1
|
Ricciardi V, Crespan M, Maddalena G, Migliaro D, Brancadoro L, Maghradze D, Failla O, Toffolatti SL, De Lorenzis G. Novel loci associated with resistance to downy and powdery mildew in grapevine. FRONTIERS IN PLANT SCIENCE 2024; 15:1386225. [PMID: 38584944 PMCID: PMC10998452 DOI: 10.3389/fpls.2024.1386225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
Among the main challenges in current viticulture, there is the increasing demand for sustainability in the protection from fungal diseases, such as downy mildew (DM) and powdery mildew (PM). Breeding disease-resistant grapevine varieties is a key strategy for better managing fungicide inputs. This study explores the diversity of grapevine germplasm (cultivated and wild) from Caucasus and neighboring areas to identify genotypes resistant to DM and PM, based on 13 Simple Sequence Repeat (SSR) loci and phenotypical (artificial pathogen inoculation) analysis, and to identify loci associated with DM and PM resistance, via Genome-Wide Association Analysis (GWAS) on Single Nucleotide Polymorphism (SNP) profiles. SSR analysis revealed resistant alleles for 16 out of 88 genotypes. Phenotypic data identified seven DM and 31 PM resistant genotypes. GWAS identified two new loci associated with DM resistance, located on chromosome 15 and 16 (designated as Rpv36 and Rpv37), and two with PM resistance, located on chromosome 6 and 17 (designated as Ren14 and Ren15). The four novel loci identified genomic regions rich in genes related to biotic stress response, such as genes involved in pathogen recognition, signal transduction and resistance response. This study highlights potential candidate genes associated with resistance to DM and PM, providing valuable insights for breeding programs for resistant varieties. To optimize their utilization, further functional characterization studies are recommended.
Collapse
Affiliation(s)
- Valentina Ricciardi
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Manna Crespan
- Centro di Ricerca per la Viticoltura e l'Enologia, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Conegliano, Italy
| | - Giuliana Maddalena
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Daniele Migliaro
- Centro di Ricerca per la Viticoltura e l'Enologia, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Conegliano, Italy
| | - Lucio Brancadoro
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - David Maghradze
- Faculty of Viticulture-Winemaking, Caucasus International University, Tbilisi, Georgia
- Faculty of Agricultural Sciences and Biosystems Engineering, Georgian Technical University, Tbilisi, Georgia
| | - Osvaldo Failla
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Silvia Laura Toffolatti
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Gabriella De Lorenzis
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
2
|
Peng J, Wang X, Wang H, Li X, Zhang Q, Wang M, Yan J. Advances in understanding grapevine downy mildew: From pathogen infection to disease management. MOLECULAR PLANT PATHOLOGY 2024; 25:e13401. [PMID: 37991155 PMCID: PMC10788597 DOI: 10.1111/mpp.13401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/29/2023] [Indexed: 11/23/2023]
Abstract
Plasmopara viticola is geographically widespread in grapevine-growing regions. Grapevine downy mildew disease, caused by this biotrophic pathogen, leads to considerable yield losses in viticulture annually. Because of the great significance of grapevine production and wine quality, research on this disease has been widely performed since its emergence in the 19th century. Here, we review and discuss recent understanding of this pathogen from multiple aspects, including its infection cycle, disease symptoms, genome decoding, effector biology, and management and control strategies. We highlight the identification and characterization of effector proteins with their biological roles in host-pathogen interaction, with a focus on sustainable control methods against P. viticola, especially the use of biocontrol agents and environmentally friendly compounds.
Collapse
Affiliation(s)
- Junbo Peng
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Hui Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Xinghong Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Qi Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Meng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| |
Collapse
|
3
|
Zhang Y, Liu C, Liu X, Wang Z, Wang Y, Zhong GY, Li S, Dai Z, Liang Z, Fan P. Basic leucine zipper gene VvbZIP61 is expressed at a quantitative trait locus for high monoterpene content in grape berries. HORTICULTURE RESEARCH 2023; 10:uhad151. [PMID: 37701455 PMCID: PMC10493639 DOI: 10.1093/hr/uhad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/26/2023] [Indexed: 09/14/2023]
Abstract
The widely appreciated muscat flavor of grapes and wine is mainly attributable to the monoterpenes that accumulate in ripe grape berries. To identify quantitative trait loci (QTL) for grape berry monoterpene content, an F1 mapping population was constructed by a cross between two grapevine genotypes, one with neutral aroma berries (cv. 'Beifeng') and the other with a pronounced muscat aroma (elite Vitis vinifera line '3-34'). A high-density genetic linkage map spanning 1563.7 cM was constructed using 3332 SNP markers that were assigned to 19 linkage groups. Monoterpenes were extracted from the berry of the F1 progeny, then identified and quantified by gas chromatography-mass spectrometry. Twelve stable QTLs associated with the amounts of 11 monoterpenes in berries were thus identified. In parallel, the levels of RNA in berries from 34 diverse cultivars were estimated by RNA sequencing and compared to the monoterpene content of the berries. The expression of five genes mapping to stable QTLs correlated well with the monoterpene content of berries. These genes, including the basic leucine zipper VvbZIP61 gene on chromosome 12, are therefore considered as potentially being involved in monoterpene metabolism. Overexpression of VvbZIP61 in Vitis amurensis callus through Agrobacterium-mediated transformation significantly increased the accumulation of several monoterpenes in the callus, including nerol, linalool, geranial, geraniol, β-myrcene, and D-limonene. It is hypothesized that VvbZIP61 expression acts to increase muscat flavor in grapes. These results advance our understanding of the genetic control of monoterpene biosynthesis in grapes and provide important information for the marker-assisted selection of aroma compounds in grape breeding.
Collapse
Affiliation(s)
- Yuyu Zhang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuixia Liu
- Centre for Special Economic Plant Studies, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, Guangxi, China
| | - Xianju Liu
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zemin Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Gan-yuan Zhong
- Grape Genetics Research Unit, USDA-ARS, Geneva 14456, USA
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Huff M, Hulse-Kemp AM, Scheffler BE, Youngblood RC, Simpson SA, Babiker E, Staton M. Long-read, chromosome-scale assembly of Vitis rotundifolia cv. Carlos and its unique resistance to Xylella fastidiosa subsp. fastidiosa. BMC Genomics 2023; 24:409. [PMID: 37474911 PMCID: PMC10357881 DOI: 10.1186/s12864-023-09514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Muscadine grape (Vitis rotundifolia) is resistant to many of the pathogens that negatively impact the production of common grape (V. vinifera), including the bacterial pathogen Xylella fastidiosa subsp. fastidiosa (Xfsf), which causes Pierce's Disease (PD). Previous studies in common grape have indicated Xfsf delays host immune response with a complex O-chain antigen produced by the wzy gene. Muscadine cultivars range from tolerant to completely resistant to Xfsf, but the mechanism is unknown. RESULTS We assembled and annotated a new, long-read genome assembly for 'Carlos', a cultivar of muscadine that exhibits tolerance, to build upon the existing genetic resources available for muscadine. We used these resources to construct an initial pan-genome for three cultivars of muscadine and one cultivar of common grape. This pan-genome contains a total of 34,970 synteny-constrained entries containing genes of similar structure. Comparison of resistance gene content between the 'Carlos' and common grape genomes indicates an expansion of resistance (R) genes in 'Carlos.' We further identified genes involved in Xfsf response by transcriptome sequencing 'Carlos' plants inoculated with Xfsf. We observed 234 differentially expressed genes with functions related to lipid catabolism, oxidation-reduction signaling, and abscisic acid (ABA) signaling as well as seven R genes. Leveraging public data from previous experiments of common grape inoculated with Xfsf, we determined that most differentially expressed genes in the muscadine response were not found in common grape, and three of the R genes identified as differentially expressed in muscadine do not have an ortholog in the common grape genome. CONCLUSIONS Our results support the utility of a pan-genome approach to identify candidate genes for traits of interest, particularly disease resistance to Xfsf, within and between muscadine and common grape.
Collapse
Affiliation(s)
- Matthew Huff
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Amanda M Hulse-Kemp
- Genomics and Bioinformatics Research Unit, USDA-ARS, Raleigh, NC, 27606, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Ramey C Youngblood
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, 39762, USA
| | - Sheron A Simpson
- Genomics and Bioinformatics Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Ebrahiem Babiker
- USDA-ARS Thad Cochran Southern Horticultural Laboratory, Poplarville, MS, 39470, USA.
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
5
|
Li P, Tan X, Liu R, Rahman FU, Jiang J, Sun L, Fan X, Liu J, Liu C, Zhang Y. QTL detection and candidate gene analysis of grape white rot resistance by interspecific grape ( Vitis vinifera L. × Vitis davidii Foex.) crossing. HORTICULTURE RESEARCH 2023; 10:uhad063. [PMID: 37249950 PMCID: PMC10208900 DOI: 10.1093/hr/uhad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/10/2023] [Indexed: 05/31/2023]
Abstract
Grape white rot, a devastating disease of grapevines caused by Coniella diplodiella (Speg.) Sacc., leads to significant yield losses in grape. Breeding grape cultivars resistant to white rot is essential to reduce the regular use of chemical treatments. In recent years, Chinese grape species have gained more attention for grape breeding due to their high tolerance to various biotic and abiotic factors along with changing climatic conditions. In this study, we employed whole-genome resequencing (WGR) to genotype the parents of 'Manicure Finger' (Vitis vinifera, female) and '0940' (Vitis davidii, male), along with 101 F1 mapping population individuals, thereby constructing a linkage genetic map. The linkage map contained 9337 single-nucleotide polymorphism (SNP) markers with an average marker distance of 0.3 cM. After 3 years of phenotypic evaluation of the progeny for white rot resistance, we confirmed one stable quantitative trait locus (QTL) for white rot resistance on chromosome 3, explaining up to 17.9% of the phenotypic variation. For this locus, we used RNA-seq to detect candidate gene expression and identified PR1 as a candidate gene involved in white rot resistance. Finally, we demonstrated that recombinant PR1 protein could inhibit the growth of C. diplodiella and that overexpression of PR1 in susceptible V. vinifera increased grape resistance to the pathogen.
Collapse
Affiliation(s)
- Peng Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430000, China
| | - Xibei Tan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Ruitao Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Faiz Ur Rahman
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Jianfu Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Lei Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xiucai Fan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | | | | | | |
Collapse
|
6
|
Sapkota S, Zou C, Ledbetter C, Underhill A, Sun Q, Gadoury D, Cadle-Davidson L. Discovery and genome-guided mapping of REN12 from Vitis amurensis, conferring strong, rapid resistance to grapevine powdery mildew. HORTICULTURE RESEARCH 2023; 10:uhad052. [PMID: 37213681 PMCID: PMC10194894 DOI: 10.1093/hr/uhad052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/12/2023] [Indexed: 05/23/2023]
Abstract
Powdery mildew resistance genes restrict infection attempts at different stages of pathogenesis. Here, a strong and rapid powdery mildew resistance phenotype was discovered from Vitis amurensis 'PI 588631' that rapidly stopped over 97% of Erysiphe necator conidia, before or immediately after emergence of a secondary hypha from appressoria. This resistance was effective across multiple years of vineyard evaluation on leaves, stems, rachises, and fruit and against a diverse array of E. necator laboratory isolates. Using core genome rhAmpSeq markers, resistance mapped to a single dominant locus (here named REN12) on chromosome 13 near 22.8-27.0 Mb, irrespective of tissue type, explaining up to 86.9% of the phenotypic variation observed on leaves. Shotgun sequencing of recombinant vines using skim-seq technology enabled the locus to be further resolved to a 780 kb region, from 25.15 to 25.93 Mb. RNASeq analysis indicated the allele-specific expression of four resistance genes (NLRs) from the resistant parent. REN12 is one of the strongest powdery mildew resistance loci in grapevine yet documented, and the rhAmpSeq sequences presented here can be directly used for marker-assisted selection or converted to other genotyping platforms. While no virulent isolates were identified among the genetically diverse isolates and wild populations of E. necator tested here, NLR loci like REN12 are often race-specific. Thus, stacking of multiple resistance genes and minimal use of fungicides should enhance the durability of resistance and could enable a 90% reduction in fungicides in low-rainfall climates where few other pathogens attack the foliage or fruit.
