1
|
Gupta A, Sharma T, Singh SP, Bhardwaj A, Srivastava D, Kumar R. Prospects of microgreens as budding living functional food: Breeding and biofortification through OMICS and other approaches for nutritional security. Front Genet 2023; 14:1053810. [PMID: 36760994 PMCID: PMC9905132 DOI: 10.3389/fgene.2023.1053810] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Nutrient deficiency has resulted in impaired growth and development of the population globally. Microgreens are considered immature greens (required light for photosynthesis and growing medium) and developed from the seeds of vegetables, legumes, herbs, and cereals. These are considered "living superfood/functional food" due to the presence of chlorophyll, beta carotene, lutein, and minerals like magnesium (Mg), Potassium (K), Phosphorus (P), and Calcium (Ca). Microgreens are rich at the nutritional level and contain several phytoactive compounds (carotenoids, phenols, glucosinolates, polysterols) that are helpful for human health on Earth and in space due to their anti-microbial, anti-inflammatory, antioxidant, and anti-carcinogenic properties. Microgreens can be used as plant-based nutritive vegetarian foods that will be fruitful as a nourishing constituent in the food industryfor garnish purposes, complement flavor, texture, and color to salads, soups, flat-breads, pizzas, and sandwiches (substitute to lettuce in tacos, sandwich, burger). Good handling practices may enhance microgreens'stability, storage, and shelf-life under appropriate conditions, including light, temperature, nutrients, humidity, and substrate. Moreover, the substrate may be a nutritive liquid solution (hydroponic system) or solid medium (coco peat, coconut fiber, coir dust and husks, sand, vermicompost, sugarcane filter cake, etc.) based on a variety of microgreens. However integrated multiomics approaches alongwith nutriomics and foodomics may be explored and utilized to identify and breed most potential microgreen genotypes, biofortify including increasing the nutritional content (macro-elements:K, Ca and Mg; oligo-elements: Fe and Zn and antioxidant activity) and microgreens related other traits viz., fast growth, good nutritional values, high germination percentage, and appropriate shelf-life through the implementation of integrated approaches includes genomics, transcriptomics, sequencing-based approaches, molecular breeding, machine learning, nanoparticles, and seed priming strategiesetc.
Collapse
Affiliation(s)
- Astha Gupta
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, India,*Correspondence: Astha Gupta, ; Rajendra Kumar,
| | - Tripti Sharma
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University,, Kanpur, India
| | - Archana Bhardwaj
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Deepti Srivastava
- Department of Agriculture, Integral Institute of Agricultural Science and Technology, Integral University, Lucknow, Uttar Pradesh, India
| | - Rajendra Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India,*Correspondence: Astha Gupta, ; Rajendra Kumar,
| |
Collapse
|
2
|
Damerum A, Chapman MA, Taylor G. Innovative breeding technologies in lettuce for improved post-harvest quality. POSTHARVEST BIOLOGY AND TECHNOLOGY 2020; 168:111266. [PMID: 33012992 PMCID: PMC7397847 DOI: 10.1016/j.postharvbio.2020.111266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Societal awareness of healthy eating is increasing alongside the market for processed bagged salads, which remain as one of the strongest growing food sectors internationally, including most recently from indoor growing systems. Lettuce represents a significant proportion of this ready-to-eat salad market. However, such products typically have a short shelf life, with decay of post-harvest quality occurring through complex biochemical and physiological changes in leaves and resulting in spoilage, food waste and risks to health. We review the functional and quantitative genetic understanding of lettuce post-harvest quality, revealing that few findings have translated into improved cultivar development. We identify (i) phytonutrient status (for enhanced antioxidant and vitamin status, aroma and flavour) (ii) leaf biophysical, cell wall and water relations traits (for longer shelf life) (iii) leaf surface traits (for enhanced food safety and reduced spoilage) and (iv) chlorophyll, other pigments and developmental senescence traits (for appearance and colour), as key targets for future post-harvest breeding. Lettuce is well-placed for rapid future exploitation to address postharvest quality traits with extensive genomic resources including the recent release of the lettuce genome and the development of innovative breeding technologies. Although technologies such as CRISPR/Cas genome editing are paving the way for accelerated crop improvement, other equally important resources available for lettuce include extensive germplasm collections, bi-parental mapping and wide populations with genotyping for genomic selection strategies and extensive multiomic datasets for candidate gene discovery. We discuss current progress towards post-harvest quality breeding for lettuce and how such resources may be utilised for future crop improvement.
