1
|
Ni J, You C, Chen Z, Tang D, Wu H, Deng W, Wang X, Yang J, Bao R, Liu Z, Meng P, Rong T, Liu J. Deploying QTL-seq rapid identification and separation of the major QTLs of tassel branch number for fine-mapping in advanced maize populations. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:88. [PMID: 38045561 PMCID: PMC10686902 DOI: 10.1007/s11032-023-01431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
The tassel competes with the ear for nutrients and shields the upper leaves, thereby reducing the yield of grain. The tassel branch number (TBN) is a pivotal determinant of tassel size, wherein the reduced TBN has the potential to enhance the transmission of light and reduce the consumption of nutrients, which should ultimately result in increased yield. Consequently, the TBN has emerged as a vital target trait in contemporary breeding programs that focus on compact maize varieties. In this study, QTL-seq technology and advanced population mapping were used to rapidly identify and dissect the major effects of the TBN on QTL. Advanced mapping populations (BC4F2 and BC4F3) were derived from the inbred lines 18-599 (8-11 TBN) and 3237 (0-1 TBN) through phenotypic recurrent selection. First, 13 genomic regions associated with the TBN were detected using quantitative trait locus (QTL)-seq and were located on chromosomes 2 and 5. Subsequently, validated loci within these regions were identified by QTL-seq. Three QTLs for TBN were identified in the BC4F2 populations by traditional QTL mapping, with each QTL explaining the phenotypic variation of 6.13-18.17%. In addition, for the major QTL (qTBN2-2 and qTBN5-1), residual heterozygous lines (RHLs) were developed from the BC4F2 population. These two major QTLs were verified in the RHLs by QTL mapping, with the phenotypic variation explained (PVE) of 21.57% and 30.75%, respectively. Near-isogenic lines (NILs) of qTBN2-2 and qTBN5-1 were constructed. There were significant differences between the NILs in TBN. These results will enhance our understanding of the genetic basis of TBN and provide a solid foundation for the fine-mapping of TBN. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01431-y.
Collapse
Affiliation(s)
- Jixing Ni
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Chong You
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Zhengjie Chen
- Sichuan Advanced Agricultural & Industrial Institute, China Agriculture University, No.8 Xingyuan Road, Xinjin District, Chengdu, 611430 Sichuan China
| | - Dengguo Tang
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Haimei Wu
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Wujiao Deng
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Xueying Wang
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Jinchang Yang
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Ruifan Bao
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Zhiqin Liu
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Pengxu Meng
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Jian Liu
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| |
Collapse
|
2
|
Jin Y, Zhang Z, Xi Y, Yang Z, Xiao Z, Guan S, Qu J, Wang P, Zhao R. Identification and Functional Verification of Cold Tolerance Genes in Spring Maize Seedlings Based on a Genome-Wide Association Study and Quantitative Trait Locus Mapping. FRONTIERS IN PLANT SCIENCE 2021; 12:776972. [PMID: 34956272 PMCID: PMC8696014 DOI: 10.3389/fpls.2021.776972] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 05/13/2023]
Abstract
Maize (Zea mays L.) is a tropical crop, and low temperature has become one of the main abiotic stresses for maize growth and development, affecting many maize growth processes. The main area of maize production in China, Jilin province, often suffers from varying degrees of cold damage in spring, which seriously affects the quality and yield of maize. In the face of global climate change and food security concerns, discovering cold tolerance genes, developing cold tolerance molecular markers, and creating cold-tolerant germplasm have become urgent for improving maize resilience against these conditions and obtaining an increase in overall yield. In this study, whole-genome sequencing and genotyping by sequencing were used to perform genome-wide association analysis (GWAS) and quantitative trait locus (QTL) mapping of the two populations, respectively. Overall, four single-nucleotide polymorphisms (SNPs) and 12 QTLs were found to be significantly associated with cold tolerance. Through joint analysis, an intersection of GWAS and QTL mapping was found on chromosome 3, on which the Zm00001d002729 gene was identified as a potential factor in cold tolerance. We verified the function of this target gene through overexpression, suppression of expression, and genetic transformation into maize. We found that Zm00001d002729 overexpression resulted in better cold tolerance in this crop. The identification of genes associated with cold tolerance contributes to the clarification of the underlying mechanism of this trait in maize and provides a foundation for the adaptation of maize to colder environments in the future, to ensure food security.