Collapse
Affiliation(s)
- Surya Sapkota
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA
| | - Cheng Zou
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Craig Ledbetter
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA
| | - Anna Underhill
- USDA-ARS, Grape Genetics Research Unit, Geneva, NY, 14456, USA
| | - Qi Sun
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - David Gadoury
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA
| | | |
Collapse
|
7
|
Sun Q, He L, Sun L, Xu HY, Fu YQ, Sun ZY, Zhu BQ, Duan CQ, Pan QH. Identification of SNP loci and candidate genes genetically controlling norisoprenoids in grape berry based on genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1142139. [PMID: 36938056 PMCID: PMC10014734 DOI: 10.3389/fpls.2023.1142139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Obtaining new grapevine varieties with unique aromas has been a long-standing goal of breeders. Norisoprenoids are of particular interest to wine producers and researchers, as these compounds are responsible for the important varietal aromas in wine, characterized by a complex floral and fruity smell, and are likely present in all grape varieties. However, the single-nucleotide polymorphism (SNP) loci and candidate genes genetically controlling the norisoprenoid content in grape berry remain unknown. To this end, in this study, we investigated 13 norisoprenoid traits across two years in an F1 population consisting of 149 individuals from a hybrid of Vitis vinifera L. cv. Muscat Alexandria and V. vinifera L. cv. Christmas Rose. Based on 568,953 SNP markers, genome-wide association analysis revealed that 27 candidate SNP loci belonging to 18 genes were significantly associated with the concentrations of norisoprenoid components in grape berry. Among them, 13 SNPs were confirmed in a grapevine germplasm population comprising 97 varieties, including two non-synonymous mutations SNPs within the VvDXS1 and VvGGPPS genes, respectively in the isoprenoid metabolic pathway. Genotype analysis showed that the grapevine individuals with the heterozygous genotype C/T at chr5:2987350 of VvGGPPS accumulated higher average levels of 6-methyl-5-hepten-2-one and β-cyclocitral than those with the homozygous genotype C/C. Furthermore, VvGGPPS was highly expressed in individuals with high norisoprenoids concentrations. Transient overexpression of VvGGPPS in the leaves of Vitis quinquangularis and tobacco resulted in an increase in norisoprenoid concentrations. These findings indicate the importance of VvGGPPS in the genetic control of norisoprenoids in grape berries, serving as a potential molecular breeding target for aroma.
Collapse
Affiliation(s)
- Qi Sun
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei He
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei Sun
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Hai-Ying Xu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Ya-Qun Fu
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zheng-Yang Sun
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bao-Qing Zhu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiu-Hong Pan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
8
|
Guzmán-Ardiles RE, Pegoraro C, da Maia LC, Costa de Oliveira A. Genetic changes in the genus Vitis and the domestication of vine. FRONTIERS IN PLANT SCIENCE 2023; 13:1019311. [PMID: 36926258 PMCID: PMC10011507 DOI: 10.3389/fpls.2022.1019311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
The genus Vitis belongs to the Vitaceae family and is divided into two subgenera: Muscadinia and Vitis, the main difference between these subgenera being the number of chromosomes. There are many hypotheses about the origin of the genus, which have been formed with archaeological studies and lately with molecular analyses. Even though there is no consensus on the place of origin, these studies have shown that grapes have been used by man since ancient times, starting later on its domestication. Most studies point to the Near East and Greece as the beginning of domestication, current research suggests it took place in parallel in different sites, but in all cases Vitis vinifera (L.) subsp. sylvestris [Vitis vinifera (L.) subsp. sylvestris (Gmelin) Hagi] seems to be the species chosen by our ancestors to give rise to the now known Vitis vinifera (L.) subsp. vinifera [=sativa (Hegi)= caucasica (Vavilov)]. Its evolution and expansion into other territories followed the formation of new empires and their expansion, and this is where the historical importance of this crop lies. In this process, plants with hermaphrodite flowers were preferentially selected, with firmer, sweeter, larger fruits of different colors, thus favoring the selection of genes associated with these traits, also resulting in a change in seed morphology. Currently, genetic improvement programs have made use of wild species for the introgression of disease resistance genes and tolerance to diverse soil and climate environments. In addition, the mapping of genes of interest, both linked to agronomic and fruit quality traits, has allowed the use of molecular markers for assisted selection. Information on the domestication process and genetic resources help to understand the gene pool available for the development of cultivars that respond to producer and consumer requirements.
Collapse
|
9
|
Lytkin K, Nosulchak V, Agakhanov M, Matveikina E, Lushchay E, Karzhaev D, Raines E, Vasylyk I, Rybachenko N, Grigoreva E, Volkov V, Volynkin V, Gentzbittel L, Potokina E. Development of a High-Density Genetic Map for Muscadine Grape Using a Mapping Population from Selfing of the Perfect-Flowered Vine 'Dixie'. PLANTS (BASEL, SWITZERLAND) 2022; 11:3231. [PMID: 36501271 PMCID: PMC9738875 DOI: 10.3390/plants11233231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Intraspecific diversity of the immune grape Muscadinia rotundifolia Michaux. can serve as a rich source of valuable resistance loci to the most widespread pathogens and pests of grapevine. While only one Run1/Rpg1 resistance locus has been introgressed from M. rotundifolia to the Vitis vinifera gene pool, a number of other genes conferring resistance to powdery mildew and downy mildew have been identified in various Muscadinia cultivars. A larger introduction of Muscadinia varieties to the European continent would greatly facilitate experiments of interspecific crosses as well as stimulate biotechnological efforts to overcome the main barrier to F1 fertility caused by the differences in chromosome number. For the successful introduction of Muscadinia into the new European environment, it is necessary to overcome the difficulties associated with the physiological characteristics of the species, such as insufficient cold tolerance and very late fruit ripening. To facilitate the further discovery of valuable loci in Muscadinia and their transfer to grapevine breeding programs, we constructed a high-density linkage map using an S1 mapping population obtained from the self-pollination of M. rotundifolia cv. Dixie maintained on the southern coast of Crimea. Using ddRADseq, 3730 SNPs were ordered across 20 linkage groups spanning 2753.6 cM of the total map length. No segregation in resistance to diseases and pests was observed among the 'Dixie' S1 population, suggesting the presence of homozygous non-segregating resistant loci in the genetic background of 'Dixie'. Markers with high segregation distortion showed a bias towards chromosomal intervals on linkage groups 10 and 20, where loci affecting the survival of 'Dixie' S1 progeny may be localized. QTLs with significant additive and dominance effects were discovered on LG14 and LG18, affecting the morphological traits associated with the vigor of growth and adaptability of young Muscadinia vines in the conditions of Crimea.
Collapse
Affiliation(s)
- Kirill Lytkin
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg 194021, Russia
| | - Vasily Nosulchak
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg 190031, Russia
| | - Magamedgusein Agakhanov
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg 190031, Russia
| | - Elena Matveikina
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
| | - Ekaterina Lushchay
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
| | - Dmitry Karzhaev
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg 194021, Russia
| | - Evgenii Raines
- Information Technologies and Programming Faculty, ITMO University, St. Petersburg 197101, Russia
| | - Irina Vasylyk
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
| | - Nataliya Rybachenko
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
| | - Elizaveta Grigoreva
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
| | - Vladimir Volkov
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg 194021, Russia
| | - Vladimir Volynkin
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
| | | | - Elena Potokina
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg 194021, Russia
| |
Collapse
|
10
|
Possamai T, Wiedemann-Merdinoglu S. Phenotyping for QTL identification: A case study of resistance to Plasmopara viticola and Erysiphe necator in grapevine. FRONTIERS IN PLANT SCIENCE 2022; 13:930954. [PMID: 36035702 PMCID: PMC9403010 DOI: 10.3389/fpls.2022.930954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 06/01/2023]
Abstract
Vitis vinifera is the most widely cultivated grapevine species. It is highly susceptible to Plasmopara viticola and Erysiphe necator, the causal agents of downy mildew (DM) and powdery mildew (PM), respectively. Current strategies to control DM and PM mainly rely on agrochemical applications that are potentially harmful to humans and the environment. Breeding for resistance to DM and PM in wine grape cultivars by introgressing resistance loci from wild Vitis spp. is a complementary and more sustainable solution to manage these two diseases. During the last two decades, 33 loci of resistance to P. viticola (Rpv) and 15 loci of resistance to E. necator (Ren and Run) have been identified. Phenotyping is salient for QTL characterization and understanding the genetic basis of resistant traits. However, phenotyping remains a major bottleneck for research on Rpv and Ren/Run loci and disease resistance evaluation. A thorough analysis of the literature on phenotyping methods used for DM and PM resistance evaluation highlighted phenotyping performed in the vineyard, greenhouse or laboratory with major sources of variation, such as environmental conditions, plant material (organ physiology and age), pathogen inoculum (genetic and origin), pathogen inoculation (natural or controlled), and disease assessment method (date, frequency, and method of scoring). All these factors affect resistance assessment and the quality of phenotyping data. We argue that the use of new technologies for disease symptom assessment, and the production and adoption of standardized experimental guidelines should enhance the accuracy and reliability of phenotyping data. This should contribute to a better replicability of resistance evaluation outputs, facilitate QTL identification, and contribute to streamline disease resistance breeding programs.
Collapse
Affiliation(s)
- Tyrone Possamai
- CREA—Research Centre for Viticulture and Enology, Conegliano, Italy
| | | |
Collapse
|
11
|
Sosa-Zuniga V, Vidal Valenzuela Á, Barba P, Espinoza Cancino C, Romero-Romero JL, Arce-Johnson P. Powdery Mildew Resistance Genes in Vines: An Opportunity to Achieve a More Sustainable Viticulture. Pathogens 2022; 11:703. [PMID: 35745557 PMCID: PMC9230758 DOI: 10.3390/pathogens11060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/10/2022] Open
Abstract
Grapevine (Vitis vinifera) is one of the main fruit crops worldwide. In 2020, the total surface area planted with vines was estimated at 7.3 million hectares. Diverse pathogens affect grapevine yield, fruit, and wine quality of which powdery mildew is the most important disease prior to harvest. Its causal agent is the biotrophic fungus Erysiphe necator, which generates a decrease in cluster weight, delays fruit ripening, and reduces photosynthetic and transpiration rates. In addition, powdery mildew induces metabolic reprogramming in its host, affecting primary metabolism. Most commercial grapevine cultivars are highly susceptible to powdery mildew; consequently, large quantities of fungicide are applied during the productive season. However, pesticides are associated with health problems, negative environmental impacts, and high costs for farmers. In paralleled, consumers are demanding more sustainable practices during food production. Therefore, new grapevine cultivars with genetic resistance to powdery mildew are needed for sustainable viticulture, while maintaining yield, fruit, and wine quality. Two main gene families confer resistance to powdery mildew in the Vitaceae, Run (Resistance to Uncinula necator) and Ren (Resistance to Erysiphe necator). This article reviews the powdery mildew resistance genes and loci and their use in grapevine breeding programs.