Collapse
Affiliation(s)
- Annabelle Damerum
- Department of Plant Sciences, University of California, Davis, 95616, USA
| | - Mark A Chapman
- School of Biological Sciences, University of Southampton, Southampton, SO179BJ, UK
| | - Gail Taylor
- Department of Plant Sciences, University of California, Davis, 95616, USA
- School of Biological Sciences, University of Southampton, Southampton, SO179BJ, UK
- Corresponding author at: Department of Plant Sciences, University of California, Davis, 95616, USA.
| |
Collapse
|
3
|
Simko I. Genetic variation and relationship among content of vitamins, pigments, and sugars in baby leaf lettuce. Food Sci Nutr 2019; 7:3317-3326. [PMID: 31660145 PMCID: PMC6804913 DOI: 10.1002/fsn3.1196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/25/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022] Open
Abstract
Baby leaf lettuce harvested approximately 30 days after planting is the primary component of spring mix salads, a popular type of packaged salads. Very little is known, however, about the content of vitamins, sugars, and pigments in young lettuce plants. Therefore, plants of 42 accessions harvested at baby leaf stage were analyzed for the contents of vitamin C, ß-carotene, anthocyanins, chlorophylls, glucose, fructose, and sucrose. Significant differences among accessions were found for content of all seven compounds plus sucrose sweetness equivalency (SSE) and average vitamin load (AVLAC). "Floricos" was highest in all sugars, SSE and vitamin C; "Taiwan" was highest in ß-carotene and AVLAC, and "Annapolis" and "Darkland" were highest for anthocyanins and chlorophyll contents, respectively. The lowest content of glucose and sucrose was found in iceberg "Salinas," fructose in L. serriola accession UC96US23, vitamin C in PI 257288, and β-carotene in "Solar." The lowest relative sweetness (SSE) was calculated for UC96US23, followed by "Salinas," while the lowest AVLAC was estimated for PI 257288. There were very strong, positive correlations among contents of the three sugars, and between β-carotene and vitamin C, and β-carotene and anthocyanins. Composition profiles of accessions presented in this study, together with identified associations between compounds, can be used by breeders, growers, and producers to select lettuces with desirable combinations of sugars, pigments, and vitamins. This information can help in development of new cultivars and breeding lines with desirable combination of traits, pleasing taste, and higher vitamin content.
Collapse
Affiliation(s)
- Ivan Simko
- U.S. Department of AgricultureAgricultural Research ServiceU.S. Agricultural Research StationCrop Improvement and Protection Research UnitSalinasCAUSA
| |
Collapse
|
4
|
Mamo BE, Hayes RJ, Truco MJ, Puri KD, Michelmore RW, Subbarao KV, Simko I. The genetics of resistance to lettuce drop (Sclerotinia spp.) in lettuce in a recombinant inbred line population from Reine des Glaces × Eruption. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2439-2460. [PMID: 31165222 DOI: 10.1007/s00122-019-03365-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/17/2019] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE Two QTLs for resistance to lettuce drop, qLDR1.1 and qLDR5.1, were identified. Associated SNPs will be useful in breeding for lettuce drop and provide the foundation for future molecular analysis. Lettuce drop, caused by Sclerotinia minor and S. sclerotiorum, is an economically important disease of lettuce. The association of resistance to lettuce drop with the commercially undesirable trait of fast bolting has hindered the integration of host resistance in control of this disease. Eruption is a slow-bolting cultivar that exhibits a high level of resistance to lettuce drop. Eruption also is completely resistant to Verticillium wilt caused by race 1 of Verticillium dahliae. A recombinant inbred line population from the cross Reine des Glaces × Eruption was genotyped by sequencing and evaluated for lettuce drop and bolting in separate fields infested with either S. minor or V. dahliae. Two quantitative trait loci (QTLs) for lettuce drop resistance were consistently detected in at least two experiments, and two other QTLs were identified in another experiment; the alleles for resistance at all four QTLs originated from Eruption. A QTL for lettuce drop resistance on linkage group (LG) 5, qLDR5.1, was consistently detected in all experiments and explained 11 to 25% of phenotypic variation. On LG1, qLDR1.1 was detected in two experiments explaining 9 to 12% of the phenotypic variation. Three out of four resistance QTLs are distinct from QTLs for bolting; qLDR5.1 is pleiotropic or closely linked with a QTL for early bolting; however, the rate of bolting shows only a small effect on the variance in resistance observed at this locus. The SNP markers linked with these QTLs will be useful in breeding for resistance through marker-assisted selection.
