1
|
Liu J, Li D, Zhu P, Qiu S, Yao K, Zhuang Y, Chen C, Liu G, Wen M, Guo R, Yao W, Deng Y, Shen X, Li T. The Landscapes of Gluten Regulatory Network in Elite Wheat Cultivars Contrasting in Gluten Strength. Int J Mol Sci 2023; 24:9447. [PMID: 37298403 PMCID: PMC10253585 DOI: 10.3390/ijms24119447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Yangmai-13 (YM13) is a wheat cultivar with weak gluten fractions. In contrast, Zhenmai-168 (ZM168) is an elite wheat cultivar known for its strong gluten fractions and has been widely used in a number of breeding programs. However, the genetic mechanisms underlying the gluten signatures of ZM168 remain largely unclear. To address this, we combined RNA-seq and PacBio full-length sequencing technology to unveil the potential mechanisms of ZM168 grain quality. A total of 44,709 transcripts were identified in Y13N (YM13 treated with nitrogen) and 51,942 transcripts in Z168N (ZM168 treated with nitrogen), including 28,016 and 28,626 novel isoforms in Y13N and Z168N, respectively. Five hundred and eighty-four differential alternative splicing (AS) events and 491 long noncoding RNAs (lncRNAs) were discovered. Incorporating the sodium-dodecyl-sulfate (SDS) sedimentation volume (SSV) trait, both weighted gene coexpression network analysis (WGCNA) and multiscale embedded gene coexpression network analysis (MEGENA) were employed for network construction and prediction of key drivers. Fifteen new candidates have emerged in association with SSV, including 4 transcription factors (TFs) and 11 transcripts that partake in the post-translational modification pathway. The transcriptome atlas provides new perspectives on wheat grain quality and would be beneficial for developing promising strategies for breeding programs.
Collapse
Affiliation(s)
- Jiajun Liu
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Dongsheng Li
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Peng Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Collaborative Innovation of Modern Crops and Food Crops in Jiangsu/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (P.Z.); (G.L.)
| | - Shi Qiu
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Kebing Yao
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Yiqing Zhuang
- Testing Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, China;
| | - Chen Chen
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Guanqing Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Collaborative Innovation of Modern Crops and Food Crops in Jiangsu/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (P.Z.); (G.L.)
| | - Mingxing Wen
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Rui Guo
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Weicheng Yao
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Yao Deng
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Xueyi Shen
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China; (J.L.); (D.L.); (K.Y.); (C.C.); (M.W.); (R.G.); (W.Y.); (Y.D.); (X.S.)
| | - Tao Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Collaborative Innovation of Modern Crops and Food Crops in Jiangsu/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (P.Z.); (G.L.)
| |
Collapse
|
2
|
Ribeiro M, de Sousa T, Sabença C, Poeta P, Bagulho AS, Igrejas G. Advances in quantification and analysis of the celiac-related immunogenic potential of gluten. Compr Rev Food Sci Food Saf 2021; 20:4278-4298. [PMID: 34402581 DOI: 10.1111/1541-4337.12828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/18/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
Gluten-free products have emerged in response to the increasing prevalence of gluten-related disorders, namely celiac disease. Therefore, the quantification of gluten in products intended for consumption by individuals who may suffer from these pathologies must be accurate and reproducible, in a way that allows their proper labeling and protects the health of consumers. Immunochemical methods have been the methods of choice for quantifying gluten, and several kits are commercially available. Nevertheless, they still face problems such as the initial extraction of gluten in complex matrices or the use of a standardized reference material to validate the results. Lately, other methodologies relying mostly on mass spectrometry-based techniques have been explored, and that may allow, in addition to quantitative analysis, the characterizationof gluten proteins. On the other hand, although the level of 20 mg/kg of gluten detected by these methods is sufficient for a product to be considered gluten-free, its immunogenic potential for celiac patients has not been clinically validated. In this sense, in vitro and in vivo models, such as the organoid technology applied in gut-on-chip devices and the transgenic humanized mouse models, respectively, are being developed for investigating both the gluten-induced pathogenesis and the treatment of celiac disease. Due to the ubiquitous nature of gluten in the food industry, as well as the increased prevalence of gluten-related disorders, here we intend to summarize the available methods for gluten quantification in food matrices and for the evaluation of its immunogenic potential concerning the development of novel therapies for celiac disease to highlight active research and discuss knowledge gaps and current challenges in this field.