Collapse
Affiliation(s)
- Viviana Sosa-Zuniga
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile;
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4560, Santiago 7820436, Chile
| | - Álvaro Vidal Valenzuela
- Foundazione Edmund Mach, Via Edmund Mach 1, San Michele all’Adige (TN), 38010 Trento, Italy;
| | - Paola Barba
- Instituto de Investigaciones Agropecuarias, Avenida Santa Rosa 11610, Santiago 8831314, Chile;
| | - Carmen Espinoza Cancino
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Avenida El Llano Subercaseaux 2801, Santiago 8900000, Chile;
| | - Jesus L. Romero-Romero
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Bvd. Juan de Dios Bátiz Paredes 250, Culiacan Rosales 81101, Mexico;
| | - Patricio Arce-Johnson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile;
- Agrijohnson Ltda., Parcela 16b, Miraflores, Curacavi 9630000, Chile
| |
Collapse
|
12
|
Buck K, Worthington M. Genetic Diversity of Wild and Cultivated Muscadine Grapes ( Vitis rotundifolia Michx.). FRONTIERS IN PLANT SCIENCE 2022; 13:852130. [PMID: 35419015 PMCID: PMC8996184 DOI: 10.3389/fpls.2022.852130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The muscadine (Vitis rotundifolia syn. Muscadinia rotundifolia) is an American grape species native to the southeastern United States that has been cultivated for centuries. Muscadines are one of three grape species in subgenus Muscadinia with a chromosome number of 2n = 40 (V. rotundifolia, Vitis munsoniana, and Vitis popenoei), making them genetically distinct from the European wine and table grape (Vitis vinifera) and other species in subgenus Euvitis. Crop improvement efforts have been continuous since the late 19th century, yet the germplasm that served as the foundation for early muscadine breeding efforts was sourced from a relatively small portion of their native range, mostly in the coastal plains of North Carolina. This study used the rhAmpSeq Vitis core panel haplotype markers to genotype 194 Muscadinia accessions from five cultivated populations and 15 wild populations collected across their native range. Wild populations from the western half of the native range were generally less genetically differentiated than hypothesized, but were genetically distinct from the material used in both past and present breeding efforts. One population collected from coastal North Carolina grouped closely with V. munsoniana accessions despite being well outside the reported range for that species. Principal coordinate and structure analyses revealed three main groups within the 194 accessions: one for cultivated material, one for wild V. rotundifolia, and one for V. munsoniana and V. popenoei. At K = 5, structure results showed that more recent muscadine cultivars are further differentiated from wild accessions and varieties. These analyses confirmed our hypothesis that muscadine cultivars are genetically differentiated from their wild counterparts. This study also showed that genetic diversity in V. rotundifolia is not equally distributed across its native range and that the limited number of genotypes used in crop improvement efforts has not fully utilized the genetic diversity within the species.
Collapse
Affiliation(s)
| | - Margaret Worthington
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
13
|
Park M, Vera D, Kambrianda D, Gajjar P, Cadle-Davidson L, Tsolova V, El-Sharkawy I. Chromosome-level genome sequence assembly and genome-wide association study of Muscadinia rotundifolia reveal the genetics of 12 berry-related traits. HORTICULTURE RESEARCH 2022; 9:uhab011. [PMID: 35040982 PMCID: PMC8769032 DOI: 10.1093/hr/uhab011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 05/29/2023]
Abstract
Vitis has two subgenera: Euvitis, which includes commercially important Vitis vinifera and interspecific hybrid cultivars, and Muscadinia. Of note, the market for Muscadinia grapes remains small, and only Muscadinia rotundifolia is cultivated as a commercial crop. To establish a basis for the study of Muscadinia species, we generated chromosome-level whole-genome sequences of Muscadinia rotundifolia cv. Noble. A total of 393.8 Mb of sequences were assembled from 20 haploid chromosomes, and 26 394 coding genes were identified from the sequences. Comparative analysis with the genome sequence of V. vinifera revealed a smaller size of the M. rotundifolia genome but highly conserved gene synteny. A genome-wide association study of 12 Muscadinia berry-related traits was performed among 356 individuals from breeding populations of M. rotundifolia. For the transferability of markers between Euvitis and Muscadinia, we used 2000 core genome rhAmpSeq markers developed to allow marker transferability across Euvitis species. A total of 1599 (80%) rhAmpSeq markers returned data in Muscadinia. From the GWAS analyses, we identified a total of 52 quantitative trait nucleotides (QTNs) associated with the 12 berry-related traits. The transferable markers enabled the direct comparison of the QTNs with previously reported results. The whole-genome sequences along with the GWAS results provide a new basis for the extensive study of Muscadinia species.
Collapse
Affiliation(s)
- Minkyu Park
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, 6361 Mahan Dr., Tallahassee, FL 32308, USA
| | - Daniel Vera
- Silico LLC, 23 Essex Street #761119, Melrose, MA 02176, USA
| | - Devaiah Kambrianda
- Plant and Soil Sciences, Southern University Agricultural Research and Extension Center, 181 B. A. Little Dr., Baton Rouge, LA 70813, USA
| | - Pranavkumar Gajjar
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, 6361 Mahan Dr., Tallahassee, FL 32308, USA
| | - Lance Cadle-Davidson
- USDA-ARS, Grape Genetics Research Unit, 630 West W North St., Geneva, NY, 14456, USA
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, 6361 Mahan Dr., Tallahassee, FL 32308, USA
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, 6361 Mahan Dr., Tallahassee, FL 32308, USA
| |
Collapse
|
14
|
Foria S, Magris G, Jurman I, Schwope R, De Candido M, De Luca E, Ivanišević D, Morgante M, Di Gaspero G. Extent of wild-to-crop interspecific introgression in grapevine (Vitis vinifera) as a consequence of resistance breeding and implications for the crop species definition. HORTICULTURE RESEARCH 2022; 9:uhab010. [PMID: 35039824 PMCID: PMC8801725 DOI: 10.1093/hr/uhab010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 01/18/2022] [Accepted: 09/25/2021] [Indexed: 05/31/2023]
Abstract
Over the past two centuries, introgression through repeated backcrossing has introduced disease resistance from wild grape species into the domesticated lineage Vitis vinifera subsp. sativa. Introgression lines are being cultivated over increasing vineyard surface areas, as their wines now rival in quality those obtained from preexisting varieties. There is, however, a lot of debate about whether and how wine laws defining commercial product categories, which are based on the classification of V. vinifera and interspecific hybrid grapes, should be revised to accommodate novel varieties that do not fit either category. Here, we developed a method of multilocus genotype analysis using short-read resequencing to identify haplotypic blocks of wild ancestry in introgression lines and quantify the physical length of chromosome segments free-of-introgression or with monoallelic and biallelic introgression. We used this genomic data to characterize species, hybrids and introgression lines and show that newly released resistant varieties contain 76.5-94.8% of V. vinifera DNA. We found that varietal wine ratings are not always commensurate with the percentage of V. vinifera ancestry and linkage drag of wild alleles around known resistance genes persists over at least 7.1-11.5 Mb, slowing down the recovery of the recurrent parental genome. This method also allowed us to identify the donor species of known resistance haplotypes, define the ancestry of wild genetic background in introgression lines with complex pedigrees, validate the ancestry of the historic varieties Concord and Norton, and unravel sample curation errors in public databases.
Collapse
Affiliation(s)
- Serena Foria
- Istituto di Genomica Applicata,
via Jacopo Linussio, 51, 33100 Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
- Dr. Schär R&D Centre, Padriciano 99, 34149 Trieste, Italy
| | - Gabriele Magris
- Istituto di Genomica Applicata,
via Jacopo Linussio, 51, 33100 Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Irena Jurman
- Istituto di Genomica Applicata,
via Jacopo Linussio, 51, 33100 Udine, Italy
| | - Rachel Schwope
- Istituto di Genomica Applicata,
via Jacopo Linussio, 51, 33100 Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Massimo De Candido
- VCR Research Center, Vivai Cooperativi Rauscedo, Via Ruggero Forti 4, 33095 San Giorgio della Richinvelda, Italy
| | - Elisa De Luca
- VCR Research Center, Vivai Cooperativi Rauscedo, Via Ruggero Forti 4, 33095 San Giorgio della Richinvelda, Italy
| | - Dragoslav Ivanišević
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21102 Novi Sad, Serbia
| | - Michele Morgante
- Istituto di Genomica Applicata,
via Jacopo Linussio, 51, 33100 Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | | |
Collapse
|
15
|
Possamai T, Wiedemann-Merdinoglu S. Phenotyping for grapevine QTL identification. The case of resistance to Plasmopara viticola and Erysiphe necator. A review. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225002009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Possamai T, Wiedemann-Merdinoglu S, Lacombe MC, Dorne MA, Merdinoglu D, De Nardi B, Migliaro D, Velasco R, De Mori G, Cipriani G, Testolin R. Phenotyping and genetic analysis of the Caucasian grape resistance to Erysiphe necator. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225002010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Possamai T, Wiedemann-Merdinoglu S, Merdinoglu D, Migliaro D, De Mori G, Cipriani G, Velasco R, Testolin R. Construction of a high-density genetic map and detection of a major QTL of resistance to powdery mildew (Erysiphe necator Sch.) in Caucasian grapes (Vitis vinifera L.). BMC PLANT BIOLOGY 2021; 21:528. [PMID: 34763660 PMCID: PMC8582213 DOI: 10.1186/s12870-021-03174-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/09/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Vitis vinifera L. is the most cultivated grapevine species worldwide. Erysiphe necator Sch., the causal agent of grape powdery mildew, is one of the main pathogens affecting viticulture. V. vinifera has little or no genetic resistances against E. necator and the grape industry is highly dependent on agrochemicals. Some Caucasian V. vinifera accessions have been reported to be resistant to E. necator and to have no genetic relationships to known sources of resistance to powdery mildew. The main purpose of this work was the study and mapping of the resistance to E. necator in the Caucasian grapes 'Shavtsitska' and 'Tskhvedianis tetra'. RESULTS The Caucasian varieties 'Shavtsitska' and 'Tskhvedianis tetra' showed a strong partial resistance to E. necator which segregated in two cross populations: the resistant genotypes delayed and limited the pathogen mycelium growth, sporulation intensity and number of conidia generated. A total of 184 seedlings of 'Shavtsitska' x 'Glera' population were genotyped through the Genotyping by Sequencing (GBS) technology and two high-density linkage maps were developed for the cross parents. The QTL analysis revealed a major resistance locus, explaining up to 80.15% of the phenotypic variance, on 'Shavtsitska' linkage group 13, which was associated with a reduced pathogen infection as well as an enhanced plant necrotic response. The genotyping of 105 Caucasian accessions with SSR markers flanking the QTL revealed that the resistant haplotype of 'Shavtsitska' was shared by 'Tskhvedianis tetra' and a total of 25 Caucasian grape varieties, suggesting a widespread presence of this resistance in the surveyed germplasm. The uncovered QTL was mapped in the region where the Ren1 locus of resistance to E. necator, identified in the V. vinifera 'Kishmish vatkana' and related grapes of Central Asia, is located. The genetic analysis conducted revealed that the Caucasian grapes in this study exhibit a resistant haplotype different from that of Central Asian grape accessions. CONCLUSIONS The QTL isolated in 'Shavtsitska' and present in the Caucasian V. vinifera varieties could be a new candidate gene of resistance to E. necator to use in breeding programmes. It co-localizes with the Ren1 locus but shows a different haplotype from that of grapevines of Central Asia. We therefore consider that the Caucasian resistance locus, named Ren1.2, contains a member of a cluster of R-genes, of which the region is rich, and to be linked with, or possibly allelic, to Ren1.