Collapse
Affiliation(s)
- Bullo Erena Mamo
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, 1636 E. Alisal St, Salinas, CA, 93905, USA
| | - Ryan J Hayes
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, 1636 E. Alisal St, Salinas, CA, 93905, USA
- United States Department of Agriculture, Agricultural Research Service, Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR, 97321, USA
| | | | - Krishna D Puri
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, 1636 E. Alisal St, Salinas, CA, 93905, USA
| | - Richard W Michelmore
- UC Davis Genome Center, Davis, CA, 95616, USA
- Departments of Plant Sciences, Molecular and Cellular Biology, Medical Microbiology and Immunology, University of California, Davis, Davis, CA, 95616, USA
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, 1636 E. Alisal St, Salinas, CA, 93905, USA
| | - Ivan Simko
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, 1636 E. Alisal St, Salinas, CA, 93905, USA.
| |
Collapse
|
5
|
Simko I, Hayes RJ, Furbank RT. Non-destructive Phenotyping of Lettuce Plants in Early Stages of Development with Optical Sensors. FRONTIERS IN PLANT SCIENCE 2016; 7:1985. [PMID: 28083011 PMCID: PMC5187177 DOI: 10.3389/fpls.2016.01985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/14/2016] [Indexed: 05/18/2023]
Abstract
Rapid development of plants is important for the production of 'baby-leaf' lettuce that is harvested when plants reach the four- to eight-leaf stage of growth. However, environmental factors, such as high or low temperature, or elevated concentrations of salt, inhibit lettuce growth. Therefore, non-destructive evaluations of plants can provide valuable information to breeders and growers. The objective of the present study was to test the feasibility of using non-destructive phenotyping with optical sensors for the evaluations of lettuce plants in early stages of development. We performed the series of experiments to determine if hyperspectral imaging and chlorophyll fluorescence imaging can determine phenotypic changes manifested on lettuce plants subjected to the extreme temperature and salinity stress treatments. Our results indicate that top view optical sensors alone can accurately determine plant size to approximately 7 g fresh weight. Hyperspectral imaging analysis was able to detect changes in the total chlorophyll (RCC) and anthocyanin (RAC) content, while chlorophyll fluorescence imaging revealed photoinhibition and reduction of plant growth caused by the extreme growing temperatures (3 and 39°C) and salinity (100 mM NaCl). Though no significant correlation was found between Fv/Fm and decrease in plant growth due to stress when comparisons were made across multiple accessions, our results indicate that lettuce plants have a high adaptability to both low (3°C) and high (39°C) temperatures, with no permanent damage to photosynthetic apparatus and fast recovery of plants after moving them to the optimal (21°C) temperature. We have also detected a strong relationship between visual rating of the green- and red-leaf color intensity and RCC and RAC, respectively. Differences in RAC among accessions suggest that the selection for intense red color may be easier to perform at somewhat lower than the optimal temperature. This study serves as a proof of concept that optical sensors can be successfully used as tools for breeders when evaluating young lettuce plants. Moreover, we were able to identify the locus for light green leaf color (qLG4), and position this locus on the molecular linkage map of lettuce, which shows that these techniques have sufficient resolution to be used in a genetic context in lettuce.
Collapse
Affiliation(s)
- Ivan Simko
- U.S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, SalinasCA, USA
| | - Ryan J. Hayes
- U.S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, SalinasCA, USA
| | - Robert T. Furbank
- High Resolution Plant Phenomics Centre, Australian Plant Phenomics Facility, Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, CanberraACT, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Science Division, Research School of Biology, Australian National University, ActonACT, Australia
| |
Collapse
|
6
|
|
7
|
Calafiore R, Ruggieri V, Raiola A, Rigano MM, Sacco A, Hassan MI, Frusciante L, Barone A. Exploiting Genomics Resources to Identify Candidate Genes Underlying Antioxidants Content in Tomato Fruit. FRONTIERS IN PLANT SCIENCE 2016; 7:397. [PMID: 27092148 PMCID: PMC4824784 DOI: 10.3389/fpls.2016.00397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/14/2016] [Indexed: 05/18/2023]
|
8
|
Kerbiriou PJ, Maliepaard CA, Stomph TJ, Koper M, Froissart D, Roobeek I, Lammerts Van Bueren ET, Struik PC. Genetic Control of Water and Nitrate Capture and Their Use Efficiency in Lettuce (Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2016; 7:343. [PMID: 27064203 PMCID: PMC4812043 DOI: 10.3389/fpls.2016.00343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/06/2016] [Indexed: 05/13/2023]
Abstract
Robustness in lettuce, defined as the ability to produce stable yields across a wide range of environments, may be associated with below-ground traits such as water and nitrate capture. In lettuce, research on the role of root traits in resource acquisition has been rather limited. Exploring genetic variation for such traits and shoot performance in lettuce across environments can contribute to breeding for robustness. A population of 142 lettuce cultivars was evaluated during two seasons (spring and summer) in two different locations under organic cropping conditions, and water and nitrate capture below-ground and accumulation in the shoots were assessed at two sampling dates. Resource capture in each soil layer was measured using a volumetric method based on fresh and dry weight difference in the soil for soil moisture, and using an ion-specific electrode for nitrate. We used these results to carry out an association mapping study based on 1170 single nucleotide polymorphism markers. We demonstrated that our indirect, high-throughput phenotyping methodology was reliable and capable of quantifying genetic variation in resource capture. QTLs for below-ground traits were not detected at early sampling. Significant marker-trait associations were detected across trials for below-ground and shoot traits, in number and position varying with trial, highlighting the importance of the growing environment on the expression of the traits measured. The difficulty of identifying general patterns in the expression of the QTLs for below-ground traits across different environments calls for a more in-depth analysis of the physiological mechanisms at root level allowing sustained shoot growth.
