plant responses to sedentary endoparasitic nematodes: a perspective. PLANT CELL REPORTS 2015; 34:5-22. [PMID: 25208657 DOI: 10.1007/s00299-014-1676-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 05/24/2023]
Abstract
Sedentary plant endoparasitic nematodes can cause detrimental yield losses in crop plants making the study of detailed cellular, molecular, and whole plant responses to them a subject of importance. In response to invading nematodes and nematode-secreted effectors, plant susceptibility/resistance is mainly determined by the coordination of different signaling pathways including specific plant resistance genes or proteins, plant hormone synthesis and signaling pathways, as well as reactive oxygen signals that are generated in response to nematode attack. Crosstalk between various nematode resistance-related elements can be seen as an integrated signaling network regulated by transcription factors and small RNAs at the transcriptional, posttranscriptional, and/or translational levels. Ultimately, the outcome of this highly controlled signaling network determines the host plant susceptibility/resistance to nematodes.
Collapse
Affiliation(s)
- Ruijuan Li
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA
| | | | | | | | | | | |
Collapse
|
19
|
Said JI, Song M, Wang H, Lin Z, Zhang X, Fang DD, Zhang J. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics 2014; 290:1003-25. [PMID: 25501533 DOI: 10.1007/s00438-014-0963-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/18/2014] [Indexed: 12/16/2022]
Abstract
KEY MESSAGE Based on 1075 and 1059 QTL from intraspecific Upland and interspecific Upland × Pima populations, respectively, the identification of QTL clusters and hotspots provides a useful resource for cotton breeding. Mapping of quantitative trait loci (QTL) is a pre-requisite of marker-assisted selection for crop yield and quality. Recent meta-analysis of QTL in tetraploid cotton (Gossypium spp.) has identified regions of the genome with high concentrations of QTL for various traits called clusters and specific trait QTL called hotspots or meta-QTL (mQTL). However, the meta-analysis included all population types of Gossypium mixing both intraspecific G. hirsutum and interspecific G. hirsutum × G. barbadense populations. This study used 1,075 QTL from 58 publications on intraspecific G. hirsutum and 1,059 QTL from 30 publications on G. hirsutum × G. barbadense populations to perform a comprehensive comparative analysis of QTL clusters and hotspots between the two populations for yield, fiber and seed quality, and biotic and abiotic stress tolerance. QTL hotspots were further analyzed for mQTL within the hotspots using Biomercator V3 software. The ratio of QTL between the two population types was proportional yet differences in hotspot type and placement were observed between the two population types. However, on some chromosomes QTL clusters and hotspots were similar between the two populations. This shows that there are some universal QTL regions in the cultivated tetraploid cotton which remain consistent and some regions which differ between population types. This study for the first time elucidates the similarities and differences in QTL clusters and hotspots between intraspecific and interspecific populations, providing an important resource to cotton breeding programs in marker-assisted selection .
Collapse
Affiliation(s)
- Joseph I Said
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA,
| | | | | | | | | | | | | |
Collapse
|
20
|
A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics 2013; 14:776. [PMID: 24215677 PMCID: PMC3830114 DOI: 10.1186/1471-2164-14-776] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/24/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The study of quantitative trait loci (QTL) in cotton (Gossypium spp.) is focused on traits of agricultural significance. Previous studies have identified a plethora of QTL attributed to fiber quality, disease and pest resistance, branch number, seed quality and yield and yield related traits, drought tolerance, and morphological traits. However, results among these studies differed due to the use of different genetic populations, markers and marker densities, and testing environments. Since two previous meta-QTL analyses were performed on fiber traits, a number of papers on QTL mapping of fiber quality, yield traits, morphological traits, and disease resistance have been published. To obtain a better insight into the genome-wide distribution of QTL and to identify consistent QTL for marker assisted breeding in cotton, an updated comparative QTL analysis is needed. RESULTS In this study, a total of 1,223 QTL from 42 different QTL studies in Gossypium were surveyed and mapped using Biomercator V3 based on the Gossypium consensus map from the Cotton Marker Database. A meta-analysis was first performed using manual inference and confirmed by Biomercator V3 to identify possible QTL clusters and hotspots. QTL clusters are composed of QTL of various traits which are concentrated in a specific region on a chromosome, whereas hotspots are composed of only one trait type. QTL were not evenly distributed along the cotton genome and were concentrated in specific regions on each chromosome. QTL hotspots for fiber quality traits were found in the same regions as the clusters, indicating that clusters may also form hotspots. CONCLUSIONS Putative QTL clusters were identified via meta-analysis and will be useful for breeding programs and future studies involving Gossypium QTL. The presence of QTL clusters and hotspots indicates consensus regions across cultivated tetraploid Gossypium species, environments, and populations which contain large numbers of QTL, and in some cases multiple QTL associated with the same trait termed a hotspot. This study combines two previous meta-analysis studies and adds all other currently available QTL studies, making it the most comprehensive meta-analysis study in cotton to date.