Collapse
Affiliation(s)
- Tyrone Possamai
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy.
- CREA - Research Centre for Viticulture and Enology, viale XXVIII Aprile 26, 31015, Conegliano, TV, Italy.
| | | | - Didier Merdinoglu
- INRAE, Université de Strasbourg, SVQV UMR-A 1131, 28 rue de Herrlisheim, 68000, Colmar, France
| | - Daniele Migliaro
- CREA - Research Centre for Viticulture and Enology, viale XXVIII Aprile 26, 31015, Conegliano, TV, Italy
| | - Gloria De Mori
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | - Guido Cipriani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | - Riccardo Velasco
- CREA - Research Centre for Viticulture and Enology, viale XXVIII Aprile 26, 31015, Conegliano, TV, Italy
| | - Raffaele Testolin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy
- Institute of Applied Genomics, Science & Technology Park "Luigi Danieli", via Jacopo Linussio 51, 33100, Udine, Italy
| |
Collapse
|
18
|
Jiao C, Sun X, Yan X, Xu X, Yan Q, Gao M, Fei Z, Wang X. Grape Transcriptome Response to Powdery Mildew Infection: Comparative Transcriptome Profiling of Chinese Wild Grapes Provides Insights Into Powdery Mildew Resistance. PHYTOPATHOLOGY 2021; 111:2041-2051. [PMID: 33870727 DOI: 10.1094/phyto-01-21-0006-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Erysiphe necator, the fungal pathogen of grape powdery mildew disease, poses a great threat to the grape market and the wine industry. To better understand the molecular basis of grape responses to E. necator, we performed comparative transcriptome profiling on two Chinese wild grape accessions with varying degrees of resistance to E. necator. At 6-, 24-, and 96-h postinoculation of E. necator, 2,856, 2,678, and 1,542 differentially expressed genes (DEGs) were identified in the susceptible accession Vitis pseudoreticulata 'Hunan-1', and at those same time points, 1,921, 2,498, and 3,249 DEGs, respectively, were identified in the resistant accession V. quinquangularis 'Shang-24'. 'Hunan-1' had a substantially larger fraction of down-regulated genes than 'Shang-24' at every infection stage. Analysis of DEGs revealed that up-regulated genes were mostly associated with defense response and disease resistance-related metabolite biosynthesis, and such signaling genes were significantly suppressed in 'Hunan-1'. Interestingly, fatty acid biosynthesis- and elongation-related genes were suppressed by the fungus in the 'Shang-24' accession but somehow induced in the 'Hunan-1' accession, consistent with the concept that E. necator is likely to be a fatty acid auxotroph that requires lipids from the host. Moreover, genes involved in biosynthesis and signaling of phytohormones, such as jasmonic acid and cytokinin, as well as genes encoding protein kinases and nucleotide-binding domain leucine-rich repeat proteins, differentially responded to E. necator in the two wild grapes. The variation of gene regulation associated with nutrient uptake by the fungus and with signaling transduction and pathogen recognition suggests a multilayered regulatory network that works in concert to assist in the establishment of fungal pathogen infections.
Collapse
Affiliation(s)
- Chen Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca 14853, U.S.A
| | - Xuepeng Sun
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca 14853, U.S.A
- College of Agriculture and Food Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaoxiao Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaozhao Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca 14853, U.S.A
- Agricultural Research Service, U.S. Department of Agriculture, Robert W. Holley Center for Agriculture and Health, Ithaca 14853, U.S.A
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
19
|
Grapevine Shoot Tip Cryopreservation and Cryotherapy: Secure Storage of Disease-Free Plants. PLANTS 2021; 10:plants10102190. [PMID: 34685999 PMCID: PMC8541583 DOI: 10.3390/plants10102190] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/27/2022]
Abstract
Grapevine (Vitis spp.) is one of the most economically important temperate fruit crops. Grapevine breeding programs require access to high-quality Vitis cultivars and wild species, which may be maintained within genebanks. Shoot tip cryopreservation is a valuable technique for the safe, long-term conservation of Vitis genetic resources that complements traditional field and in vitro germplasm collections. Vitis is highly susceptible to virus infections. Virus-free plants are required as propagation material for clonally propagated germplasm, and also for the global exchange of grapevine genetic resources. Shoot tip cryotherapy, a method based on cryopreservation, has proven to be effective in eradicating viruses from infected plants, including grapevine. This comprehensive review outlines/documents the advances in Vitis shoot tip cryopreservation and cryotherapy that have resulted in healthy plants with high regrowth levels across diverse Vitis species.
Collapse
|
20
|
Fayyaz L, Tenscher A, Viet Nguyen A, Qazi H, Walker MA. Vitis Species from the Southwestern United States Vary in Their Susceptibility to Powdery Mildew. PLANT DISEASE 2021; 105:2418-2425. [PMID: 34494871 DOI: 10.1094/pdis-10-20-2103-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The European grapevine (Vitis vinifera L.) has been cultivated in North America for about 500 years. One of the major limitations to its culture is the powdery mildew (PM) fungus, Erysiphe necator Schw. This study reports on the most extensive screening of Vitis species from the southwestern United States and northern Mexico for resistance to PM, testing 147 accessions of 13 Vitis species. In addition, Vitis vinifera cv. Carignane, a highly susceptible wine grape cultivar, was used as a reference to evaluate the effect of the inoculum 14 days postinoculation. Inoculation was done with a vacuum-operated settling tower using a broadly virulent isolate of E. necator, the C-strain. Resistant accessions (nine), moderately susceptible accessions (39), and highly susceptible accessions (99) were detected. The resistant accessions were then inoculated with an additional fungal isolate, e1-101, and they retained their resistance. Vitis species susceptibility was not associated with a North-South gradation, but Western species were more susceptible than Midwestern and Eastern species. All five of the V. monticola accessions were susceptible, as were the accessions of V. treleasei. The species V. acerifolia, V. candicans, V. cinerea, and V. × doaniana had significantly more resistant to moderately susceptible accessions compared with V. arizonica, V. berlandieri, V. californica, V. × champinii, V. girdiana, V. riparia, and V. rupestris, which had relatively more susceptible accessions than the other species. This research identified new sources of PM resistance in Vitis from the southwestern United States that could be incorporated into PM resistance breeding programs throughout the world.
Collapse
Affiliation(s)
- Laila Fayyaz
- Department of Viticulture and Enology, University of California, Davis, CA 95616-5270
| | - Alan Tenscher
- Department of Viticulture and Enology, University of California, Davis, CA 95616-5270
| | - Andy Viet Nguyen
- Department of Viticulture and Enology, University of California, Davis, CA 95616-5270
| | - Huma Qazi
- Department of Viticulture and Enology, University of California, Davis, CA 95616-5270
| | - M Andrew Walker
- Department of Viticulture and Enology, University of California, Davis, CA 95616-5270
| |
Collapse
|
21
|
Cochetel N, Minio A, Massonnet M, Vondras AM, Figueroa-Balderas R, Cantu D. Diploid chromosome-scale assembly of the Muscadinia rotundifolia genome supports chromosome fusion and disease resistance gene expansion during Vitis and Muscadinia divergence. G3-GENES GENOMES GENETICS 2021; 11:6129119. [PMID: 33824960 PMCID: PMC8049426 DOI: 10.1093/g3journal/jkab033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Muscadinia rotundifolia, the muscadine grape, has been cultivated for centuries in the southeastern United States. M. rotundifolia is resistant to many of the pathogens that detrimentally affect Vitis vinifera, the grape species commonly used for winemaking. For this reason, M. rotundifolia is a valuable genetic resource for breeding. Single-molecule real-time reads were combined with optical maps to reconstruct the two haplotypes of each of the 20 M. rotundifolia cv. Trayshed chromosomes. The completeness and accuracy of the assembly were confirmed using a high-density linkage map. Protein-coding genes were annotated using an integrated and comprehensive approach. This included using full-length cDNA sequencing (Iso-Seq) to improve gene structure and hypothetical spliced variant predictions. Our data strongly support that Muscadinia chromosomes 7 and 20 are fused in Vitis and pinpoint the location of the fusion in Cabernet Sauvignon and PN40024 chromosome 7. Disease-related gene numbers in Trayshed and Cabernet Sauvignon were similar, but their clustering locations were different. A dramatic expansion of the Toll/Interleukin-1 Receptor-like Nucleotide-Binding Site Leucine-Rich Repeat (TIR-NBS-LRR) class was detected on Trayshed chromosome 12 at the Resistance to Uncinula necator 1 (RUN1)/Resistance to Plasmopara viticola 1 (RPV1) locus, which confers strong dominant resistance to powdery and downy mildews. A genome browser, annotation, and Blast tool for Trayshed are available at www.grapegenomics.com.
Collapse
Affiliation(s)
- Noé Cochetel
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Andrea Minio
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Mélanie Massonnet
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Amanda M Vondras
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
22
|
Analysis of microbial community diversity of muscadine grape skins. Food Res Int 2021; 145:110417. [PMID: 34112420 DOI: 10.1016/j.foodres.2021.110417] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 01/04/2023]
Abstract
Microorganisms in grape skins play vital roles in grapevine health, productivity, wine quality and organoleptic properties. To investigate microbial diversity of muscadine grape skins, 16S and ITS sequences of 30 samples from six muscadine (Muscadinia rotundifolia Michx.) cultivars grown in Guangxi, China, were sequenced using Illumina Novaseq platform. A total of 7,317 bacterial operational taxonomic units (OTUs) and 1,611 fungal OTUs were obtained, and clustered into 38 bacterial and 7 known fungal phyla. The dominant bacterial phyla were Proteobacteria, Firmicutes, Bacteroidetes, Planctomycetes, Actinobacteria, Verrucomicrobia, Acidobacteria, and Patescibacteria, and the dominant genera were Lelliottia, Prevotella_9, Escherichia-Shigella, Lactobacillus, Pseudomonas, Akkermansia, Faecalibacterium, Rahnella, and Acinetobacter. For fungi, the dominant phyla were Ascomycota, Basidiomycota, and Mortierellomycota, and the dominant genera were Acaromyces, Uwebraunia, Penicillium, Zygosporium, Ilyonectria, Aspergillus, Neodevriesia, Strelitziana, Mortierella, and Fusarium. Alpha diversity analysis and Kruskal-Wallis H test demonstrated that microbial diversity and composition were affected by the cultivar. The Pearson correlation analysis of species revealed complex interactions among microbes. PICRUSt2 predicted that the metabolism of carbohydrates, cofactors, vitamins, amino acids, terpenoids, polyketides, lipids and biosynthesis of other secondary metabolites were abundant. These results contribute to understanding the uniqueness of muscadine grapes and the links among microorganisms in grape skins.
