1
|
Maki T, Kusaka H, Matsumoto Y, Yamazaki A, Yamaoka S, Ohno S, Doi M, Tanaka Y. The mutation of CaCKI1 causes seedless fruits in chili pepper (Capsicum annuum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:85. [PMID: 36964815 DOI: 10.1007/s00122-023-04342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The seedless mutant tn-1 in chili pepper is caused by a mutation in CaCKI1 (CA12g21620), which encodes histidine kinase involving female gametophyte development. An amino acid insertion in the receiver domain of CaCKI1 may be the mutation responsible for tn-1. Seedlessness is a desirable trait in fruit crops because the removal of seeds is a troublesome step for consumers and processing industries. However, little knowledge is available to develop seedless chili peppers. In a previous study, a chili pepper mutant tn-1, which stably produces seedless fruits, was isolated. In this study, we report characterization of tn-1 and identification of the causative gene. Although pollen germination was normal, confocal laser microscopy observations revealed deficiency in embryo sac development in tn-1. By marker analysis, the tn-1 locus was narrowed down to a 313 kb region on chromosome 12. Further analysis combined with mapping-by-sequencing identified CA12g21620, which encodes histidine kinase as a candidate gene. Phylogenetic analysis revealed CA12g21620 was the homolog of Arabidopsis CKI1 (Cytokinin Independent 1), which plays an important role in female gametophyte development, and CA12g21620 was designated as CaCKI1. Sequence analysis revealed that tn-1 has a 3-bp insertion in the 6th exon resulting in one lysine (K) residue insertion in receiver domain of CaCKI1, and the sequence nearby the insertion is widely conserved among CKI1 orthologs in various plants. This suggested that one K residue insertion may reduce the phosphorylation relay downstream of CaCKI1 and impair normal development of female gametophyte, resulting in seedless fruits production in tn-1. Furthermore, we demonstrated that virus-induced gene silencing of CaCKI1 reduced normally developed female gametophyte in chili pepper. This study describes the significant role of CaCKI1 in seed development in chili pepper and the possibility of developing seedless cultivars using its mutation.
Collapse
Affiliation(s)
- Takahiro Maki
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Hirokazu Kusaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yuki Matsumoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Akira Yamazaki
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-Ku, Kyoto, 606-8502, Japan
- Faculty of Agriculture, Kindai University, Naka Machi, Nara, 631-8505, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Sho Ohno
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yoshiyuki Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-Ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
2
|
Gaccione L, Martina M, Barchi L, Portis E. A Compendium for Novel Marker-Based Breeding Strategies in Eggplant. PLANTS (BASEL, SWITZERLAND) 2023; 12:1016. [PMID: 36903876 PMCID: PMC10005326 DOI: 10.3390/plants12051016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The worldwide production of eggplant is estimated at about 58 Mt, with China, India and Egypt being the major producing countries. Breeding efforts in the species have mainly focused on increasing productivity, abiotic and biotic tolerance/resistance, shelf-life, the content of health-promoting metabolites in the fruit rather than decreasing the content of anti-nutritional compounds in the fruit. From the literature, we collected information on mapping quantitative trait loci (QTLs) affecting eggplant's traits following a biparental or multi-parent approach as well as genome-wide association (GWA) studies. The positions of QTLs were lifted according to the eggplant reference line (v4.1) and more than 700 QTLs were identified, here organized into 180 quantitative genomic regions (QGRs). Our findings thus provide a tool to: (i) determine the best donor genotypes for specific traits; (ii) narrow down QTL regions affecting a trait by combining information from different populations; (iii) pinpoint potential candidate genes.
Collapse
|
3
|
You Q, Li H, Wu J, Li T, Wang Y, Sun G, Li Z, Sun B. Mapping and validation of the epistatic D and P genes controlling anthocyanin biosynthesis in the peel of eggplant ( Solanum melongena L.) fruit. HORTICULTURE RESEARCH 2023; 10:uhac268. [PMID: 36789254 PMCID: PMC9923212 DOI: 10.1093/hr/uhac268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Fruit color is an important trait influencing the commercial value of eggplant fruits. Three dominant genes (D, P and Y) cooperatively control the anthocyanin coloration in eggplant fruits, but none has been mapped. In this study, two white-fruit accessions (19 141 and 19 147) and their F2 progeny, with 9:7 segregation ratio of anthocyanin pigmented versus non-pigmented fruits, were used for mapping the D and P genes. A high-density genetic map was constructed with 5270 SNPs spanning 1997.98 cM. Three QTLs were identified, including two genes on chromosome 8 and one on chromosome 10. Gene expression analyses suggested that the SmANS on chromosome 8 and SmMYB1 on chromosome 10 were the putative candidate genes for P and D, respectively. We further identified (1) a SNP leading to a premature stop codon within the conserved PLN03176 domain of SmANS in 19 141, (2) a G base InDel in the promoter region leading to an additional cis-regulatory element and (3) a 6-bp InDel within the R2-MYB DNA binding domain of SmMYB1, in 19 147. Subsequently, these three variations were validated by PARMS technology as related to phenotypes in the F2 population. Moreover, silencing of SmANS or SmMYB1 in the purple red fruits of F1 (E3316) led to inhibition of anthocyanin biosynthesis in the peels. Conversely, overexpression of SmANS or SmMYB1 restored anthocyanin biosynthesis in the calli of 19 141 and 19 147 respectively. Our findings demonstrated the epistatic interactions underlying the white color of eggplant fruits, which can be potentially applied to breeding of eggplant fruit peel color.
Collapse
Affiliation(s)
| | | | | | - Tao Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Yikui Wang
- Institute of Vegetable, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | | | | | | |
Collapse
|
4
|
Guan W, Ke C, Tang W, Jiang J, Xia J, Xie X, Yang M, Duan C, Wu W, Zheng Y. Construction of a High-Density Recombination Bin-Based Genetic Map Facilitates High-Resolution Mapping of a Major QTL Underlying Anthocyanin Pigmentation in Eggplant. Int J Mol Sci 2022; 23:ijms231810258. [PMID: 36142175 PMCID: PMC9499331 DOI: 10.3390/ijms231810258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 02/08/2023] Open
Abstract
High-density genetic maps can significantly improve the resolution of QTL mapping. We constructed a high-density recombination bin-based genetic map of eggplant based on 200 F2 plants from an interspecific cross (Solanum melongena × S. incanum) using the whole genome resequencing strategy. The map was 2022.8 cM long, covering near 99% of the eggplant genome. The map contained 3776 bins, with 3644 (96.5%) being effective (position non-redundant) ones, giving a nominal average distance of 0.54 cM and an effective average distance of 0.56 cM between adjacent bins, respectively. Using this map and 172 F2:3 lines, a major QTL with pleiotropic effects on two anthocyanin pigmentation-related traits, leaf vein color (LVC) and fruit pericarp color (FPC), was steadily detected in a bin interval of 2.28 cM (or 1.68 Mb) on chromosome E10 in two cropping seasons, explaining ~65% and 55% of the phenotypic variation in LVC and FPC, respectively. Genome-wide association analysis in this population validated the QTL and demonstrated the correctness of mapping two bins of chromosome E02 onto E10. Bioinformatics analysis suggested that a WDR protein gene inside the bin interval with reliable effective variation between the two parents could be a possible candidate gene of the QTL.