Collapse
Affiliation(s)
- Miguel Ribeiro
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Telma de Sousa
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Carolina Sabença
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Patrícia Poeta
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Ana Sofia Bagulho
- National Institute for Agrarian and Veterinarian Research, Elvas, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| |
Collapse
|
3
|
Gao Y, An K, Guo W, Chen Y, Zhang R, Zhang X, Chang S, Rossi V, Jin F, Cao X, Xin M, Peng H, Hu Z, Guo W, Du J, Ni Z, Sun Q, Yao Y. The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. THE PLANT CELL 2021; 33:603-622. [PMID: 33955492 PMCID: PMC8136912 DOI: 10.1093/plcell/koaa040] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/16/2020] [Indexed: 05/03/2023]
Abstract
In wheat (Triticum aestivum L.), breeding efforts have focused intensively on improving grain yield and quality. For quality, the content and composition of seed storage proteins (SSPs) determine the elasticity of wheat dough and flour processing quality. Moreover, starch levels in seeds are associated with yield. However, little is known about the mechanisms that coordinate SSP and starch accumulation in wheat. In this study, we explored the role of the endosperm-specific NAC transcription factor TaNAC019 in coordinating SSP and starch accumulation. TaNAC019 binds to the promoters of TaGlu-1 loci, encoding high molecular weight glutenin (HMW-GS), and of starch metabolism genes. Triple knock-out mutants of all three TaNAC019 homoeologs exhibited reduced transcript levels for all SSP types and genes involved in starch metabolism, leading to lower gluten and starch contents, and in flour processing quality parameters. TaNAC019 directly activated the expression of HMW-GS genes by binding to a specific motif in their promoters and interacting with the TaGlu-1 regulator TaGAMyb. TaNAC019 also indirectly regulated the expression of TaSPA, an ortholog of maize Opaque2 that activates SSP accumulation. Therefore, TaNAC019 regulation of starch- and SSP-related genes has key roles in wheat grain quality. Finally, we identified an elite allele (TaNAC019-BI) associated with flour processing quality, providing a candidate gene for breeding wheat with improved quality.
Collapse
Affiliation(s)
- Yujiao Gao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Kexin An
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weiwei Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yongming Chen
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Ruijie Zhang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xue Zhang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Siyuan Chang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Vincenzo Rossi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, I-24126 Bergamo, Italy
| | - Fangming Jin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xinyou Cao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinkun Du
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Hu X, Dai S, Yan Y, Liu Y, Zhang J, Lu Z, Wei Y, Zheng Y, Cong H, Yan Z. The genetic diversity of group-1 homoeologs and characterization of novel LMW-GS genes from Chinese Xinjiang winter wheat landraces (Triticum aestivum L.). J Appl Genet 2020; 61:379-389. [PMID: 32548810 DOI: 10.1007/s13353-020-00564-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 11/26/2022]
Abstract
Group-1 homoelog genes in wheat genomes encode storage proteins and are the major determinants of wheat product properties. Consequently, understanding the genetic diversity of group-1 homoelogs and genes encoding storage proteins, especially the low-molecular-weight glutenins (LMW-GSs), within wheat landrace genomes is necessary to further improve the quality of modern wheat crops. The genetic diversity of group-1 homoelogs in 75 Xinjiang winter wheat landraces was evaluated by Diversity Arrays Technology (DArT) markers. These data were used to select 15 landraces for additional LMW-GS gene isolation. The genetic similarity coefficients among landraces were highly similar regardless if considering the diversity markers on 1A, 1B, and 1D chromosomes individually or using all of the markers together. These similarities were evinced by the generation of four similar cluster dendrograms that comprised 11-15 landrace groups, regardless of the dataset used to generate the dendrograms. A total of 105 LMW-GS sequences corresponding to 79 unique genes were identified overall by using primers designed to target Glu-A3 and Glu-B3 loci, and 54 mature proteins were predicted from the unique LMW-GS genes. Nine novel chimeric LMW-GS genes were also identified, of which, one was recombinant for -i/-m, one for -s/-m, and seven for -m/-m parent genes, respectively. Phylogenetic analysis separated all of the LMW-GSs into three clades that were supported by moderate bootstrap values (> 70%). The clades corresponded to LMW-GS genes primarily harboring different N-terminals. These results provide useful information for better understanding the evolutionary genetics of the important Glu-3 locus of wheat, and they also provide new novel gene targets that can potentially be exploited to improve wheat quality.