Collapse
|
23
|
Su K, Guo Y, Zhong W, Lin H, Liu Z, Li K, Li Y, Guo X. High-Density Genetic Linkage Map Construction and White Rot Resistance Quantitative Trait Loci Mapping for Genus Vitis Based on Restriction Site-Associated DNA Sequencing. PHYTOPATHOLOGY 2021; 111:659-670. [PMID: 33635092 DOI: 10.1094/phyto-12-19-0480-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Grape white rot (Coniothyrium diplodiella) is a major fungal disease affecting grape yield and quality. Quantitative trait locus (QTL) analysis is an important method for studying important horticultural traits of grapevine. This study was conducted to construct a high-density map and conduct QTL mapping for grapevine white rot resistance. A mapping population with 177 genotypes was developed from interspecific hybridization of a white rot-resistant cultivar (Vitis vinifera × V. labrusca 'Zhuosexiang') and white rot-susceptible cultivar (V. vinifera 'Victoria'). Single-nucleotide polymorphism (SNP) markers were developed by restriction site-associated DNA sequencing. The female, male, and integrated maps contained 2,501, 4,110, and 6,249 SNP markers with average genetic distances of adjacent markers of 1.25, 0.77, and 0.50 cM, respectively. QTL mapping was conducted based on white rot resistance identification of 177 individuals in July and August of 2017 and 2018. Notably, one stable QTL related to white rot resistance was detected and located on linkage group LG14. The phenotypic variance ranged from 12.93 to 13.43%. An SNP marker (chr14_3929380), which cosegregated with white rot resistance, was discovered and shows potential for use in marker-assisted selection to generate new grapevine cultivars with resistance to white rot.
Collapse
Affiliation(s)
- Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, People's Republic of China
| | - Weihao Zhong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Yuanyuan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong 271018, People's Republic of China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, People's Republic of China
| |
Collapse
|
24
|
Karn A, Zou C, Brooks S, Fresnedo-Ramírez J, Gabler F, Sun Q, Ramming D, Naegele R, Ledbetter C, Cadle-Davidson L. Discovery of the REN11 Locus From Vitis aestivalis for Stable Resistance to Grapevine Powdery Mildew in a Family Segregating for Several Unstable and Tissue-Specific Quantitative Resistance Loci. FRONTIERS IN PLANT SCIENCE 2021; 12:733899. [PMID: 34539723 PMCID: PMC8448101 DOI: 10.3389/fpls.2021.733899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 05/05/2023]
Abstract
Race-specific resistance loci, whether having qualitative or quantitative effects, present plant-breeding challenges for phenotypic selection and deciding which loci to select or stack with other resistance loci for improved durability. Previously, resistance to grapevine powdery mildew (GPM, caused by Erysiphe necator) was predicted to be conferred by at least three race-specific loci in the mapping family B37-28 × C56-11 segregating for GPM resistance from Vitis aestivalis. In this study, 9 years of vineyard GPM disease severity ratings plus a greenhouse and laboratory assays were genetically mapped, using a rhAmpSeq core genome marker platform with 2,000 local haplotype markers. A new qualitative resistance locus, named REN11, on the chromosome (Chr) 15 was found to be effective in nearly all (11 of 12) vineyard environments on leaves, rachis, berries, and most of the time (7 of 12) stems. REN11 was independently validated in a pseudo-testcross with the grandparent source of resistance, "Tamiami." Five other loci significantly predicted GPM severity on leaves in only one or two environments, which could indicate race-specific resistance or their roles in different timepoints in epidemic progress. Loci on Chr 8 and 9 reproducibly predicted disease severity on stems but not on other tissues and had additive effects with REN11 on the stems. The rhAmpSeq local haplotype sequences published in this study for REN11 and Chr 8 and 9 stem quantitative trait locus (QTL) can be used directly for marker-assisted selection or converted to SNP assays. In screening for REN11 in a diversity panel of 20,651 vines representing the diversity of Vitis, this rhAmpSeq haplotype had a false positive rate of 0.034% or less. The effects of the other foliar resistance loci detected in this study seem too unstable for genetic improvement regardless of quantitative effect size, whether due to race specificity or other environmental variables.
Collapse
Affiliation(s)
- Avinash Karn
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, United States
| | - Cheng Zou
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, United States
| | - Siraprapa Brooks
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Grape Genetics Research Unit, Geneva, NY, United States
| | - Jonathan Fresnedo-Ramírez
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, United States
| | - Franka Gabler
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Commodity Protection and Quality Research, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Qi Sun
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Grape Genetics Research Unit, Geneva, NY, United States
| | - David Ramming
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Rachel Naegele
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Craig Ledbetter
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Lance Cadle-Davidson
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, United States
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Grape Genetics Research Unit, Geneva, NY, United States
- *Correspondence: Lance Cadle-Davidson
| |
Collapse
|
25
|
Rubio B, Lalanne-Tisné G, Voisin R, Tandonnet JP, Portier U, Van Ghelder C, Lafargue M, Petit JP, Donnart M, Joubard B, Bert PF, Papura D, Le Cunff L, Ollat N, Esmenjaud D. Characterization of genetic determinants of the resistance to phylloxera, Daktulosphaira vitifoliae, and the dagger nematode Xiphinema index from muscadine background. BMC PLANT BIOLOGY 2020; 20:213. [PMID: 32398088 PMCID: PMC7218577 DOI: 10.1186/s12870-020-2310-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/26/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Muscadine (Muscadinia rotundifolia) is known as a resistance source to many pests and diseases in grapevine. The genetics of its resistance to two major grapevine pests, the phylloxera D. vitifoliae and the dagger nematode X. index, vector of the Grapevine fanleaf virus (GFLV), was investigated in a backcross progeny between the F1 resistant hybrid material VRH8771 (Vitis-Muscadinia) derived from the muscadine R source 'NC184-4' and V. vinifera cv. 'Cabernet-Sauvignon' (CS). RESULTS In this pseudo-testcross, parental maps were constructed using simple-sequence repeats markers and single nucleotide polymorphism markers from a GBS approach. For the VRH8771 map, 2271 SNP and 135 SSR markers were assembled, resulting in 19 linkage groups (LG) and an average distance between markers of 0.98 cM. Phylloxera resistance was assessed by monitoring root nodosity number in an in planta experiment and larval development in a root in vitro assay. Nematode resistance was studied using 10-12 month long tests for the selection of durable resistance and rating criteria based on nematode reproduction factor and gall index. A major QTL for phylloxera larval development, explaining more than 70% of the total variance and co-localizing with a QTL for nodosity number, was identified on LG 7 and designated RDV6. Additional QTLs were detected on LG 3 (RDV7) and LG 10 (RDV8), depending on the in planta or in vitro experiments, suggesting that various loci may influence or modulate nodosity formation and larval development. Using a Bulked Segregant Analysis approach and a proportion test, markers clustered in three regions on LG 9, LG 10 and LG 18 were shown to be associated to the nematode resistant phenotype. QTL analysis confirmed the results and QTLs were thus designated respectively XiR2, XiR3 and XiR4, although a LOD-score below the significant threshold value was obtained for the QTL on LG 18. CONCLUSIONS Based on a high-resolution linkage map and a segregating grapevine backcross progeny, the first QTLs for resistance to D. vitifoliae and to X. index were identified from a muscadine source. All together these results open the way to the development of marker-assisted selection in grapevine rootstock breeding programs based on muscadine derived resistance to phylloxera and to X. index in order to delay GFLV transmission.
Collapse
Affiliation(s)
- Bernadette Rubio
- INRAE, UMR EGFV, 33883, Villenave d'Ornon, France
- IFV, Domaine de l'Espiguette, 30240, Le Grau du Roi, France
| | - Guillaume Lalanne-Tisné
- INRAE, UMR EGFV, 33883, Villenave d'Ornon, France
- IFV, Domaine de l'Espiguette, 30240, Le Grau du Roi, France
| | - Roger Voisin
- INRAE, Université Nice Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | | | - Ulysse Portier
- INRAE, Université Nice Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Cyril Van Ghelder
- INRAE, Université Nice Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | | | | | | | | | | | | | - Loïc Le Cunff
- IFV, Domaine de l'Espiguette, 30240, Le Grau du Roi, France
| | | | - Daniel Esmenjaud
- INRAE, Université Nice Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| |
Collapse
|
26
|
Construction of a High-Density Genetic Map and Mapping of Firmness in Grapes ( Vitis vinifera L.) Based on Whole-Genome Resequencing. Int J Mol Sci 2020; 21:ijms21030797. [PMID: 31991832 PMCID: PMC7037167 DOI: 10.3390/ijms21030797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Berry firmness is one of the most important quality traits in table grapes. The underlying molecular and genetic mechanisms for berry firmness remain unclear. We constructed a high-density genetic map based on whole-genome resequencing to identify loci associated with berry firmness. The genetic map had 19 linkage groups, including 1662 bin markers (26,039 SNPs), covering 1463.38 cM, and the average inter-marker distance was 0.88 cM. An analysis of berry firmness in the F1 population and both parents for three consecutive years revealed continuous variability in F1, with a distribution close to the normal distribution. Based on the genetic map and phenotypic data, three potentially significant quantitative trait loci (QTLs) related to berry firmness were identified by composite interval mapping. The contribution rate of each QTL ranged from 21.5% to 28.6%. We identified four candidate genes associated with grape firmness, which are related to endoglucanase, abscisic acid (ABA), and transcription factors. A qRT-PCR analysis revealed that the expression of abscisic-aldehyde oxidase-like gene (VIT_18s0041g02410) and endoglucanase 3 gene (VIT_18s0089g00210) in Muscat Hamburg was higher than in Crimson Seedless at the veraison stage, which was consistent with that of parent berry firmness. These results confirmed that VIT_18s0041g02410 and VIT_18s0089g00210 are candidate genes associated with berry firmness.
Collapse
|
27
|
Pirrello C, Mizzotti C, Tomazetti TC, Colombo M, Bettinelli P, Prodorutti D, Peressotti E, Zulini L, Stefanini M, Angeli G, Masiero S, Welter LJ, Hausmann L, Vezzulli S. Emergent Ascomycetes in Viticulture: An Interdisciplinary Overview. FRONTIERS IN PLANT SCIENCE 2019; 10:1394. [PMID: 31824521 PMCID: PMC6883492 DOI: 10.3389/fpls.2019.01394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/09/2019] [Indexed: 05/23/2023]
Abstract
The reduction of pesticide usage is a current imperative and the implementation of sustainable viticulture is an urgent necessity. A potential solution, which is being increasingly adopted, is offered by the use of grapevine cultivars resistant to its main pathogenic threats. This, however, has contributed to changes in defense strategies resulting in the occurrence of secondary diseases, which were previously controlled. Concomitantly, the ongoing climate crisis is contributing to destabilizing the increasingly dynamic viticultural context. In this review, we explore the available knowledge on three Ascomycetes which are considered emergent and causal agents of powdery mildew, black rot and anthracnose. We also aim to provide a survey on methods for phenotyping disease symptoms in fields, greenhouse and lab conditions, and for disease control underlying the insurgence of pathogen resistance to fungicide. Thus, we discuss fungal genetic variability, highlighting the usage and development of molecular markers and barcoding, coupled with genome sequencing. Moreover, we extensively report on the current knowledge available on grapevine-ascomycete interactions, as well as the mechanisms developed by the host to counteract the attack. Indeed, to better understand these resistance mechanisms, it is relevant to identify pathogen effectors which are involved in the infection process and how grapevine resistance genes function and impact the downstream cascade. Dealing with such a wealth of information on both pathogens and the host, the horizon is now represented by multidisciplinary approaches, combining traditional and innovative methods of cultivation. This will support the translation from theory to practice, in an attempt to understand biology very deeply and manage the spread of these Ascomycetes.