Collapse
Affiliation(s)
- Wenxiang Guan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture/College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Changjiao Ke
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture/College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiqi Tang
- Marine and Agricultural Biotechnology Laboratory, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Jialong Jiang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture/College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Xia
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture/College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaofang Xie
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture/College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mei Yang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture/College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenfeng Duan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture/College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiren Wu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture/College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (W.W.); (Y.Z.)
| | - Yan Zheng
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture/College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (W.W.); (Y.Z.)
| |
Collapse
|
5
|
Sharif R, Su L, Chen X, Qi X. Hormonal interactions underlying parthenocarpic fruit formation in horticultural crops. HORTICULTURE RESEARCH 2022; 9:6497882. [PMID: 35031797 PMCID: PMC8788353 DOI: 10.1093/hr/uhab024] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 05/22/2023]
Abstract
In some horticultural crops, such as Cucurbitaceae, Solanaceae, and Rosaceae species, fruit set and development can occur without the fertilization of ovules, a process known as parthenocarpy. Parthenocarpy is an important agricultural trait that can not only mitigate fruit yield losses caused by environmental stresses but can also induce the development of seedless fruit, which is a desirable trait for consumers. In the present review, the induction of parthenocarpic fruit by the application of hormones such as auxins (2,4 dichlorophenoxyacetic acid; naphthaleneacetic acid), cytokinins (forchlorfenuron; 6-benzylaminopurine), gibberellic acids, and brassinosteroids is first presented. Then, the molecular mechanisms of parthenocarpic fruit formation, mainly related to plant hormones, are presented. Auxins, gibberellic acids, and cytokinins are categorized as primary players in initiating fruit set. Other hormones, such as ethylene, brassinosteroids, and melatonin, also participate in parthenocarpic fruit formation. Additionally, synergistic and antagonistic crosstalk between these hormones is crucial for deciding the fate of fruit set. Finally, we highlight knowledge gaps and suggest future directions of research on parthenocarpic fruit formation in horticultural crops.
Collapse
Affiliation(s)
- Rahat Sharif
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Li Su
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
- Corresponding authors. E-mail: ,
| | - Xiaohua Qi
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
6
|
Barchi L, Rabanus‐Wallace MT, Prohens J, Toppino L, Padmarasu S, Portis E, Rotino GL, Stein N, Lanteri S, Giuliano G. Improved genome assembly and pan-genome provide key insights into eggplant domestication and breeding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:579-596. [PMID: 33964091 PMCID: PMC8453987 DOI: 10.1111/tpj.15313] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 05/20/2023]
Abstract
Eggplant (Solanum melongena L.) is an important horticultural crop and one of the most widely grown vegetables from the Solanaceae family. It was domesticated from a wild, prickly progenitor carrying small, round, non-anthocyanic fruits. We obtained a novel, highly contiguous genome assembly of the eggplant '67/3' reference line, by Hi-C retrofitting of a previously released short read- and optical mapping-based assembly. The sizes of the 12 chromosomes and the fraction of anchored genes in the improved assembly were comparable to those of a chromosome-level assembly. We resequenced 23 accessions of S. melongena representative of the worldwide phenotypic, geographic, and genetic diversity of the species, and one each from the closely related species Solanum insanum and Solanum incanum. The eggplant pan-genome contained approximately 51.5 additional megabases and 816 additional genes compared with the reference genome, while the pan-plastome showed little genetic variation. We identified 53 selective sweeps related to fruit color, prickliness, and fruit shape in the nuclear genome, highlighting selection leading to the emergence of present-day S. melongena cultivars from its wild ancestors. Candidate genes underlying the selective sweeps included a MYBL1 repressor and CHALCONE ISOMERASE (for fruit color), homologs of Arabidopsis GLABRA1 and GLABROUS INFLORESCENCE STEMS2 (for prickliness), and orthologs of tomato FW2.2, OVATE, LOCULE NUMBER/WUSCHEL, SUPPRESSOR OF OVATE, and CELL SIZE REGULATOR (for fruit size/shape), further suggesting that selection for the latter trait relied on a common set of orthologous genes in tomato and eggplant.
Collapse
Affiliation(s)
- Lorenzo Barchi
- DISAFA – Plant geneticsUniversity of TurinGrugliasco (TO)10095Italy
| | | | - Jaime Prohens
- COMAVUniversitat Politècnica de ValènciaCamino de Vera 14Valencia46022Spain
| | - Laura Toppino
- CREA Research Centre for Genomics and BioinformaticsVia Paullese 28Montanaso LombardoLO26836Italy
| | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3Seeland06466Germany
| | - Ezio Portis
- DISAFA – Plant geneticsUniversity of TurinGrugliasco (TO)10095Italy
| | - Giuseppe Leonardo Rotino
- CREA Research Centre for Genomics and BioinformaticsVia Paullese 28Montanaso LombardoLO26836Italy
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3Seeland06466Germany
- Department of Crop SciencesCenter for Integrated Breeding Research (CiBreed)Georg‐August‐UniversityVon Siebold Str. 8Göttingen37075Germany
| | - Sergio Lanteri
- DISAFA – Plant geneticsUniversity of TurinGrugliasco (TO)10095Italy
| | | |
Collapse
|
7
|
A New Intra-Specific and High-Resolution Genetic Map of Eggplant Based on a RIL Population, and Location of QTLs Related to Plant Anthocyanin Pigmentation and Seed Vigour. Genes (Basel) 2020; 11:genes11070745. [PMID: 32635424 PMCID: PMC7397344 DOI: 10.3390/genes11070745] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022] Open
Abstract
Eggplant is the second most important solanaceous berry-producing crop after tomato. Despite mapping studies based on bi-parental progenies and GWAS approaches having been performed, an eggplant intraspecific high-resolution map is still lacking. We developed a RIL population from the intraspecific cross ‘305E40’, (androgenetic introgressed line carrying the locus Rfo-Sa1 conferring Fusarium resistance) x ‘67/3’ (breeding line whose genome sequence was recently released). One hundred and sixty-three RILs were genotyped by a genotype-by-sequencing (GBS) approach, which allowed us to identify 10,361 polymorphic sites. Overall, 267 Gb of sequencing data were generated and ~773 M Illumina paired end (PE) reads were mapped against the reference sequence. A new linkage map was developed, including 7249 SNPs assigned to the 12 chromosomes and spanning 2169.23 cM, with iaci@liberoan average distance of 0.4 cM between adjacent markers. This was used to elucidate the genetic bases of seven traits related to anthocyanin content in different organs recorded in three locations as well as seed vigor. Overall, from 7 to 17 QTLs (at least one major QTL) were identified for each trait. These results demonstrate that our newly developed map supplies valuable information for QTL fine mapping, candidate gene identification, and the development of molecular markers for marker assisted selection (MAS) of favorable alleles.