Collapse
Affiliation(s)
- Xinkun Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Shoufen Dai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yongliang Yan
- Institute of Crop Germplasm Resource, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China.
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jinbo Zhang
- Institute of Crop Germplasm Resource, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - Zifeng Lu
- Institute of Crop Germplasm Resource, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Hua Cong
- Institute of Crop Germplasm Resource, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - Zehong Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China.
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China.
| |
Collapse
|
5
|
Shen L, Luo G, Song Y, Song S, Li Y, Yang W, Li X, Sun J, Liu D, Zhang A. Low molecular weight glutenin subunit gene composition at Glu-D3 loci of Aegilops tauschii and common wheat and a further view of wheat evolution. THEORETICAL AND APPLIED GENETICS 2018; 131:2745-2763. [PMID: 30225644 DOI: 10.1007/s00122-018-3188-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
|
6
|
Ibba MI, Kiszonas AM, Morris CF. Evidence of intralocus recombination at the Glu-3 loci in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:891-902. [PMID: 28289804 DOI: 10.1007/s00122-017-2858-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Recombination at the Glu-3 loci was identified, and strong genetic linkage was observed only between the amplicons representing i-type and s-type genes located, respectively, at the Glu-A3 and Glu-B3 loci. The low-molecular weight glutenin subunits (LMW-GSs) are one of the major components of wheat seed storage proteins and play a critical role in the determination of wheat end-use quality. The genes encoding this class of proteins are located at the orthologous Glu-3 loci (Glu-A3, Glu-B3, and Glu-D3). Due to the complexity of these chromosomal regions and the high sequence similarity between different LMW-GS genes, their organization and recombination characteristics are still incompletely understood. This study examined intralocus recombination at the Glu-3 loci in two recombinant inbred line (RIL) and one doubled haploid (DH) population, all segregating for the Glu-A3, Glu-B3, and Glu-D3 loci. The analysis was conducted using a gene marker system that consists of the amplification of the complete set of the LMW-GS genes and their visualization by capillary electrophoresis. Recombinant marker haplotypes were detected in all three populations with different recombination rates depending on the locus and the population. No recombination was observed between the amplicons representing i-type and s-type LMW-GS genes located, respectively, at the Glu-A3 and Glu-B3 loci, indicating tight linkage between these genes. Results of this study contribute to better understanding the genetic linkage and recombination between different LMW-GS genes, the structure of the Glu-3 loci, and the development of more specific molecular markers that better represent the genetic diversity of these loci. In this way, a more precise analysis of the contribution of various LMW-GSs to end-use quality of wheat may be achieved.
Collapse
Affiliation(s)
- Maria I Ibba
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | | | - Craig F Morris
- USDA-ARS Western Wheat Quality Laboratory, Pullman, WA, USA.
| |
Collapse
|
7
|
Cuesta S, Alvarez JB, Guzmán C. Identification and molecular characterization of novel LMW-m and -s glutenin genes, and a chimeric -m/-i glutenin gene in 1A chromosome of three diploid Triticum species. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Peng Y, Yu Z, Islam S, Zhang Y, Wang X, Lei Z, Yu K, Sun D, Ma W. Allelic variation of LMW-GS composition in Chinese wheat landraces of the Yangtze-River region detected by MALDI-TOF-MS. BREEDING SCIENCE 2016; 66:646-652. [PMID: 27795690 PMCID: PMC5010313 DOI: 10.1270/jsbbs.16050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Low molecular weight glutenin subunits are important components of wheat storage proteins, which play an important role in determining end-use quality of common wheat. A newly established matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) procedure was used to analyze 478 landraces of bread wheat collected from the Yangtze-River region in China. Results indicated that 17 alleles at three loci: Glu-A3, Glu-B3 and Glu-D3 were identified, resulting in 87 different allele combinations. Of the 17 alleles detected at all the Glu-3 loci, five belonged to Glu-A3, seven to Glu-B3 and five to Glu-D3 locus. MALDI-TOF-MS indicated Glu-A3a/c was present in 72.8%, Glu-A3b in 8.4%, Glu-A3d in 8.4%, Glu-A3f in 5.2% and Glu-A3e in 3.6% lines. Seven types of alleles were identified at the Glu-B3 locus: Glu-B3d/i (25.5%), Glu-B3b (21.3%), Glu-B3c (16.9%), Glu-B3h (13.8%), Glu-B3f (8.4%), Glu-B3a (8.2%), and Glu-B3g (5.2%). Five types of Glu-D3 alleles were detected: Glu-D3a (58.4%), Glu-D3c (22.6%), Glu-D3d (15.5%), Glu-D3b (3.3%) and Glu-D3f (0.2%). Four new alleles that showed abnormal MALDI-TOF spectrum patterns were identified at the Glu-A3 and Glu-B3 loci. A detailed study is needed to further characterize these alleles and their potential usage for wheat improvement.