Collapse
Affiliation(s)
- Carlotta Pirrello
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Chiara Mizzotti
- Department of Biosciences, University of Milan, Milan, Italy
| | - Tiago C. Tomazetti
- Center of Agricultural Sciences, Federal University of Santa Catarina, Rodovia Admar Gonzaga, Florianópolis, Brazil
| | - Monica Colombo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Paola Bettinelli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Daniele Prodorutti
- Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Elisa Peressotti
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Luca Zulini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Marco Stefanini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Gino Angeli
- Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Simona Masiero
- Department of Biosciences, University of Milan, Milan, Italy
| | - Leocir J. Welter
- Department of Natural and Social Sciences, Federal University of Santa Catarina, Campus of Curitibanos, Rodovia Ulysses Gaboardi, Curitibanos, Brazil
| | - Ludger Hausmann
- Julius Kühn Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Silvia Vezzulli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
28
|
Hu Y, Gao YR, Yang LS, Wang W, Wang YJ, Wen YQ. The cytological basis of powdery mildew resistance in wild Chinese Vitis species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:244-253. [PMID: 31593897 DOI: 10.1016/j.plaphy.2019.09.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The wild Chinese grapevines (Vitis spp.) show varying levels of resistance to powdery mildew caused by Erysiphe necator that is an economically important disease of cultivated grapevines (Vitis vinifera). However, little information is available regarding the cytological mechanisms of powdery mildew resistance in these wild relatives. Here, we studied the cytological responses of three wild Chinese grapevine accessions after they were infected with E. necator (En) NAFU1 in comparison to the susceptible V. vinifera cv. 'Thompson Seedless' grape. The hyphal growth and sporulation of En NAFU1 were significantly restricted in wild species compared to 'Thompson Seedless', which appears to be associated with early cell wall deposition at the attempt sites, encasement of haustoria, and hypersensitive response-like cell death of penetrated epidermal cells. Moreover, endogenous free salicylic acid (SA) was more abundant in wild Chinese Vitis species than in 'Thompson Seedless' under pathogen-free condition. During En NAFU1 colonization, SA conjugates accumulated higher in wild grapevines than in 'Thompson Seedless'. In addition, the species-specific expression patterns of defense-associated genes during En NAFU1 colonization indicated that mechanisms underlying powdery mildew resistance are divergent among different wild Chinese Vitis species. These results contribute to understanding of mechanisms underlying defense responses of wild Chinese Vitis species against powdery mildew.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Yu-Rong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Lu-Shan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Yue-Jin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
29
|
Lewter J, Worthington ML, Clark JR, Varanasi AV, Nelson L, Owens CL, Conner P, Gunawan G. High-density linkage maps and loci for berry color and flower sex in muscadine grape (Vitis rotundifolia). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1571-1585. [PMID: 30756127 DOI: 10.1007/s00122-019-03302-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Linkage maps of muscadine grape generated using genotyping-by-sequencing (GBS) provide insight into genome collinearity between Muscadinia and Euvitis subgenera and genetic control of flower sex and berry color. The muscadine grape, Vitis rotundifolia, is a specialty crop native to the southeastern USA. Muscadine vines can be male, female, or perfect-flowered, and berry color ranges from bronze to black. Genetic linkage maps were constructed using genotyping-by-sequencing in two F1 populations segregating for flower sex and berry color. The linkage maps consisted of 1244 and 2069 markers assigned to 20 linkage groups (LG) for the 'Black Beauty' × 'Nesbitt' and 'Supreme' × 'Nesbitt' populations, respectively. Data from both populations were used to generate a consensus map with 2346 markers across 20 LGs. A high degree of collinearity was observed between the genetic maps and the Vitis vinifera physical map. The higher chromosome number in muscadine (2n = 40) compared to V. vinifera (2n = 38) was accounted for by the behavior of V. vinifera chromosome 7 as two independently segregating LGs in muscadine. The muscadine sex locus mapped to an interval that aligned to 4.64-5.09 Mb on V. vinifera chromosome 2, a region which includes the previously described V. vinifera subsp. sylvestris sex locus. While the MYB transcription factor genes controlling fruit color in V. vinifera are located on chromosome 2, the muscadine berry color locus mapped to an interval aligning to 11.09-11.88 Mb on V. vinifera chromosome 4, suggesting that a mutation in a different gene in the anthocyanin biosynthesis pathway determines berry color in muscadine. These linkage maps lay the groundwork for marker-assisted breeding in muscadine and provide insight into the evolution of Vitis species.
Collapse
Affiliation(s)
- Jennifer Lewter
- Department of Horticulture, University of Arkansas, 316 Plant Sciences Bldg., Fayetteville, AR, 72701, USA
| | - Margaret L Worthington
- Department of Horticulture, University of Arkansas, 316 Plant Sciences Bldg., Fayetteville, AR, 72701, USA.
| | - John R Clark
- Department of Horticulture, University of Arkansas, 316 Plant Sciences Bldg., Fayetteville, AR, 72701, USA
| | - Aruna V Varanasi
- Department of Horticulture, University of Arkansas, 316 Plant Sciences Bldg., Fayetteville, AR, 72701, USA
| | - Lacy Nelson
- Department of Horticulture, University of Arkansas, 316 Plant Sciences Bldg., Fayetteville, AR, 72701, USA
| | - Christopher L Owens
- USDA-ARS Grape Genetics Research Unit, Cornell University, 630 W. North St., Geneva, NY, 14456, USA
- IFG, 8224 Espresso Dr. Suite 200, Bakersfield, CA, 93312, USA
| | - Patrick Conner
- Department of Horticulture, University of Georgia, 4604 Research Way, Tifton, GA, 31793, USA
| | - Gunawati Gunawan
- Department of Horticulture, University of Georgia, 4604 Research Way, Tifton, GA, 31793, USA
| |
Collapse
|
30
|
De Ollas C, Morillón R, Fotopoulos V, Puértolas J, Ollitrault P, Gómez-Cadenas A, Arbona V. Facing Climate Change: Biotechnology of Iconic Mediterranean Woody Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:427. [PMID: 31057569 PMCID: PMC6477659 DOI: 10.3389/fpls.2019.00427] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
The Mediterranean basin is especially sensitive to the adverse outcomes of climate change and especially to variations in rainfall patterns and the incidence of extremely high temperatures. These two concurring adverse environmental conditions will surely have a detrimental effect on crop performance and productivity that will be particularly severe on woody crops such as citrus, olive and grapevine that define the backbone of traditional Mediterranean agriculture. These woody species have been traditionally selected for traits such as improved fruit yield and quality or alteration in harvesting periods, leaving out traits related to plant field performance. This is currently a crucial aspect due to the progressive and imminent effects of global climate change. Although complete genome sequence exists for sweet orange (Citrus sinensis) and clementine (Citrus clementina), olive tree (Olea europaea) and grapevine (Vitis vinifera), the development of biotechnological tools to improve stress tolerance still relies on the study of the available genetic resources including interspecific hybrids, naturally occurring (or induced) polyploids and wild relatives under field conditions. To this respect, post-genomic era studies including transcriptomics, metabolomics and proteomics provide a wide and unbiased view of plant physiology and biochemistry under adverse environmental conditions that, along with high-throughput phenotyping, could contribute to the characterization of plant genotypes exhibiting physiological and/or genetic traits that are correlated to abiotic stress tolerance. The ultimate goal of precision agriculture is to improve crop productivity, in terms of yield and quality, making a sustainable use of land and water resources under adverse environmental conditions using all available biotechnological tools and high-throughput phenotyping. This review focuses on the current state-of-the-art of biotechnological tools such as high throughput -omics and phenotyping on grapevine, citrus and olive and their contribution to plant breeding programs.
Collapse
Affiliation(s)
- Carlos De Ollas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Raphaël Morillón
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, France
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Jaime Puértolas
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Patrick Ollitrault
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), San-Giuliano, France
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
31
|
Delame M, Prado E, Blanc S, Robert-Siegwald G, Schneider C, Mestre P, Rustenholz C, Merdinoglu D. Introgression reshapes recombination distribution in grapevine interspecific hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1073-1087. [PMID: 30535509 DOI: 10.1007/s00122-018-3260-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/03/2018] [Indexed: 05/25/2023]
Abstract
In grapevine interspecific hybrids, meiotic recombination is suppressed in homeologous regions and enhanced in homologous regions of recombined chromosomes, whereas crossover rate remains unchanged when chromosome pairs are entirely homeologous. Vitis rotundifolia, an American species related to the cultivated European grapevine Vitis vinifera, has a high level of resistance to several grapevine major diseases and is consequently a valuable resource for grape breeding. However, crosses between both species most often lead to very few poorly fertile hybrids. In this context, identifying genetic and genomic features that make cross-breeding between both species difficult is essential. To this end, three mapping populations were generated by pseudo-backcrosses using V. rotundifolia as the donor parent and several V. vinifera cultivars as the recurrent parents. Genotyping-by-sequencing was used to establish high-density genetic linkage maps and to determine the genetic composition of the chromosomes of each individual. A good collinearity of the SNP positions was observed between parental maps, confirming the synteny between both species, except on lower arm of chromosome 7. Interestingly, recombination rate in V. rotundifolia × V. vinifera interspecific hybrids depends on the length of the introgressed region. It is similar to grapevine for chromosome pairs entirely homeologous. Conversely, for chromosome pairs partly homeologous, recombination is suppressed in the homeologous regions, whereas it is enhanced in the homologous ones. This balance leads to the conservation of the total genetic length of each chromosome between V. vinifera and hybrid maps, whatever the backcross level and the proportion of homeologous region. Altogether, these results provide new insight to optimize the use of V. rotundifolia in grape breeding and, more generally, to improve the introgression of gene of interest from wild species related to crops.
Collapse
Affiliation(s)
- Marion Delame
- SVQV UMR-A 1131, INRA, Université de Strasbourg, 68000, Colmar, France
- Direction des Formations Doctorales, AgroParisTech, 19 avenue du Maine, 75015, Paris, France
| | - Emilce Prado
- SVQV UMR-A 1131, INRA, Université de Strasbourg, 68000, Colmar, France
| | - Sophie Blanc
- SVQV UMR-A 1131, INRA, Université de Strasbourg, 68000, Colmar, France
| | | | | | - Pere Mestre
- SVQV UMR-A 1131, INRA, Université de Strasbourg, 68000, Colmar, France
| | | | - Didier Merdinoglu
- SVQV UMR-A 1131, INRA, Université de Strasbourg, 68000, Colmar, France.
| |
Collapse
|
32
|
Genome-wide characterization revealed role of NBS-LRR genes during powdery mildew infection in Vitis vinifera. Genomics 2019; 112:312-322. [PMID: 30802599 DOI: 10.1016/j.ygeno.2019.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/11/2019] [Accepted: 02/14/2019] [Indexed: 11/23/2022]
Abstract
NBS-LRR comprises a large class of disease resistance (R) proteins that play a widespread role in plant protection against pathogens. In grapevine, powdery mildew cause significant losses in its productivity and efforts are being directed towards finding of resistance loci or genes imparting resistance/tolerance against such fungal diseases. In the present study, we performed genome-wide analysis of NBS-LRR genes during PM infection in grapevine. We identified 18, 23, 12, 16, 10, 10, 9, 20 and 14 differentially expressed NBS-LRR genes in response to PM infection in seven partially PM-resistant (DVIT3351.27, Husseine, Karadzhandal, Khalchili, Late vavilov, O34-16, Sochal) and 2 PM-susceptible (Carignan and Thompson seedless) V. vinifera accessions. Further, the identified sequences were characterized based on chromosomal locations, physicochemical properties, gene structure and motif analysis, and functional annotation by Gene Ontology (GO) mapping. The NBS-LRR genes responsive to powdery mildew could potentially be exploited to improve resistance in grapes.