Collapse
|
8
|
Loss of function of the Pad-1 aminotransferase gene, which is involved in auxin homeostasis, induces parthenocarpy in Solanaceae plants. Proc Natl Acad Sci U S A 2020; 117:12784-12790. [PMID: 32461365 DOI: 10.1073/pnas.2001211117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fruit development normally occurs after pollination and fertilization; however, in parthenocarpic plants, the ovary grows into the fruit without pollination and/or fertilization. Parthenocarpy has been recognized as a highly attractive agronomic trait because it could stabilize fruit yield under unfavorable environmental conditions. Although natural parthenocarpic varieties are useful for breeding Solanaceae plants, their use has been limited, and little is known about their molecular and biochemical mechanisms. Here, we report a parthenocarpic eggplant mutant, pad-1, which accumulates high levels of auxin in the ovaries. Map-based cloning showed that the wild-type (WT) Pad-1 gene encoded an aminotransferase with similarity to Arabidopsis VAS1 gene, which is involved in auxin homeostasis. Recombinant Pad-1 protein catalyzed the conversion of indole-3-pyruvic acid (IPyA) to tryptophan (Trp), which is a reverse reaction of auxin biosynthetic enzymes, tryptophan aminotransferases (TAA1/TARs). The RNA level of Pad-1 gene increased during ovary development and reached its highest level at anthesis stage in WT. This suggests that the role of Pad-1 in WT unpollinated ovary is to prevent overaccumulation of IAA resulting in precocious fruit-set. Furthermore, suppression of the orthologous genes of Pad-1 induced parthenocarpic fruit development in tomato and pepper plants. Our results demonstrated that the use of pad-1 genes would be powerful tools to improve fruit production of Solanaceae plants.
Collapse
|
9
|
Wei Q, Wang W, Hu T, Hu H, Wang J, Bao C. Construction of a SNP-Based Genetic Map Using SLAF-Seq and QTL Analysis of Morphological Traits in Eggplant. Front Genet 2020; 11:178. [PMID: 32218801 PMCID: PMC7078336 DOI: 10.3389/fgene.2020.00178] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/13/2020] [Indexed: 01/09/2023] Open
Abstract
Eggplant (Solanum melongena; 2n = 24) is an economically important fruit crop of the family Solanaceae that was domesticated in India and Southeast Asia. Construction of a high-resolution genetic map and map-based gene mining in eggplant have lagged behind other crops within the family such as tomato and potato. In this study, we conducted high-throughput single nucleotide polymorphism (SNP) discovery in the eggplant genome using specific length amplified fragment (SLAF) sequencing and constructed a high-density genetic map for the quantitative trait locus (QTL) analysis of multiple traits. An interspecific F2 population of 121 individuals was developed from the cross between cultivated eggplant "1836" and the wild relative S. linnaeanum "1809." Genomic DNA extracted from parental lines and the F2 population was subjected to high-throughput SLAF sequencing. A total of 111.74 Gb of data and 487.53 million pair-end reads were generated. A high-resolution genetic map containing 2,122 SNP markers and 12 linkage groups was developed for eggplant, which spanned 1530.75 cM, with an average distance of 0.72 cM between adjacent markers. A total of 19 QTLs were detected for stem height and fruit and leaf morphology traits of eggplant, explaining 4.08-55.23% of the phenotypic variance. These QTLs were distributed on nine linkage groups (LGs), but not on LG2, 4, and 9. The number of SNPs ranged from 2 to 11 within each QTL, and the genetic interval varied from 0.15 to 10.53 cM. Overall, the results establish a foundation for the fine mapping of complex QTLs, candidate gene identification, and marker-assisted selection of favorable alleles in eggplant breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Chonglai Bao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Can H, Kal U, Ozyigit II, Paksoy M, Turkmen O. Construction, characteristics and high throughput molecular screening methodologies in some special breeding populations: a horticultural perspective. J Genet 2019. [DOI: 10.1007/s12041-019-1129-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Dexter-Boone A, Humphry M, Shi R, Lewis RS. Genetic Control of Facultative Parthenocarpy in Nicotiana tabacum L. J Hered 2019; 110:610-617. [PMID: 31002335 DOI: 10.1093/jhered/esz025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/16/2019] [Indexed: 11/13/2022] Open
Abstract
Investigation of parthenocarpy, the production of fruit without fertilization, in multiple plant species could result in development of technologies for conferring seedless fruits and increased stability of fruit formation in economically important plants. We studied parthenocarpy in the model species Nicotiana tabacum L., and observed variability for expression of the trait among diverse genetic materials. Parthenocarpy was found to be partially dominant, and a single major quantitative trait locus on linkage group 22 was found to control the trait in a doubled haploid mapping population derived from a cross between parthenocarpic cigar tobacco cultivar "Beinhart 1000" and nonparthenocarpic flue-cured tobacco cultivar, "Hicks." The same genomic region was found to be involved with control of the trait in the important flue-cured tobacco cultivar, "K326." We also investigated the potential for the production of maternal haploids due to parthenogenesis in parthenocarpic tobacco seed capsules. Maternal haploids were not observed in parthenocarpic capsules, suggesting a requirement of fertilization for maternal haploid production due to parthenogenesis in N. tabacum.
Collapse
Affiliation(s)
- Abigail Dexter-Boone
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC
| | - Matt Humphry
- British American Tobacco (Investments) Ltd, Cambridge, UK
| | - Rui Shi
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC
| | - Ramsey S Lewis
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC
| |
Collapse
|
12
|
Li J, Xu J, Guo QW, Wu Z, Zhang T, Zhang KJ, Cheng CY, Zhu PY, Lou QF, Chen JF. Proteomic insight into fruit set of cucumber (Cucumis sativus L.) suggests the cues of hormone-independent parthenocarpy. BMC Genomics 2017; 18:896. [PMID: 29166853 PMCID: PMC5700656 DOI: 10.1186/s12864-017-4290-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Parthenocarpy is an excellent agronomic trait that enables crops to set fruit in the absence of pollination and fertilization, and therefore to produce seedless fruit. Although parthenocarpy is widely recognized as a hormone-dependent process, hormone-insensitive parthenocarpy can also be observed in cucumber; however, its mechanism is poorly understood. To improve the global understanding of parthenocarpy and address the hormone-insensitive parthenocarpy shown in cucumber, we conducted a physiological and proteomic analysis of differently developed fruits. RESULTS Physiological analysis indicated that the natural hormone-insensitive parthenocarpy of 'EC1' has broad hormone-inhibitor resistance, and the endogenous hormones in the natural parthenocarpy (NP) fruits were stable and relatively lower than those of the non-parthenocarpic cultivar '8419 s-1.' Based on the iTRAQ technique, 683 fruit developmental proteins were identified from NP, cytokinin-induced parthenocarpic (CP), pollinated and unpollinated fruits. Gene Ontology (GO) analysis showed that proteins detected from both set and aborted fruits were involved in similar biological processes, such as cell growth, the cell cycle, cell death and communication. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that 'protein synthesis' was the major biological process that differed between fruit set and fruit abortion. Clustering analysis revealed that different protein expression patterns were involved in CP and NP fruits. Forty-one parthenocarpy-specialized DEPs (differentially expressed proteins) were screened and divided into two distinctive groups: NP-specialized proteins and CP-specialized proteins. Furthermore, qRT-PCR and western blot analysis indicated that NP-specialized proteins showed hormone- or hormone-inhibitor insensitive expression patterns in both ovaries and seedlings. CONCLUSIONS In this study, the global molecular regulation of fruit development in cucumber was revealed at the protein level. Physiological and proteomic comparisons indicated the presence of hormone-independent parthenocarpy and suppression of fruit abortion in cucumber. The proteomic analysis suggested that hormone-independent parthenocarpy is regulated by hormone-insensitive proteins such as the NP-specialized proteins. Moreover, the regulation of fruit abortion suppression may be closely related to protein synthesis pathways.