Collapse
Affiliation(s)
- Yukun Jin
- Joint Laboratory of International Cooperation in Modern Agriculture Technology of Ministry of Education, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
| | - Zhongren Zhang
- Novogene Bioinformatics Institute, Novogene Co., Ltd, Beijing, China
| | - Yongjing Xi
- Joint Laboratory of International Cooperation in Modern Agriculture Technology of Ministry of Education, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
| | - Zhou Yang
- Joint Laboratory of International Cooperation in Modern Agriculture Technology of Ministry of Education, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
| | - Zhifeng Xiao
- Joint Laboratory of International Cooperation in Modern Agriculture Technology of Ministry of Education, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- Joint Laboratory of International Cooperation in Modern Agriculture Technology of Ministry of Education, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
| | - Jing Qu
- Joint Laboratory of International Cooperation in Modern Agriculture Technology of Ministry of Education, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
| | - Piwu Wang
- Joint Laboratory of International Cooperation in Modern Agriculture Technology of Ministry of Education, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
- *Correspondence: Piwu Wang, Rengui Zhao,
| | - Rengui Zhao
- Joint Laboratory of International Cooperation in Modern Agriculture Technology of Ministry of Education, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
- *Correspondence: Piwu Wang, Rengui Zhao,
| |
Collapse
|
4
|
A Megabase-Scale Deletion is Associated with Phenotypic Variation of Multiple Traits in Maize. Genetics 2018; 211:305-316. [PMID: 30389804 PMCID: PMC6325712 DOI: 10.1534/genetics.118.301567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/26/2018] [Indexed: 11/18/2022] Open
Abstract
Genomic deletions are pervasive in the maize (Zea mays L.) genome, and play important roles in phenotypic variation and adaptive evolution. However, little is known about the biological functions of these genomic deletions. Here, we report the biological function of a megabase-scale deletion, which we identified by position-based cloning of the multi-trait weakened (muw) mutant, which is inherited as a single recessive locus. MUW was mapped to a 5.16-Mb region on chromosome 2. The 5.16-Mb deletion in the muw mutant led to the loss of 48 genes and was responsible for a set of phenotypic abnormities, including wilting leaves, poor yield performance, reduced plant height, increased stomatal density, and rapid water loss. While muw appears to have resulted from double-stranded break repair that was not dependent on intragenomic DNA homology, extensive duplication of maize genes may have mitigated its effects and facilitated its survival.
Collapse
|
5
|
Wang L, Han S, Zhong S, Wei H, Zhang Y, Zhao Y, Liu B. Characterization and fine mapping of a necrotic leaf mutant in maize (Zea mays L.). J Genet Genomics 2013; 40:307-14. [PMID: 23790630 DOI: 10.1016/j.jgg.2013.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 04/01/2013] [Accepted: 04/07/2013] [Indexed: 12/23/2022]
Abstract
Maize (Zea mays L.) is a commercially important crop. Its yield can be reduced by mutations in biosynthetic and degradative pathways that cause death. In this paper, we describe the necrotic leaf (nec-t) mutant, which was obtained from an inbred line, 81647. The nec-t mutant plants had yellow leaves with necrotic spots, reduced chlorophyll content, and the etiolated seedlings died under normal growth conditions. Transmission electron microscopy revealed scattered thylakoids, and reduced numbers of grana lamellae and chloroplasts per cell. Histochemical staining suggested that spot formation of nec-t leaves might be due to cell death. Genetic analysis showed that necrosis was caused by the mutation of a recessive locus. Using simple sequence repeat markers, the Nec-t gene was mapped between mmc0111 and bnlg2277 on the short arm of chromosome 2. A total of 1287 individuals with the mutant phenotype from a F2 population were used for physical mapping. The Nec-t gene was located between markers T31 and H8 within a physical region of 131.7 kb.
Collapse
Affiliation(s)
- Lijing Wang
- College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | | | | | | | | | | | | |
Collapse
|