Collapse
|
33
|
Sapkota S, Chen LL, Yang S, Hyma KE, Cadle-Davidson L, Hwang CF. Construction of a high-density linkage map and QTL detection of downy mildew resistance in Vitis aestivalis-derived 'Norton'. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:137-147. [PMID: 30341491 DOI: 10.1007/s00122-018-3203-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/06/2018] [Indexed: 05/08/2023]
Abstract
A major QTL for downy mildew resistance was detected on chromosome 18 (Rpv27) in Vitis aestivalis-derived 'Norton' based on a high-resolution linkage map with SNP and SSR markers as well as 2 years of field and laboratory phenotyping data. Grapevine downy mildew caused by the oomycete Plasmopara viticola is one of the most widespread and destructive diseases, particularly in humid viticultural areas where it damages green tissues and defoliates vines. Traditional Vitis vinifera wine grape cultivars are susceptible to downy mildew whereas several North American and a few Asian cultivars possess various levels of resistance to this disease. To identify genetic determinants of downy mildew resistance in V. aestivalis-derived 'Norton,' a mapping population with 182 genotypes was developed from a cross between 'Norton' and V. vinifera 'Cabernet Sauvignon' from which a consensus map was constructed via 411 simple sequence repeat (SSR) markers. Using genotyping-by-sequencing, 3825 single nucleotide polymorphism (SNP) markers were also generated. Of these, 1665 SNP and 407 SSR markers were clustered into 19 linkage groups in 159 genotypes, spanning a genetic distance of 2203.5 cM. Disease progression in response to P. viticola was studied in this population for 2 years under both laboratory and field conditions, and strong correlations were observed among data sets (Spearman correlation coefficient = 0.57-0.79). A quantitative trait loci (QTL) analysis indicated a resistance locus on chromosome 18, here named Rpv27, explaining 33.8% of the total phenotypic variation. Flanking markers closely linked with the trait can be further used for marker-assisted selection in the development of new cultivars with resistance to downy mildew.
Collapse
Affiliation(s)
- Surya Sapkota
- State Fruit Experiment Station at Mountain Grove Campus, Darr College of Agriculture, Missouri State University, Springfield, MO, 65897, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, NYS Agricultural Experiment Station, Cornell University, Geneva, NY, 14456, USA
| | - Li-Ling Chen
- State Fruit Experiment Station at Mountain Grove Campus, Darr College of Agriculture, Missouri State University, Springfield, MO, 65897, USA
| | - Shanshan Yang
- Bioinformatics Core Facility, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Katie E Hyma
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Chin-Feng Hwang
- State Fruit Experiment Station at Mountain Grove Campus, Darr College of Agriculture, Missouri State University, Springfield, MO, 65897, USA.
| |
Collapse
|
34
|
Fu P, Tian Q, Lai G, Li R, Song S, Lu J. Cgr1, a ripe rot resistance QTL in Vitis amurensis 'Shuang Hong' grapevine. HORTICULTURE RESEARCH 2019; 6:67. [PMID: 31231525 PMCID: PMC6544659 DOI: 10.1038/s41438-019-0148-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 05/09/2023]
Abstract
Ripe rot is a serious grapevine disease in Vitis L. and Muscadinia (Planch.) Small. However, resistance to this disease has been reported in some oriental Vitis species. To identify resistance-related Quantitative Trait Loci (QTLs) from the Chinese grape species V. amurensis, an F1 population of V. vinifera 'Cabernet Sauvignon' × V. amurensis 'Shuang Hong' was used to map the ripe rot resistance loci expected in 'Shuang Hong' grape. A total of 7598 single nucleotide polymorphisms (SNPs) between the parents were identified in our previous study, and 934 SNPs were selected for genetic map construction. These SNPs are distributed across the 19 chromosomes covering a total of 1665.31 cM in length, with an average of 1.81 cM between markers. Ripe rot resistance phenotypes among the hybrids were evaluated in vitro using excised leaves for three consecutive years from 2016 to 2018; a continuous variation was found among the F1 hybrids, and the Pearson correlation coefficients of the phenotypes scored in all three years were significant at the 0.01 level. Notably, the first QTL reported for resistance to grape ripe rot disease, named Cgr1, was identified on chromosome 14 of 'Shuang Hong' grapevine. Cgr1 could explain up to 19.90% of the phenotypic variance. In addition, a SNP named 'np19345' was identified as a molecular marker closely linked to the peak of Cgr1 and has the potential to be developed as a marker for the Cgr1 resistance haplotype.
Collapse
Affiliation(s)
- Peining Fu
- Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Quanyou Tian
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Gongti Lai
- Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Rongfang Li
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shiren Song
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
35
|
Hu Y, Li Y, Hou F, Wan D, Cheng Y, Han Y, Gao Y, Liu J, Guo Y, Xiao S, Wang Y, Wen YQ. Ectopic expression of Arabidopsis broad-spectrum resistance gene RPW8.2 improves the resistance to powdery mildew in grapevine (Vitis vinifera). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 267:20-31. [PMID: 29362096 DOI: 10.1016/j.plantsci.2017.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/03/2017] [Accepted: 11/11/2017] [Indexed: 05/08/2023]
Abstract
Powdery mildew is the most economically important disease of cultivated grapevines worldwide. Here, we report that the Arabidopsis broad-spectrum disease resistance gene RPW8.2 could improve resistance to powdery mildew in Vitis vinifera cv. Thompson Seedless. The RPW8.2-YFP fusion gene was stably expressed in grapevines from either the constitutive 35S promoter or the native promoter (NP) of RPW8.2. The grapevine shoots and plantlets transgenic for 35S::RPW8.2-YFP showed reduced rooting and reduced growth at later development stages in the absence of any pathogens. Infection tests with an adapted grapevine powdery mildew isolate En NAFU1 showed that hyphal growth and sporulation were significantly restricted in transgenic grapevines expressing either of the two constructs. The resistance appeared to be attributable to the ectopic expression of RPW8.2, and associated with the enhanced encasement of the haustorial complex (EHC) and onsite accumulation of H2O2. In addition, the RPW8.2-YFP fusion protein showed focal accumulation around the fungal penetration sites. Transcriptome analysis revealed that ectopic expression of RPW8.2 in grapevines not only significantly enhanced salicylic acid-dependent defense signaling, but also altered expression of other phytohormone-associated genes. Taken together, our results indicate that RPW8.2 could be utilized as a transgene for improving resistance against powdery mildew in grapevines.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Yajuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Fengjuan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Dongyan Wan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Yuan Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Yongtao Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Yurong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Ye Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Science and Landscape Architecture, University of Maryland College Park, Rockville, MD 20850, USA
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
36
|
Agurto M, Schlechter RO, Armijo G, Solano E, Serrano C, Contreras RA, Zúñiga GE, Arce-Johnson P. RUN1 and REN1 Pyramiding in Grapevine ( Vitis vinifera cv. Crimson Seedless) Displays an Improved Defense Response Leading to Enhanced Resistance to Powdery Mildew ( Erysiphe necator). FRONTIERS IN PLANT SCIENCE 2017; 8:758. [PMID: 28553300 PMCID: PMC5427124 DOI: 10.3389/fpls.2017.00758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/24/2017] [Indexed: 05/12/2023]
Abstract
Fungal pathogens are the cause of the most common diseases in grapevine and among them powdery mildew represents a major focus for disease management. Different strategies for introgression of resistance in grapevine are currently undertaken in breeding programs. For example, introgression of several resistance genes (R) from different sources for making it more durable and also strengthening the plant defense response. Taking this into account, we cross-pollinated P09-105/34, a grapevine plant carrying both RUN1 and REN1 pyramided loci of resistance to Erysiphe necator inherited from a pseudo-backcrossing scheme with Muscadinia rotundifolia and Vitis vinifera 'Dzhandzhal Kara,' respectively, with the susceptible commercial table grape cv. 'Crimson Seedless.' We developed RUN1REN1 resistant genotypes through conventional breeding and identified them by marker assisted selection. The characterization of defense response showed a highly effective defense mechanism against powdery mildew in these plants. Our results reveal that RUN1REN1 grapevine plants display a robust defense response against E. necator, leading to unsuccessful fungal establishment with low penetration rate and poor hypha development. This resistance mechanism includes reactive oxygen species production, callose accumulation, programmed cell death induction and mainly VvSTS36 and VvPEN1 gene activation. RUN1REN1 plants have a great potential as new table grape cultivars with durable complete resistance to E. necator, and are valuable germplasm to be included in grape breeding programs to continue pyramiding with other sources of resistance to grapevine diseases.
Collapse
Affiliation(s)
- Mario Agurto
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Rudolf O. Schlechter
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Grace Armijo
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Esteban Solano
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Carolina Serrano
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Rodrigo A. Contreras
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología y CEDENNA, Universidad de Santiago de ChileSantiago, Chile
| | - Gustavo E. Zúñiga
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Biología, Facultad de Química y Biología y CEDENNA, Universidad de Santiago de ChileSantiago, Chile
| | - Patricio Arce-Johnson
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
37
|
Teh SL, Fresnedo-Ramírez J, Clark MD, Gadoury DM, Sun Q, Cadle-Davidson L, Luby JJ. Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2017; 37:1. [PMID: 28127252 PMCID: PMC5226326 DOI: 10.1007/s11032-016-0586-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 11/01/2016] [Indexed: 05/22/2023]
Abstract
Quantitative trait locus (QTL) identification in perennial fruit crops is impeded largely by their lengthy generation time, resulting in costly and labor-intensive maintenance of breeding programs. In a grapevine (genus Vitis) breeding program, although experimental families are typically unreplicated, the genetic backgrounds may contain similar progenitors previously selected due to their contribution of favorable alleles. In this study, we investigated the utility of joint QTL identification provided by analyzing half-sib families. The genetic control of powdery mildew was studied using two half-sib F1 families, namely GE0711/1009 (MN1264 × MN1214; N = 147) and GE1025 (MN1264 × MN1246; N = 125) with multiple species in their ancestry. Maternal genetic maps consisting of 1077 and 1641 single nucleotide polymorphism (SNP) markers, respectively, were constructed using a pseudo-testcross strategy. Ratings of field resistance to powdery mildew were obtained based on whole-plant evaluation of disease severity. This 2-year analysis uncovered two QTLs that were validated on a consensus map in these half-sib families with improved precision relative to the parental maps. Examination of haplotype combinations based on the two QTL regions identified strong association of haplotypes inherited from 'Seyval blanc', through MN1264, with powdery mildew resistance. This investigation also encompassed the use of microsatellite markers to establish a correlation between 206-bp (UDV-015b) and 357-bp (VViv67) fragment sizes with resistance-carrying haplotypes. Our work is one of the first reports in grapevine demonstrating the use of SNP-based maps and haplotypes for QTL identification and tagging of powdery mildew resistance in half-sib families.