Collapse
Affiliation(s)
- Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin-Wei Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhe Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ting Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai-Jing Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun-Yan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pin-Yu Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qun-Feng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin-Feng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
13
|
Chen X, Zhang M, Tan J, Huang S, Wang C, Zhang H, Tan T. Comparative transcriptome analysis provides insights into molecular mechanisms for parthenocarpic fruit development in eggplant (Solanum melongena L.). PLoS One 2017; 12:e0179491. [PMID: 28604820 PMCID: PMC5467848 DOI: 10.1371/journal.pone.0179491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 05/31/2017] [Indexed: 11/19/2022] Open
Abstract
Genetic control of parthenocarpy, a desirable trait in edible fruit with hard seeds, has been extensively studied. However, the molecular mechanism of parthenocarpic fruit development in eggplant (Solanum melongena L.) is still unclear. To provide insights into eggplant parthenocarpy, the transcriptomic profiles of a natural parthenocarpic (PP05) and two non-parthenocarpic (PnP05 and GnP05) eggplant lines were analyzed using RNA-sequencing (RNA-seq) technology. These sequences were assembled into 38925 unigenes, of which 22683 had an annotated function and 3419 were predicted as novel genes or from alternative splicing. 4864 and 1592 unigenes that were identified as DEGs between comparison groups PP05 vs PnP05 and PP05 vs GnP05, respectively. 506 common DEGs were found contained in both comparison groups, including 258 up-regulated and 248 down-regulated genes. Functional enrichment analyses identified many common or specific biological processes and gene set potentially associated with plant development. The most pronounced findings are that differentially regulated genes potentially-related with auxin signaling between parthenocarpic and non-parthenocarpic eggplants, e.g. calcium-binding protein PBP1 and transcription factor E2FB, which mediate the auxin distribution and auxin-dependent cell division, respectively, are up-regulated in the PP05; whereas homologs of GH3.1 and AUX/IAA, which are involved in inactivation of IAA and interference of auxin signaling, respectively, are down-regulated in PP05. Furthermore, gibberellin and cytokinin signaling genes and genes related to flower development were found differentially regulated between these eggplant lines. The present study provides comprehensive transcriptomic profiles of eggplants with or without parthenocarpic capacity. The information will deepen our understanding of the molecular mechanisms of eggplant parthenocarpy. The DEGs, especially these filtered from PP05 vs PnP05 + GnP05, will be valuable for further investigation of key genes involved in the parthenocarpic fruit development and genomics-assisted breeding.
Collapse
Affiliation(s)
- Xia Chen
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, China
| | - Min Zhang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, China
| | - Jie Tan
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, China
| | - Shuping Huang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, China
| | - Chunli Wang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, China
| | - Hongyuan Zhang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, China
| | - Taiming Tan
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
14
|
Lietzow CD, Zhu H, Pandey S, Havey MJ, Weng Y. QTL mapping of parthenocarpic fruit set in North American processing cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2387-2401. [PMID: 27581542 DOI: 10.1007/s00122-016-2778-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Through a novel phenotyping method, four QTLs were consistently associated with increased parthenocarpic fruit set in North American processing cucumber that accounted for over 75 % of observed phenotypic variation. Parthenocarpy is a desirable trait with potential for increasing yield and quality in processing cucumber production. Although many successful parthenocarpic fresh market cucumber varieties have been developed, the genetic and molecular mechanisms behind parthenocarpic expression in cucumber remain largely unknown. Since parthenocarpy is an important yield component, it is difficult to separate the true parthenocarpic character from other yield related traits. In the present study, we developed a novel phenotypic approach for parthenocarpic fruit set focusing on early fruit development. Two hundred and five F3 families derived from a cross between the highly parthenocarpic line 2A and low parthenocarpic line Gy8 were phenotypically evaluated in three greenhouse experiments. Seven QTLs associated with parthenocarpic fruit set were detected. Among them, one each on chromosomes 5 and 7 (parth5.1 and parth7.1) and two on chromosome 6 (parth6.1 and parth6.2) were consistently identified in all experiments, but their relative contribution to the total phenotypic variation was dependent on plant growth stages. While each of the four QTLs had almost equal contribution to the expression of the trait at commercial harvest stage, parth7.1 played an important role in early parthenocarpic fruit set. The results suggested that parthenocarpic fruit set can be accurately evaluated with as few as 20 nodes of growth. The QTLs identified in this study for parthenocarpic fruit set are a valuable resource for cucumber breeders interested in developing parthenocarpic cultivars and to researchers interested in the genetic and molecular mechanisms of parthenocarpic fruit set.
Collapse
Affiliation(s)
- Calvin D Lietzow
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Huayu Zhu
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sudhakar Pandey
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, 221 305, India
| | - Michael J Havey
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
15
|
Dash PK, Rai R. Translating the "Banana Genome" to Delineate Stress Resistance, Dwarfing, Parthenocarpy and Mechanisms of Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2016; 7:1543. [PMID: 27833619 PMCID: PMC5080353 DOI: 10.3389/fpls.2016.01543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 09/30/2016] [Indexed: 05/07/2023]
Abstract
Evolutionary frozen, genetically sterile and globally iconic fruit "Banana" remained untouched by the green revolution and, as of today, researchers face intrinsic impediments for its varietal improvement. Recently, this wonder crop entered the genomics era with decoding of structural genome of double haploid Pahang (AA genome constitution) genotype of Musa acuminata. Its complex genome decoded by hybrid sequencing strategies revealed panoply of genes and transcription factors involved in the process of sucrose conversion that imparts sweetness to its fruit. Historically, banana has faced the wrath of pandemic bacterial, fungal, and viral diseases and multitude of abiotic stresses that has ruined the livelihood of small/marginal farmers' and destroyed commercial plantations. Decoding structural genome of this climacteric fruit has given impetus to a deeper understanding of the repertoire of genes involved in disease resistance, understanding the mechanism of dwarfing to develop an ideal plant type, unraveling the process of parthenocarpy, and fruit ripening for better fruit quality. Further, injunction of comparative genomics will usher in integration of information from its decoded genome and other monocots into field applications in banana related but not limited to yield enhancement, food security, livelihood assurance, and energy sustainability. In this mini review, we discuss pre- and post-genomic discoveries and highlight accomplishments in structural genomics, genetic engineering and forward genetic accomplishments with an aim to target genes and transcription factors for translational research in banana.