Collapse
Affiliation(s)
- Yanchun Peng
- College of Plant Science and Technology, Huazhong Agricultural University,
Wuhan 430070,
China
- State Agriculture Biotechnology Centre, Murdoch Unievrsity,
WA 6150,
Australia
- Australian Export Grain Innovation Centre,
Perth, WA 6150,
Australia
| | - Zitong Yu
- State Agriculture Biotechnology Centre, Murdoch Unievrsity,
WA 6150,
Australia
- Australian Export Grain Innovation Centre,
Perth, WA 6150,
Australia
| | - Shahidul Islam
- State Agriculture Biotechnology Centre, Murdoch Unievrsity,
WA 6150,
Australia
- Australian Export Grain Innovation Centre,
Perth, WA 6150,
Australia
| | - Yujuan Zhang
- State Agriculture Biotechnology Centre, Murdoch Unievrsity,
WA 6150,
Australia
- Australian Export Grain Innovation Centre,
Perth, WA 6150,
Australia
| | - Xiaolong Wang
- State Agriculture Biotechnology Centre, Murdoch Unievrsity,
WA 6150,
Australia
- Australian Export Grain Innovation Centre,
Perth, WA 6150,
Australia
| | - Zhensheng Lei
- Wheat Research Institute, Henan Academy of Agricultural Sciences,
Zhengzhou 450002,
China
| | - Kan Yu
- College of Plant Science and Technology, Huazhong Agricultural University,
Wuhan 430070,
China
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University,
Wuhan 430070,
China
- Hubei Collaborative Innovation Center for Grain Industry,
Jingzhou 434025,
China
| | - Wujun Ma
- State Agriculture Biotechnology Centre, Murdoch Unievrsity,
WA 6150,
Australia
- Australian Export Grain Innovation Centre,
Perth, WA 6150,
Australia
| |
Collapse
|
9
|
Cuesta S, Guzmán C, Alvarez JB. Molecular characterization of novel LMW-i glutenin subunit genes from Triticum urartu Thum. ex Gandil. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2155-65. [PMID: 26152575 DOI: 10.1007/s00122-015-2574-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 06/23/2015] [Indexed: 05/07/2023]
Abstract
A high level of genetic diversity was found in LMW-i genes from Triticum urartu, resulting in detection of 11 novel alleles. The variability detected could affect gluten quality. Low-molecular weight glutenin subunits are important in determining the viscoelastic properties of wheat dough. Triticum urartu Thum. ex Gandil., which is related to the A genome of polyploid wheat, has been shown as a good source of variation for these subunits. The present study evaluated the variability of LMW-i genes in this species. High polymorphism was found in the sequences analysed and resulted in the detection of 11 novel alleles, classified into two sets (Group-I and -II) showing unique SNPs and InDels. Both groups were associated with Glu-A3-1 genes from common wheat. In general, deduced proteins from Group-II genes possessed a higher proportion of glutamine and proline, which has been previously suggested to be related with good quality. Moreover, there were other changes compared to common wheat. This novel variation could affect dough quality. Additional epitopes for celiac disease were also detected, suggesting that these subunits could be highly reactive. The results showed that T. urartu could be an important source of genetic variability for LMW-i genes that could enlarge the genetic pool of modern wheat.