Collapse
|
21
|
Sayler RJ, Walker C, Goggin F, Agudelo P, Kirkpatrick T. Conventional PCR Detection and Real-Time PCR Quantification of Reniform Nematodes. PLANT DISEASE 2012; 96:1757-1762. [PMID: 30727260 DOI: 10.1094/pdis-12-11-1033-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reniform nematode (Rotylenchulus reniformis) is a relatively recent introduction into the continental United States that can cause major yield losses on a variety of important crops including cotton and soybeans. DNA sequences from the internal transcribed spacer (ITS) region of this nematode were used to design primers for conventional and real-time PCR, as well as a TaqMan probe. These primers amplified DNA of reniform nematode isolates from a wide geographic range but did not detect genetically related species or other pathogenic nematodes found in production fields including Meloidogyne incognita and Heterodera glycines. Both SYBR green and TaqMan assays reliably quantified as little as 100 fg of reniform nematode DNA, and could be used to quantify as few as five reniform nematodes. An inexpensive and rapid DNA extraction protocol for high throughput diagnostic assays is described.
Collapse
Affiliation(s)
- Ronald J Sayler
- Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | | | - Fiona Goggin
- Department of Entomology, University of Arkansas, Fayetteville 72701
| | - Paula Agudelo
- Clemson University, School of Agricultural, Forest, and Environmental Sciences, Clemson, SC 29634
| | | |
Collapse
|
22
|
QTL analysis for transgressive resistance to root-knot nematode in interspecific cotton (Gossypium spp.) progeny derived from susceptible parents. PLoS One 2012; 7:e34874. [PMID: 22514682 PMCID: PMC3325951 DOI: 10.1371/journal.pone.0034874] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/10/2012] [Indexed: 11/19/2022] Open
Abstract
The southern root-knot nematode (RKN, Meloidogyne incognita) is a major soil-inhabiting plant parasite that causes significant yield losses in cotton (Gossypium spp.). Progeny from crosses between cotton genotypes susceptible to RKN produced segregants in subsequent populations which were highly resistant to this parasite. A recombinant inbred line (RIL) population of 138 lines developed from a cross between Upland cotton TM-1 (G. hirsutum L.) and Pima 3–79 (G. barbadense L.), both susceptible to RKN, was used to identify quantitative trait loci (QTLs) determining responses to RKN in greenhouse infection assays with simple sequence repeat (SSR) markers. Compared to both parents, 53.6% and 52.1% of RILs showed less (P<0.05) root-galling index (GI) and had lower (P<0.05) nematode egg production (eggs per gram root, EGR). Highly resistant lines (transgressive segregants) were identified in this RIL population for GI and/or EGR in two greenhouse experiments. QTLs were identified using the single-marker analysis nonparametric mapping Kruskal-Wallis test. Four major QTLs located on chromosomes 3, 4, 11, and 17 were identified to account for 8.0 to 12.3% of the phenotypic variance (R2) in root-galling. Two major QTLs accounting for 9.7% and 10.6% of EGR variance were identified on chromosomes 14 and 23 (P<0.005), respectively. In addition, 19 putative QTLs (P<0.05) accounted for 4.5–7.7% of phenotypic variance (R2) in GI, and 15 QTLs accounted for 4.2–7.3% of phenotypic variance in EGR. In lines with alleles positive for resistance contributed by both parents in combinations of two to four QTLs, dramatic reductions of >50% in both GI and EGR were observed. The transgressive segregants with epistatic effects derived from susceptible parents indicate that high levels of nematode resistance in cotton may be attained by pyramiding positive alleles using a QTL mapping approach.
Collapse
|