Collapse
Affiliation(s)
- Prasanta K. Dash
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | | |
Collapse
|
16
|
Wu Z, Zhang T, Li L, Xu J, Qin X, Zhang T, Cui L, Lou Q, Li J, Chen J. Identification of a stable major-effect QTL (Parth 2.1) controlling parthenocarpy in cucumber and associated candidate gene analysis via whole genome re-sequencing. BMC PLANT BIOLOGY 2016; 16:182. [PMID: 27553196 PMCID: PMC4995632 DOI: 10.1186/s12870-016-0873-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 08/15/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Parthenocarpy is an important trait for yield and quality in many plants. But due to its complex interactions with genetic and physiological factors, it has not been adequately understood and applied to breeding and production. Finding novel and effective quantitative trait loci (QTLs) is a critical step towards understanding its genetic mechanism. Cucumber (Cucumis sativus L.) is a typical parthenocarpic plant but the QTLs controlling parthenocarpy in cucumber were not mapped on chromosomes, and the linked markers were neither user-friendly nor confirmed by previous studies. Hence, we conducted a two-season QTL study of parthenocarpy based on the cucumber genome with 145 F2:3 families derived from a cross between EC1 (a parthenocarpic inbred line) and 8419 s-1 (a non-parthenocarpic inbred line) in order to map novel QTLs. Whole genome re-sequencing was also performed both to develop effective linked markers and to predict candidate genes. RESULTS A genetic linkage map, employing 133 Simple Sequence Repeats (SSR) markers and nine Insertion/Deletion (InDel) markers spanning 808.1 cM on seven chromosomes, was constructed from an F2 population. Seven novel QTLs were identified on chromosomes 1, 2, 3, 5 and 7. Parthenocarpy 2.1 (Parth2.1), a QTL on chromosome 2, was a major-effect QTL with a logarithm of odds (LOD) score of 9.0 and phenotypic variance explained (PVE) of 17.0 % in the spring season and with a LOD score of 6.2 and PVE of 10.2 % in the fall season. We confirmed this QTL using a residual heterozygous line97-5 (RHL97-5). Effectiveness of linked markers of the Parth2.1 was validated in F3:4 population and in 21 inbred lines. Within this region, there were 57 genes with nonsynonymous SNPs/InDels in the coding sequence. Based on further combined analysis with transcriptome data between two parents, CsARF19, CsWD40, CsEIN1, CsPPR, CsHEXO3, CsMDL, CsDJC77 and CsSMAX1 were predicted as potential candidate genes controlling parthenocarpy. CONCLUSIONS A major-effect QTL Parth2.1 and six minor-effect QTLs mainly contribute to the genetic architecture of parthenocarpy in cucumber. SSR16226 and Indel-T-39 can be used in marker-assisted selection (MAS) of cucumber breeding. Whole genome re-sequencing enhances the efficiency of polymorphic marker development and prediction of candidate genes.
Collapse
Affiliation(s)
- Zhe Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- College of Horticulture, Shanxi Agricultural University, Shanxi, 030801 China
| | - Ting Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lei Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jian Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaodong Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tinglin Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Li Cui
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
17
|
Sardos J, Rouard M, Hueber Y, Cenci A, Hyma KE, van den Houwe I, Hribova E, Courtois B, Roux N. A Genome-Wide Association Study on the Seedless Phenotype in Banana (Musa spp.) Reveals the Potential of a Selected Panel to Detect Candidate Genes in a Vegetatively Propagated Crop. PLoS One 2016; 11:e0154448. [PMID: 27144345 PMCID: PMC4856271 DOI: 10.1371/journal.pone.0154448] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/13/2016] [Indexed: 11/19/2022] Open
Abstract
Banana (Musa sp.) is a vegetatively propagated, low fertility, potentially hybrid and polyploid crop. These qualities make the breeding and targeted genetic improvement of this crop a difficult and long process. The Genome-Wide Association Study (GWAS) approach is becoming widely used in crop plants and has proven efficient to detecting candidate genes for traits of interest, especially in cereals. GWAS has not been applied yet to a vegetatively propagated crop. However, successful GWAS in banana would considerably help unravel the genomic basis of traits of interest and therefore speed up this crop improvement. We present here a dedicated panel of 105 accessions of banana, freely available upon request, and their corresponding GBS data. A set of 5,544 highly reliable markers revealed high levels of admixture in most accessions, except for a subset of 33 individuals from Papua. A GWAS on the seedless phenotype was then successfully applied to the panel. By applying the Mixed Linear Model corrected for both kinship and structure as implemented in TASSEL, we detected 13 candidate genomic regions in which we found a number of genes potentially linked with the seedless phenotype (i.e. parthenocarpy combined with female sterility). An additional GWAS performed on the unstructured Papuan subset composed of 33 accessions confirmed six of these regions as candidate. Out of both sets of analyses, one strong candidate gene for female sterility, a putative orthologous gene to Histidine Kinase CKI1, was identified. The results presented here confirmed the feasibility and potential of GWAS when applied to small sets of banana accessions, at least for traits underpinned by a few loci. As phenotyping in banana is extremely space and time-consuming, this latest finding is of particular importance in the context of banana improvement.
Collapse
Affiliation(s)
- Julie Sardos
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Yann Hueber
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Alberto Cenci
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Katie E. Hyma
- Institute of Biotechnology, Genomic Diversity Facility, Cornell University, Ithaca, NY, 14853, United States of America
| | | | - Eva Hribova
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Nicolas Roux
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| |
Collapse
|
18
|
Miyatake K, Saito T, Negoro S, Yamaguchi H, Nunome T, Ohyama A, Fukuoka H. Detailed mapping of a resistance locus against Fusarium wilt in cultivated eggplant (Solanum melongena). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:357-67. [PMID: 26582508 DOI: 10.1007/s00122-015-2632-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 10/09/2015] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE This is the first report on genetic mapping of a resistance locus against Fusarium wilt caused by the plant pathogen Fusarium oxysporum f. sp. melongenae in cultivated eggplant. ABSTRACT Fusarium wilt, caused by the plant pathogen Fusarium oxysporum f. sp. melongenae, is a major soil-borne disease threatening stable production in eggplant (Solanum melongena). Although three eggplant germplasms, LS1934, LS174, and LS2436, are known to be highly resistant to the pathogen, their resistance loci have not been mapped. In this study, we performed quantitative trait locus analyses in F2:3 populations and detected a resistance locus, FM1, at the end of chromosome 2, with two alleles, Fm1(L) and Fm1(E), in the F2 populations LWF2 [LS1934 × WCGR112-8 (susceptible)] and EWF2 [EPL-1 (derived from LS174) × WCGR112-8], respectively. The percentage of phenotypic variance explained by Fm1(L) derived from LS1934 was 75.0% [Logarithm of the odds (LOD) = 29.3], and that explained by Fm1(E) derived from EPL-1 was 92.2% (LOD = 65.8). Using backcrossed inbred lines, we mapped FM1 between two simple sequence repeat markers located ~4.881 cM apart from each other. Comparing the location of the above locus to those of previously reported ones, the resistance locus Rfo-sa1 from an eggplant ally (Solanum aethiopicum gr. Gilo) was mapped very close to FM1, whereas another resistance locus, from LS2436, was mapped to the middle of chromosome 4. This is the first report of mapping of a Fusarium resistance locus in cultivated eggplant. The availability of resistance-linked markers will enable the application of marker-assisted selection to overcome problems posed by self-incompatibility and introduction of negative traits because of linkage drag, and will lead to clear understanding of genetic mechanism of Fusarium resistance.