Collapse
Affiliation(s)
- Susana Cuesta
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Universidad de Córdoba, Campus de Rabanales, CeiA3, 14071, Córdoba, Spain
| | - Carlos Guzmán
- Wheat Chemistry and Quality Laboratory, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Juan B Alvarez
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Universidad de Córdoba, Campus de Rabanales, CeiA3, 14071, Córdoba, Spain.
| |
Collapse
|
10
|
Luo G, Zhang X, Zhang Y, Yang W, Li Y, Sun J, Zhan K, Zhang A, Liu D. Composition, variation, expression and evolution of low-molecular-weight glutenin subunit genes in Triticum urartu. BMC PLANT BIOLOGY 2015; 15:68. [PMID: 25849991 PMCID: PMC4364320 DOI: 10.1186/s12870-014-0322-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/06/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Wheat (AABBDD, 2n = 6x = 42) is a major dietary component for many populations across the world. Bread-making quality of wheat is mainly determined by glutenin subunits, but it remains challenging to elucidate the composition and variation of low-molecular-weight glutenin subunits (LMW-GS) genes, the major components for glutenin subunits in hexaploid wheat. This problem, however, can be greatly simplified by characterizing the LMW-GS genes in Triticum urartu, the A-genome donor of hexaploid wheat. In the present study, we exploited the high-throughput molecular marker system, gene cloning, proteomic methods and molecular evolutionary genetic analysis to reveal the composition, variation, expression and evolution of LMW-GS genes in a T. urartu population from the Fertile Crescent region. RESULTS Eight LMW-GS genes, including four m-type, one s-type and three i-type, were characterized in the T. urartu population. Six or seven genes, the highest number at the Glu-A3 locus, were detected in each accession. Three i-type genes, each containing more than six allelic variants, were tightly linked because of their co-segregation in every accession. Only 2-3 allelic variants were detected for each m- and s-type gene. The m-type gene, TuA3-385, for which homologs were previously characterized only at Glu-D3 locus in common wheat and Aegilops tauschii, was detected at Glu-A3 locus in T. urartu. TuA3-460 was the first s-type gene identified at Glu-A3 locus. Proteomic analysis showed 1-4 genes, mainly i-type, expressed in individual accessions. About 62% accessions had three active i-type genes, rather than one or two in common wheat. Southeastern Turkey might be the center of origin and diversity for T. urartu due to its abundance of LMW-GS genes/genotypes. Phylogenetic reconstruction demonstrated that the characterized T. urartu might be the direct donor of the Glu-A3 locus in common wheat varieties. CONCLUSIONS Compared with the Glu-A3 locus in common wheat, a large number of highly diverse LMW-GS genes and active genes were characterized in T. urartu, demonstrating that this progenitor might provide valuable genetic resources for LMW-GS genes to improve the quality of common wheat. The phylogenetic analysis provided molecular evidence and confirmed that T. urartu was the A-genome donor of hexaploid wheat.
Collapse
Affiliation(s)
- Guangbin Luo
- />State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District Beijing, 100101 China
- />University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaofei Zhang
- />State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District Beijing, 100101 China
- />Present address: Department of Agronomy & Plant Genetics, University of Minnesota, 1991 Buford Circle, St. Paul, MN 55108 USA
| | - Yanlin Zhang
- />College of Agronomy, The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002 China
| | - Wenlong Yang
- />State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District Beijing, 100101 China
| | - Yiwen Li
- />State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District Beijing, 100101 China
| | - Jiazhu Sun
- />State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District Beijing, 100101 China
| | - Kehui Zhan
- />College of Agronomy, The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002 China
| | - Aimin Zhang
- />State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District Beijing, 100101 China
- />College of Agronomy, The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002 China
| | - Dongcheng Liu
- />State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District Beijing, 100101 China
| |
Collapse
|
11
|
Novel LMW glutenin subunit genes from wild emmer wheat (Triticum turgidum ssp. dicoccoides) in relation to Glu-3 evolution. Dev Genes Evol 2014; 225:31-7. [DOI: 10.1007/s00427-014-0484-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
|
12
|