Collapse
Affiliation(s)
- Pauline J. Kerbiriou
- Plant Sciences, Plant Breeding, Wageningen UniversityWageningen, Netherlands
- Plant Sciences, Centre for Crop Systems Analysis, Wageningen UniversityWageningen, Netherlands
| | - Chris A. Maliepaard
- Plant Sciences, Plant Breeding, Wageningen UniversityWageningen, Netherlands
| | - Tjeerd Jan Stomph
- Plant Sciences, Centre for Crop Systems Analysis, Wageningen UniversityWageningen, Netherlands
| | | | | | | | | | - Paul C. Struik
- Plant Sciences, Centre for Crop Systems Analysis, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
9
|
Damerum A, Selmes SL, Biggi GF, Clarkson GJJ, Rothwell SD, Truco MJ, Michelmore RW, Hancock RD, Shellcock C, Chapman MA, Taylor G. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa). HORTICULTURE RESEARCH 2015; 2:15055. [PMID: 26640696 PMCID: PMC4660231 DOI: 10.1038/hortres.2015.55] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 05/24/2023]
Abstract
A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional content and health benefits of lettuce through marker-assisted breeding.
Collapse
Affiliation(s)
- Annabelle Damerum
- Centre for Biological Sciences, University of Southampton, Life Sciences, University Road, Southampton SO17 1BJ, UK
| | - Stacey L Selmes
- Centre for Biological Sciences, University of Southampton, Life Sciences, University Road, Southampton SO17 1BJ, UK
| | - Gaia F Biggi
- Centre for Biological Sciences, University of Southampton, Life Sciences, University Road, Southampton SO17 1BJ, UK
| | - Graham JJ Clarkson
- Centre for Biological Sciences, University of Southampton, Life Sciences, University Road, Southampton SO17 1BJ, UK
- Vitacress Limited, Lower Link Farm, St Mary Bourne, Andover, Hampshire SP11 6DB, UK
| | - Steve D Rothwell
- Vitacress Limited, Lower Link Farm, St Mary Bourne, Andover, Hampshire SP11 6DB, UK
| | - Maria José Truco
- The Genome Centre and the Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Richard W Michelmore
- The Genome Centre and the Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | | | - Mark A Chapman
- Centre for Biological Sciences, University of Southampton, Life Sciences, University Road, Southampton SO17 1BJ, UK
| | - Gail Taylor
- Centre for Biological Sciences, University of Southampton, Life Sciences, University Road, Southampton SO17 1BJ, UK
| |
Collapse
|
10
|
Sotelo T, Cartea ME, Velasco P, Soengas P. Identification of antioxidant capacity -related QTLs in Brassica oleracea. PLoS One 2014; 9:e107290. [PMID: 25198771 PMCID: PMC4157872 DOI: 10.1371/journal.pone.0107290] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/11/2014] [Indexed: 01/11/2023] Open
Abstract
Brassica vegetables possess high levels of antioxidant metabolites associated with beneficial health effects including vitamins, carotenoids, anthocyanins, soluble sugars and phenolics. Until now, no reports have been documented on the genetic basis of the antioxidant activity (AA) in Brassicas and the content of metabolites with AA like phenolics, anthocyanins and carotenoids. For this reason, this study aimed to: (1) study the relationship among different electron transfer (ET) methods for measuring AA, (2) study the relationship between these methods and phenolic, carotenoid and anthocyanin content, and (3) find QTLs of AA measured with ET assays and for phenolic, carotenoid and anthocyanin contents in leaves and flower buds in a DH population of B. oleracea as an early step in order to identify genes related to these traits. Low correlation coefficients among different methods for measuring AA suggest that it is necessary to employ more than one method at the same time. A total of 19 QTLs were detected for all traits. For AA methods, seven QTLs were found in leaves and six QTLs were found in flower buds. Meanwhile, for the content of metabolites with AA, two QTLs were found in leaves and four QTLs were found in flower buds. AA of the mapping population is related to phenolic compounds but also to carotenoid content. Three genomic regions determined variation for more than one ET method measuring AA. After the syntenic analysis with A. thaliana, several candidate genes related to phenylpropanoid biosynthesis are proposed for the QTLs found.
Collapse
Affiliation(s)
- Tamara Sotelo
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| |
Collapse
|