Collapse
Affiliation(s)
- Koji Miyatake
- NARO Institute of Vegetable and Tea Science (NIVTS), 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan.
| | - Takeo Saito
- NARO Institute of Vegetable and Tea Science (NIVTS), 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| | - Satomi Negoro
- NARO Institute of Vegetable and Tea Science (NIVTS), 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| | - Hirotaka Yamaguchi
- NARO Institute of Vegetable and Tea Science (NIVTS), 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| | - Tsukasa Nunome
- NARO Institute of Vegetable and Tea Science (NIVTS), 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| | - Akio Ohyama
- NARO Institute of Vegetable and Tea Science (NIVTS), 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| | - Hiroyuki Fukuoka
- NARO Institute of Vegetable and Tea Science (NIVTS), 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| |
Collapse
|
19
|
Rinaldi R, Van Deynze A, Portis E, Rotino GL, Toppino L, Hill T, Ashrafi H, Barchi L, Lanteri S. New Insights on Eggplant/Tomato/Pepper Synteny and Identification of Eggplant and Pepper Orthologous QTL. FRONTIERS IN PLANT SCIENCE 2016; 7:1031. [PMID: 27486463 PMCID: PMC4948011 DOI: 10.3389/fpls.2016.01031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/30/2016] [Indexed: 05/20/2023]
Abstract
Eggplant, pepper, and tomato are the most exploited berry-producing vegetables within the Solanaceae family. Their genomes differ in size, but each has 12 chromosomes which have undergone rearrangements causing a redistribution of loci. The genome sequences of all three species are available but differ in coverage, assembly quality and percentage of anchorage. Determining their syntenic relationship and QTL orthology will contribute to exploit genomic resources and genetic data for key agronomic traits. The syntenic analysis between tomato and pepper based on the alignment of 34,727 tomato CDS to the pepper genome sequence, identified 19,734 unique hits. The resulting synteny map confirmed the 14 inversions and 10 translocations previously documented, but also highlighted 3 new translocations and 4 major new inversions. Furthermore, each of the 12 chromosomes exhibited a number of rearrangements involving small regions of 0.5-0.7 Mbp. Due to high fragmentation of the publicly available eggplant genome sequence, physical localization of most eggplant QTL was not possible, thus, we compared the organization of the eggplant genetic map with the genome sequence of both tomato and pepper. The eggplant/tomato syntenic map confirmed all the 10 translocations but only 9 of the 14 known inversions; on the other hand, a newly detected inversion was recognized while another one was not confirmed. The eggplant/pepper syntenic map confirmed 10 translocations and 8 inversions already detected and suggested a putative new translocation. In order to perform the assessment of eggplant and pepper QTL orthology, the eggplant and pepper sequence-based markers located in their respective genetic map were aligned onto the pepper genome. GBrowse in pepper was used as reference platform for QTL positioning. A set of 151 pepper QTL were located as well as 212 eggplant QTL, including 76 major QTL (PVE ≥ 10%) affecting key agronomic traits. Most were confirmed to cluster in orthologous chromosomal regions. Our results highlight that the availability of genome sequences for an increasing number of crop species and the development of "ultra-dense" physical maps provide new and key tools for detailed syntenic and orthology studies between related plant species.
Collapse
Affiliation(s)
- Riccardo Rinaldi
- DISAFA Plant Genetics and Breeding, University of TurinTurin, Italy
- Seed Biotechnology Center, University of California, DavisDavis, CA, USA
| | - Allen Van Deynze
- Seed Biotechnology Center, University of California, DavisDavis, CA, USA
| | - Ezio Portis
- DISAFA Plant Genetics and Breeding, University of TurinTurin, Italy
| | | | - Laura Toppino
- CREA-ORL Research Unit for Vegetable CropsMontanaso Lombardo, Italy
| | - Theresa Hill
- Seed Biotechnology Center, University of California, DavisDavis, CA, USA
| | - Hamid Ashrafi
- Seed Biotechnology Center, University of California, DavisDavis, CA, USA
| | - Lorenzo Barchi
- DISAFA Plant Genetics and Breeding, University of TurinTurin, Italy
- *Correspondence: Lorenzo Barchi
| | - Sergio Lanteri
- DISAFA Plant Genetics and Breeding, University of TurinTurin, Italy
| |
Collapse
|
20
|
Toppino L, Barchi L, Lo Scalzo R, Palazzolo E, Francese G, Fibiani M, D'Alessandro A, Papa V, Laudicina VA, Sabatino L, Pulcini L, Sala T, Acciarri N, Portis E, Lanteri S, Mennella G, Rotino GL. Mapping Quantitative Trait Loci Affecting Biochemical and Morphological Fruit Properties in Eggplant (Solanum melongena L.). FRONTIERS IN PLANT SCIENCE 2016; 7:256. [PMID: 26973692 PMCID: PMC4777957 DOI: 10.3389/fpls.2016.00256] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/15/2016] [Indexed: 05/19/2023]
Abstract
Eggplant berries are a source of health-promoting metabolites including antioxidant and nutraceutical compounds, mainly anthocyanins and chlorogenic acid; however, they also contain some anti-nutritional compounds such as steroidal glycoalkaloids (SGA) and saponins, which are responsible for the bitter taste of the flesh and with potential toxic effects on humans. Up to now, Quantitative Trait Loci (QTL) for the metabolic content are far from being characterized in eggplant, thus hampering the application of breeding programs aimed at improving its fruit quality. Here we report on the identification of some QTL for the fruit metabolic content in an F2 intraspecific mapping population of 156 individuals, obtained by crossing the eggplant breeding lines "305E40" × "67/3." The same population was previously employed for the development of a RAD-tag based linkage map and the identification of QTL associated to morphological and physiological traits. The mapping population was biochemically characterized for both fruit basic qualitative data, like dry matter, °Brix, sugars, and organic acids, as well as for health-related compounds such chlorogenic acid, (the main flesh monomeric phenol), the two peel anthocyanins [i.e., delphinidin-3-rutinoside (D3R) and delphinidin-3-(p- coumaroylrutinoside)-5-glucoside (nasunin)] and the two main steroidal glycoalkaloids, solasonine, and solamargine. For most of the traits, one major QTL (PVE ≥10%) was spotted and putative orthologies with other Solanaceae crops are discussed. The present results supply valuable information to eggplant breeders on the inheritance of key fruit quality traits, thus providing potential tools to assist future breeding programs.