Varzakas T, Kozub N, Xynias IN. Quality determination of wheat: genetic determination, biochemical markers, seed storage proteins - bread and durum wheat germplasm. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:2819-2829. [PMID: 24497330 DOI: 10.1002/jsfa.6601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/10/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Quality is an important determinant in wheat breeding since its genetic background is less affected by the environment and sufficiently influences the commercial value of a cultivar. Thus, if a certain cultivar possesses some specific allele combination at crucial loci, then it appears quite possible to exhibit valuable qualitative traits in terms of end-product quality. This is also true if either durum or bread wheat germplasm is involved. RESULTS Biochemical investigation of the wheat germplasm gives important information on the allele constitution of a cultivar, with reference to either the quality or its resistance to stressing factors. The last is crucial since it affects the safe use of this cultivar. The Hellenic wheat germplasm possesses valuable allele combination or chromosome constitution (presence of the 1BL.1RS translocation, which is verified by the presence of a certain allele) with reference to quality. Genotypes having the aforementioned translocation exhibit excellent resistance to various stressing factors, but have a serious handicap, i.e. inferior bread-making quality. This negative effect on quality, although influenced by the genotype, can be overcome if some other alleles are present in a cultivar. CONCLUSION The Hellenic cultivar Acheron is a good example since, despite the presence of the translocation, it also has very good bread-making quality and high yielding ability. It must be also mentioned that most of the Hellenic durum germplasm carries the gene locus Gli-B1 component, similar to γ45, which can be considered as an index of good end-product quality.
Collapse
Affiliation(s)
- Theo Varzakas
- Department of Food Technology, Technological and Educational Institution of Peloponnese, Antikalamos, 25 100, Kalamata, Greece
| | | | | |
Collapse
|
13
|
|
14
|
Cloning and characterization of low-molecular-weight glutenin subunit alleles from Chinese wheat landraces (Triticum aestivum L.). ScientificWorldJournal 2014; 2014:371045. [PMID: 24982945 PMCID: PMC4005046 DOI: 10.1155/2014/371045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/19/2014] [Indexed: 11/18/2022] Open
Abstract
Low-molecular-weight glutenin subunits (LMW-GS) are of great importance in processing quality and participate in the formation of polymers in wheat. In this study, eight new LMW-GS alleles were isolated from Chinese wheat landraces (Triticum aestivum L.) and designated as Glu-A3-1a, Glu-A3-1b, Glu-B3-1a, Glu-B3-1b, Glu-B3-1c, Glu-D3-1a, Glu-D3-1b, and Glu-D3-1c, which were located at the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. Based on the proteins encoded, the number of deduced amino acids of Glu-B3 alleles was approximately 50 more than those of Glu-A3 and Glu-D3 alleles. The first cysteine of Glu-A3 and Glu-D3 alleles was located at the N-terminal domain, while that of Glu-B3 alleles was found in the repetitive domain, which may lead to the different functioning in forming disulfide bonds. All the eight genes were LMW-m types and the new allele of Glu-B3-1a which had nine cysteine residues may be the desirable LMW-GS gene for improving bread-making quality.
Collapse
|
15
|
Rasheed A, Xia X, Yan Y, Appels R, Mahmood T, He Z. Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2014.01.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Zhang X, Liu D, Zhang J, Jiang W, Luo G, Yang W, Sun J, Tong Y, Cui D, Zhang A. Novel insights into the composition, variation, organization, and expression of the low-molecular-weight glutenin subunit gene family in common wheat. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2027-40. [PMID: 23536608 PMCID: PMC3638834 DOI: 10.1093/jxb/ert070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Low-molecular-weight glutenin subunits (LMW-GS), encoded by a complex multigene family, play an important role in the processing quality of wheat flour. Although members of this gene family have been identified in several wheat varieties, the allelic variation and composition of LMW-GS genes in common wheat are not well understood. In the present study, using the LMW-GS gene molecular marker system and the full-length gene cloning method, a comprehensive molecular analysis of LMW-GS genes was conducted in a representative population, the micro-core collections (MCC) of Chinese wheat germplasm. Generally, >15 LMW-GS genes were identified from individual MCC accessions, of which 4-6 were located at the Glu-A3 locus, 3-5 at the Glu-B3 locus, and eight at the Glu-D3 locus. LMW-GS genes at the Glu-A3 locus showed the highest allelic diversity, followed by the Glu-B3 genes, while the Glu-D3 genes were extremely conserved among MCC accessions. Expression and sequence analysis showed that 9-13 active LMW-GS genes were present in each accession. Sequence identity analysis showed that all i-type genes present at the Glu-A3 locus formed a single group, the s-type genes located at Glu-B3 and Glu-D3 loci comprised a unique group, while high-diversity m-type genes were classified into four groups and detected in all Glu-3 loci. These results contribute to the functional analysis of LMW-GS genes and facilitate improvement of bread-making quality by wheat molecular breeding programmes.