Collapse
Affiliation(s)
- Laura Toppino
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-ORL, Unità di Ricerca per l'OrticolturaMontanaso Lombardo, Italy
| | - Lorenzo Barchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Plant Genetics and Breeding, University of TurinTurin, Italy
| | - Roberto Lo Scalzo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-IAA, Unità di Ricerca per i Processi dell'Industria AgroalimentareMilano, Italy
| | - Eristanna Palazzolo
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di PalermoPalermo, Italy
| | - Gianluca Francese
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-ORT, Centro di Ricerca per l'OrticolturaPontecagnano-Faiano, Italy
| | - Marta Fibiani
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-IAA, Unità di Ricerca per i Processi dell'Industria AgroalimentareMilano, Italy
| | - Antonietta D'Alessandro
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-ORT, Centro di Ricerca per l'OrticolturaPontecagnano-Faiano, Italy
| | - Vincenza Papa
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-IAA, Unità di Ricerca per i Processi dell'Industria AgroalimentareMilano, Italy
| | - Vito A. Laudicina
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di PalermoPalermo, Italy
| | - Leo Sabatino
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di PalermoPalermo, Italy
| | - Laura Pulcini
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-ORA, Unità di Ricerca per l'OrticolturaMonsampolo del Tronto, Italy
| | - Tea Sala
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-ORL, Unità di Ricerca per l'OrticolturaMontanaso Lombardo, Italy
| | - Nazzareno Acciarri
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-ORA, Unità di Ricerca per l'OrticolturaMonsampolo del Tronto, Italy
| | - Ezio Portis
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Plant Genetics and Breeding, University of TurinTurin, Italy
| | - Sergio Lanteri
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Plant Genetics and Breeding, University of TurinTurin, Italy
| | - Giuseppe Mennella
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-ORT, Centro di Ricerca per l'OrticolturaPontecagnano-Faiano, Italy
| | - Giuseppe L. Rotino
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-ORL, Unità di Ricerca per l'OrticolturaMontanaso Lombardo, Italy
- *Correspondence: Giuseppe L. Rotino
| |
Collapse
|
21
|
SmARF8, a transcription factor involved in parthenocarpy in eggplant. Mol Genet Genomics 2015; 291:93-105. [PMID: 26174736 DOI: 10.1007/s00438-015-1088-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Parthenocarpic fruit is a very attractive trait for consumers and especially in eggplants where seeds can lead to browning of the flesh and bitterness. However, the molecular mechanisms underlying parthenocarpy in eggplant still remain unknown. Some auxin response factors have been previously shown in model species, such as Arabidopsis and tomato, to play an important role in such a process. Here, we have identified a natural parthenocarpic mutant and showed that ARF8 from eggplant (SmARF8), is down-regulated in buds compared to wild-type plants. Further characterization of SmARF8 showed that it is a nuclear protein and an active transcriptional regulator. We determined that amino acids 629-773 of SmARF8 act as the transcriptional activation domain, the C terminus of SmARF8 is the protein-binding domain, and that SmARF8 might form homodimers. Expression analysis in eggplant showed that SmARF8 is expressed ubiquitously in all tissues and organs and is responsive to auxin. Eggplant transgenic lines harboring RNA interference of SmARF8 exhibited parthenocarpy in unfertilized flowers, suggesting that SmARF8 negatively regulates fruit initiation. Interestingly, SmARF8-overexpressing Arabidopsis lines also induced parthenocarpy. These results indicate that SmARF8 could affect the dimerization of auxin/indole acetic acid repressors with SmARF8 via domains III and IV and thus induce fruit development. Furthermore, the introduction of SmARF8 full-length cDNA could partially complement the parthenocarpic phenotypes in Arabidopsis arf8-1 and arf8-4 mutants. Collectively, our results demonstrate that SmARF8 may act as a key negative regulator involved in parthenocarpic fruit development of eggplant. These findings give more insights into the conserved mechanisms leading to parthenocarpy in which auxin signaling plays a pivotal role, and provide potential target for eggplant breeding.
Collapse
|
22
|
Cericola F, Portis E, Lanteri S, Toppino L, Barchi L, Acciarri N, Pulcini L, Sala T, Rotino GL. Linkage disequilibrium and genome-wide association analysis for anthocyanin pigmentation and fruit color in eggplant. BMC Genomics 2014; 15:896. [PMID: 25311640 PMCID: PMC4210512 DOI: 10.1186/1471-2164-15-896] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/06/2014] [Indexed: 11/26/2022] Open
Abstract
Background The genome-wide association (GWA) approach represents an alternative to biparental linkage mapping for determining the genetic basis of trait variation. Both approaches rely on recombination to re-arrange the genome, and seek to establish correlations between phenotype and genotype. The major advantages of GWA lie in being able to sample a much wider range of the phenotypic and genotypic variation present, in being able to exploit multiple rounds of historical recombination in many different lineages and to include multiple accessions of direct relevance to crop improvement. Results A 191 accessions eggplant (Solanum melongena L.) association panel, comprising a mixture of breeding lines, old varieties and landrace selections originating from Asia and the Mediterranean Basin, was SNP genotyped and scored for anthocyanin pigmentation and fruit color at two locations over two years. The panel formed two major clusters, reflecting geographical provenance and fruit type. The global level of linkage disequilibrium was 3.4 cM. A mixed linear model appeared to be the most appropriate for GWA. A set of 56 SNP locus/phenotype associations was identified and the genomic regions harboring these loci were distributed over nine of the 12 eggplant chromosomes. The associations were compared with the location of known QTL for the same traits. Conclusion The GWA mapping approach was effective in validating a number of established QTL and, thanks to the wide diversity captured by the panel, was able to detect a series of novel marker/trait associations. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-896) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ezio Portis
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA) - Plant Genetics and Breeding, University of Torino, Largo P, Braccini 2, I-10095 Grugliasco, Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Portis E, Barchi L, Toppino L, Lanteri S, Acciarri N, Felicioni N, Fusari F, Barbierato V, Cericola F, Valè G, Rotino GL. QTL mapping in eggplant reveals clusters of yield-related loci and orthology with the tomato genome. PLoS One 2014; 9:e89499. [PMID: 24586828 PMCID: PMC3931786 DOI: 10.1371/journal.pone.0089499] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/21/2014] [Indexed: 11/18/2022] Open
Abstract
In spite of its widespread cultivation and nutritional and economic importance, the eggplant (Solanum melongena L.) genome has not been extensively explored. A lack of knowledge of the patterns of inheritance of key agronomic traits has hindered the exploitation of marker technologies to accelerate its genetic improvement. An already established F2 intraspecific population of eggplant bred from the cross ‘305E40’ x ‘67/3’ was phenotyped for 20 agronomically relevant traits at two sites. Up to seven quantitative trait loci (QTL) per trait were identified and the percentage of the phenotypic variance (PV) explained per QTL ranged from 4 to 93%. Not all the QTL were detectable at both sites, but for each trait at least one major QTL (PV explained ≥10%) was identified. Although no detectable QTL x environment interaction was found, some QTL identified were location-specific. Many of the fruit-related QTL clustered within specific chromosomal regions, reflecting either linkage and/or pleiotropy. Evidence for putative tomato orthologous QTL/genes was obtained for several of the eggplant QTL. Information regarding the inheritance of key agronomic traits was obtained. Some of the QTL, along with their respective linked markers, may be useful in the context of marker-assisted breeding.