Collapse
Affiliation(s)
- Xiaofei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Jianghua Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Department of Agronomy/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China
| | - Wei Jiang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Guangbin Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Dangqun Cui
- Department of Agronomy/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
17
|
Jin H, Zhang Y, Li G, Mu P, Fan Z, Xia X, He Z. Effects of allelic variation of HMW-GS and LMW-GS on mixograph properties and Chinese noodle and steamed bread qualities in a set of Aroona near-isogenic wheat lines. J Cereal Sci 2013. [DOI: 10.1016/j.jcs.2012.10.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Zhang X, Jin H, Zhang Y, Liu D, Li G, Xia X, He Z, Zhang A. Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat. BMC PLANT BIOLOGY 2012; 12:243. [PMID: 23259617 PMCID: PMC3562532 DOI: 10.1186/1471-2229-12-243] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 12/17/2012] [Indexed: 05/05/2023]
Abstract
BACKGROUND Low-molecular-weight glutenin subunits (LMW-GS) strongly influence the bread-making quality of bread wheat. These proteins are encoded by a multi-gene family located at the Glu-A3, Glu-B3 and Glu-D3 loci on the short arms of homoeologous group 1 chromosomes, and show high allelic variation. To characterize the genetic and protein compositions of LMW-GS alleles, we investigated 16 Aroona near-isogenic lines (NILs) using SDS-PAGE, 2D-PAGE and the LMW-GS gene marker system. Moreover, the composition of glutenin macro-polymers, dough properties and pan bread quality parameters were determined for functional analysis of LMW-GS alleles in the NILs. RESULTS Using the LMW-GS gene marker system, 14-20 LMW-GS genes were identified in individual NILs. At the Glu-A3 locus, two m-type and 2-4 i-type genes were identified and their allelic variants showed high polymorphisms in length and nucleotide sequences. The Glu-A3d allele possessed three active genes, the highest number among Glu-A3 alleles. At the Glu-B3 locus, 2-3 m-type and 1-3 s-type genes were identified from individual NILs. Based on the different compositions of s-type genes, Glu-B3 alleles were divided into two groups, one containing Glu-B3a, B3b, B3f and B3g, and the other comprising Glu-B3c, B3d, B3h and B3i. Eight conserved genes were identified among Glu-D3 alleles, except for Glu-D3f. The protein products of the unique active genes in each NIL were detected using protein electrophoresis. Among Glu-3 alleles, the Glu-A3e genotype without i-type LMW-GS performed worst in almost all quality properties. Glu-B3b, B3g and B3i showed better quality parameters than the other Glu-B3 alleles, whereas the Glu-B3c allele containing s-type genes with low expression levels had an inferior effect on bread-making quality. Due to the conserved genes at Glu-D3 locus, Glu-D3 alleles showed no significant differences in effects on all quality parameters. CONCLUSIONS This work provided new insights into the composition and function of 18 LMW-GS alleles in bread wheat. The variation of i-type genes mainly contributed to the high diversity of Glu-A3 alleles, and the differences among Glu-B3 alleles were mainly derived from the high polymorphism of s-type genes. Among LMW-GS alleles, Glu-A3e and Glu-B3c represented inferior alleles for bread-making quality, whereas Glu-A3d, Glu-B3b, Glu-B3g and Glu-B3i were correlated with superior bread-making quality. Glu-D3 alleles played minor roles in determining quality variation in bread wheat. Thus, LMW-GS alleles not only affect dough extensibility but greatly contribute to the dough resistance, glutenin macro-polymers and bread quality.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Beijing, 100101, China
| | - Hui Jin
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yan Zhang
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Beijing, 100101, China
| | - Genying Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Xianchun Xia
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Beijing, 100101, China
| |
Collapse
|