Collapse
Affiliation(s)
- Ezio Portis
- DISAFA - Plant Genetics and Breeding, University of Torino, Grugliasco, Torino, Italy
| | - Lorenzo Barchi
- DISAFA - Plant Genetics and Breeding, University of Torino, Grugliasco, Torino, Italy
| | - Laura Toppino
- Consiglio per la Ricerca e Sperimentazione in Agricoltura - CRA-ORL, Research Unit for Vegetable Crops, Montanaso Lombardo, Lodi, Italy
| | - Sergio Lanteri
- DISAFA - Plant Genetics and Breeding, University of Torino, Grugliasco, Torino, Italy
| | - Nazzareno Acciarri
- Consiglio per la Ricerca e Sperimentazione in Agricoltura - CRA-ORA, Research Unit for Vegetable Crops, Monsampolo del Tronto, Ascoli Piceno, Italy
| | - Nazzareno Felicioni
- Consiglio per la Ricerca e Sperimentazione in Agricoltura - CRA-ORA, Research Unit for Vegetable Crops, Monsampolo del Tronto, Ascoli Piceno, Italy
| | - Fabio Fusari
- Consiglio per la Ricerca e Sperimentazione in Agricoltura - CRA-ORA, Research Unit for Vegetable Crops, Monsampolo del Tronto, Ascoli Piceno, Italy
| | - Valeria Barbierato
- Consiglio per la Ricerca e Sperimentazione in Agricoltura - CRA-ORL, Research Unit for Vegetable Crops, Montanaso Lombardo, Lodi, Italy
| | - Fabio Cericola
- DISAFA - Plant Genetics and Breeding, University of Torino, Grugliasco, Torino, Italy
| | - Giampiero Valè
- Consiglio per la Ricerca e Sperimentazione in Agricoltura - CRA-GPG, Genomic Research Centre, Fiorenzuola d'Arda, Piacenza, Italy ; Consiglio per la Ricerca e Sperimentazione in Agricoltura - CRA-RIS, Rice Research Unit, Vercelli, Italy
| | - Giuseppe Leonardo Rotino
- Consiglio per la Ricerca e Sperimentazione in Agricoltura - CRA-ORL, Research Unit for Vegetable Crops, Montanaso Lombardo, Lodi, Italy
| |
Collapse
|
24
|
Cericola F, Portis E, Toppino L, Barchi L, Acciarri N, Ciriaci T, Sala T, Rotino GL, Lanteri S. The population structure and diversity of eggplant from Asia and the Mediterranean Basin. PLoS One 2013; 8:e73702. [PMID: 24040032 PMCID: PMC3765357 DOI: 10.1371/journal.pone.0073702] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/22/2013] [Indexed: 11/18/2022] Open
Abstract
A collection of 238 eggplant breeding lines, heritage varieties and selections within local landraces provenanced from Asia and the Mediterranean Basin was phenotyped with respect to key plant and fruit traits, and genotyped using 24 microsatellite loci distributed uniformly throughout the genome. STRUCTURE analysis based on the genotypic data identified two major sub-groups, which to a large extent mirrored the provenance of the entries. With the goal to identify true-breeding types, 38 of the entries were discarded on the basis of microsatellite-based residual heterozygosity, along with a further nine which were not phenotypically uniform. The remaining 191 entries were scored for a set of 19 fruit and plant traits in a replicated experimental field trial. The phenotypic data were subjected to principal component and hierarchical principal component analyses, allowing three major morphological groups to be identified. All three morphological groups were represented in both the “Occidental” and the “Oriental” germplasm, so the correlation between the phenotypic and the genotypic data sets was quite weak. The relevance of these results for evolutionary studies and the further improvement of eggplant are discussed. The population structure of the core set of germplasm shows that it can be used as a basis for an association mapping approach.
Collapse
Affiliation(s)
- Fabio Cericola
- DISAFA - Plant Genetics and Breeding, University of Torino, Grugliasco, Torino, Italy
- CRA-ORL - Research Unit for Vegetable Crops, Montanaso Lombardo, Lodi, Italy
| | - Ezio Portis
- DISAFA - Plant Genetics and Breeding, University of Torino, Grugliasco, Torino, Italy
| | - Laura Toppino
- CRA-ORL - Research Unit for Vegetable Crops, Montanaso Lombardo, Lodi, Italy
| | - Lorenzo Barchi
- DISAFA - Plant Genetics and Breeding, University of Torino, Grugliasco, Torino, Italy
| | - Nazareno Acciarri
- CRA-ORA - Research Unit for Vegetable Crops, Monsampolo del Tronto, Ascoli Piceno, Italy
| | - Tommaso Ciriaci
- CRA-ORA - Research Unit for Vegetable Crops, Monsampolo del Tronto, Ascoli Piceno, Italy
| | - Tea Sala
- CRA-ORL - Research Unit for Vegetable Crops, Montanaso Lombardo, Lodi, Italy
| | | | - Sergio Lanteri
- DISAFA - Plant Genetics and Breeding, University of Torino, Grugliasco, Torino, Italy
- * E-mail:
| |
Collapse
|
25
|
A RAD tag derived marker based eggplant linkage map and the location of QTLs determining anthocyanin pigmentation. PLoS One 2012; 7:e43740. [PMID: 22912903 PMCID: PMC3422253 DOI: 10.1371/journal.pone.0043740] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
Both inter- and intra-specific maps have been developed in eggplant (Solanum melongena L.). The former benefit from an enhanced frequency of marker polymorphism, but their relevance to marker-assisted crop breeding is limited. Combining the restriction-site associated DNA strategy with high throughput sequencing has facilitated the discovery of a large number of functional single nucleotide polymorphism (SNP) markers discriminating between the two eggplant mapping population parental lines '305E40' and '67/3'. A set of 347 de novo SNPs, together with 84 anchoring markers, were applied to the F(2) mapping population bred from the cross '305E40' x '67/3' to construct a linkage map. In all, 415 of the 431 markers were assembled into twelve major and one minor linkage group, spanning 1,390 cM, and the inclusion of established markers allowed each linkage group to be assigned to one of the 12 eggplant chromosomes. The map was then used to discover the genetic basis of seven traits associated with anthocyanin content. Each of the traits proved to be controlled by between one and six quantitative trait loci (QTL), of which at least one was a major QTL. Exploitation of syntenic relationships between the eggplant and tomato genomes facilitated the identification of potential candidate genes for the eggplant QTLs related to anthocyanin accumulation. The intra-specific linkage map should have utility for elucidating the genetic basis of other phenotypic traits in eggplant.
Collapse
|