Collapse
Affiliation(s)
- Soon Li Teh
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108 USA
| | | | - Matthew D. Clark
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108 USA
| | - David M. Gadoury
- School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456 USA
| | - Qi Sun
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853 USA
| | | | - James J. Luby
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108 USA
| |
Collapse
|
38
|
Pap D, Riaz S, Dry IB, Jermakow A, Tenscher AC, Cantu D, Oláh R, Walker MA. Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC PLANT BIOLOGY 2016; 16:170. [PMID: 27473850 PMCID: PMC4966781 DOI: 10.1186/s12870-016-0855-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 07/14/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Grapevine powdery mildew Erysiphe necator is a major fungal disease in all grape growing countries worldwide. Breeding for resistance to this disease is crucial to avoid extensive fungicide applications that are costly, labor intensive and may have detrimental effects on the environment. In the past decade, Chinese Vitis species have attracted attention from grape breeders because of their strong resistance to powdery mildew and their lack of negative fruit quality attributes that are often present in resistant North American species. In this study, we investigated powdery mildew resistance in multiple accessions of the Chinese species Vitis piasezkii that were collected during the 1980 Sino-American botanical expedition to the western Hubei province of China. RESULTS A framework genetic map was developed using simple sequence repeat markers in 277 seedlings of an F1 mapping population arising from a cross of the powdery mildew susceptible Vitis vinifera selection F2-35 and a resistant accession of V. piasezkii DVIT2027. Quantitative trait locus analyses identified two major powdery mildew resistance loci on chromosome 9 (Ren6) and chromosome 19 (Ren7) explaining 74.8 % of the cumulative phenotypic variation. The quantitative trait locus analysis for each locus, in the absence of the other, explained 95.4 % phenotypic variation for Ren6, while Ren7 accounted for 71.9 % of the phenotypic variation. Screening of an additional 259 seedlings of the F1 population and 910 seedlings from four pseudo-backcross populations with SSR markers defined regions of 22 kb and 330 kb for Ren6 and Ren7 in the V. vinifera PN40024 (12X) genome sequence, respectively. Both R loci operate post-penetration through the induction of programmed cell death, but vary significantly in the speed of response and degree of resistance; Ren6 confers complete resistance whereas Ren7 confers partial resistance to the disease with reduced colony size. A comparison of the kinetics of induction of powdery mildew resistance mediated by Ren6, Ren7 and the Run1 locus from Muscadinia rotundifolia, indicated that the speed and strength of resistance conferred by Ren6 is greater than that of Run1 which, in turn, is superior to that conferred by Ren7. CONCLUSIONS This is the first report of mapping powdery mildew resistance in the Chinese species V. piasezkii. Two distinct powdery mildew R loci designated Ren6 and Ren7 were found in multiple accessions of this Chinese grape species. Their location on different chromosomes to previously reported powdery mildew resistance R loci offers the potential for grape breeders to combine these R genes with existing powdery mildew R loci to produce grape germplasm with more durable resistance against this rapidly evolving fungal pathogen.
Collapse
Affiliation(s)
- Dániel Pap
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
- Department of Genetics and Plant Breeding, Corvinus University of Budapest, Villányi út 29-34, 1118 Budapest, Hungary
| | - Summaira Riaz
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| | - Ian B. Dry
- CSIRO Agriculture, Glen Osmond, SA Australia
| | | | - Alan C. Tenscher
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| | - Róbert Oláh
- Department of Genetics and Plant Breeding, Corvinus University of Budapest, Villányi út 29-34, 1118 Budapest, Hungary
| | - M. Andrew Walker
- Department of Viticulture and Enology, University of California, Davis, CA 95616 USA
| |
Collapse
|
39
|
Armijo G, Schlechter R, Agurto M, Muñoz D, Nuñez C, Arce-Johnson P. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios. FRONTIERS IN PLANT SCIENCE 2016; 7:382. [PMID: 27066032 PMCID: PMC4811896 DOI: 10.3389/fpls.2016.00382] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/13/2016] [Indexed: 05/18/2023]
Abstract
Grapevine (Vitis vinifera L.) is one of the most important fruit crop worldwide. Commercial cultivars are greatly affected by a large number of pathogenic microorganisms that cause diseases during pre- and/or post-harvest periods, affecting production, processing and export, along with fruit quality. Among the potential threats, we can find bacteria, fungi, oomycete, or viruses with different life cycles, infection mechanisms and evasion strategies. While plant-pathogen interactions are cycles of resistance and susceptibility, resistance traits from natural resources are selected and may be used for breeding purposes and for a sustainable agriculture. In this context, here we summarize some of the most important diseases affecting V. vinifera together with their causal agents. The aim of this work is to bring a comprehensive review of the infection strategies deployed by significant types of pathogens while understanding the host response in both resistance and susceptibility scenarios. New approaches being used to uncover grapevine status during biotic stresses and scientific-based procedures needed to control plant diseases and crop protection are also addressed.
Collapse
Affiliation(s)
| | | | | | | | | | - Patricio Arce-Johnson
- Laboratorio de Biología Molecular y Biotecnología Vegetal, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
40
|
Houel C, Chatbanyong R, Doligez A, Rienth M, Foria S, Luchaire N, Roux C, Adivèze A, Lopez G, Farnos M, Pellegrino A, This P, Romieu C, Torregrosa L. Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18 K Infinium chip. BMC PLANT BIOLOGY 2015; 15:205. [PMID: 26283631 PMCID: PMC4539925 DOI: 10.1186/s12870-015-0588-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/06/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND The increasing temperature associated with climate change impacts grapevine phenology and development with critical effects on grape yield and composition. Plant breeding has the potential to deliver new cultivars with stable yield and quality under warmer climate conditions, but this requires the identification of stable genetic determinants. This study tested the potentialities of the microvine to boost genetics in grapevine. A mapping population of 129 microvines derived from Picovine x Ugni Blanc flb, was genotyped with the Illumina® 18 K SNP (Single Nucleotide Polymorphism) chip. Forty-three vegetative and reproductive traits were phenotyped outdoors over four cropping cycles, and a subset of 22 traits over two cropping cycles in growth rooms with two contrasted temperatures, in order to map stable QTLs (Quantitative Trait Loci). RESULTS Ten stable QTLs for berry development and quality or leaf area were identified on the parental maps. A new major QTL explaining up to 44 % of total variance of berry weight was identified on chromosome 7 in Ugni Blanc flb, and co-localized with QTLs for seed number (up to 76 % total variance), major berry acids at green lag phase (up to 35 %), and other yield components (up to 25 %). In addition, a minor QTL for leaf area was found on chromosome 4 of the same parent. In contrast, only minor QTLs for berry acidity and leaf area could be found as moderately stable in Picovine. None of the transporters recently identified as mutated in low acidity apples or Cucurbits were included in the several hundreds of candidate genes underlying the above berry QTLs, which could be reduced to a few dozen candidate genes when a priori pertinent biological functions and organ specific expression were considered. CONCLUSIONS This study combining the use of microvine and a high throughput genotyping technology was innovative for grapevine genetics. It allowed the identification of 10 stable QTLs, including the first berry acidity QTLs reported so far in a Vitis vinifera intra-specific cross. Robustness of a set of QTLs was assessed with respect to temperature variation.
Collapse
Affiliation(s)
- Cléa Houel
- Montpellier SupAgro, UMR AGAP, F-34060, Montpellier, France.
- INRA, UMR AGAP, F-34060, Montpellier, France.
| | - Ratthaphon Chatbanyong
- Montpellier SupAgro, UMR AGAP, F-34060, Montpellier, France.
- INRA, UMR AGAP, F-34060, Montpellier, France.
| | | | - Markus Rienth
- Montpellier SupAgro, UMR AGAP, F-34060, Montpellier, France.
- INRA, UMR AGAP, F-34060, Montpellier, France.
- Fondation Jean Poupelain, 30 rue Gâte Chien, F-16100, Javrezac, France.
- Changins, Haute Ecole de Viticulture et Oenologie, 1260, Nyon, Switzerland.
| | - Serena Foria
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 208, I-33100, Udine, Italy.
| | - Nathalie Luchaire
- Montpellier SupAgro, UMR AGAP, F-34060, Montpellier, France.
- Montpellier SupAgro, UMR LEPSE, F- 34060, Montpellier, France.
| | | | | | - Gilbert Lopez
- Montpellier SupAgro, UMR AGAP, F-34060, Montpellier, France.
| | - Marc Farnos
- INRA, UMR AGAP, F-34060, Montpellier, France.
| | - Anne Pellegrino
- Montpellier SupAgro, UMR LEPSE, F- 34060, Montpellier, France.
| | | | | | | |
Collapse
|
41
|
Hyma KE, Barba P, Wang M, Londo JP, Acharya CB, Mitchell SE, Sun Q, Reisch B, Cadle-Davidson L. Heterozygous Mapping Strategy (HetMappS) for High Resolution Genotyping-By-Sequencing Markers: A Case Study in Grapevine. PLoS One 2015; 10:e0134880. [PMID: 26244767 PMCID: PMC4526651 DOI: 10.1371/journal.pone.0134880] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/14/2015] [Indexed: 02/07/2023] Open
Abstract
Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low genotyping cost, but for highly heterozygous species, missing data and heterozygote undercalling complicate the creation of GBS genetic maps. To overcome these issues, we developed a publicly available, modular approach called HetMappS, which functions independently of parental genotypes and corrects for genotyping errors associated with heterozygosity. For linkage group formation, HetMappS includes both a reference-guided synteny pipeline and a reference-independent de novo pipeline. The de novo pipeline can be utilized for under-characterized or high diversity families that lack an appropriate reference. We applied both HetMappS pipelines in five half-sib F1 families involving genetically diverse Vitis spp. Starting with at least 116,466 putative SNPs per family, the HetMappS pipelines identified 10,440 to 17,267 phased pseudo-testcross (Pt) markers and generated high-confidence maps. Pt marker density exceeded crossover resolution in all cases; up to 5,560 non-redundant markers were used to generate parental maps ranging from 1,047 cM to 1,696 cM. The number of markers used was strongly correlated with family size in both de novo and synteny maps (r = 0.92 and 0.91, respectively). Comparisons between allele and tag frequencies suggested that many markers were in tandem repeats and mapped as single loci, while markers in regions of more than two repeats were removed during map curation. Both pipelines generated similar genetic maps, and genetic order was strongly correlated with the reference genome physical order in all cases. Independently created genetic maps from shared parents exhibited nearly identical results. Flower sex was mapped in three families and correctly localized to the known sex locus in all cases. The HetMappS pipeline could have wide application for genetic mapping in highly heterozygous species, and its modularity provides opportunities to adapt portions of the pipeline to other family types, genotyping technologies or applications.
Collapse
Affiliation(s)
- Katie E. Hyma
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
- Genomic Diversity Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Paola Barba
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| | - Minghui Wang
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Jason P. Londo
- USDA-ARS Grape Genetics Research Unit, Geneva, New York, United States of America
| | - Charlotte B. Acharya
- Genomic Diversity Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Sharon E. Mitchell
- Genomic Diversity Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Qi Sun
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, United States of America
| | - Bruce Reisch
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, New York, United States of America
| | - Lance Cadle-Davidson
- USDA-ARS Grape Genetics Research Unit, Geneva, New York, United States of America
| |
Collapse
|
42
|
Barba P, Cadle-Davidson L, Galarneau E, Reisch B. Vitis rupestris B38 Confers Isolate-Specific Quantitative Resistance to Penetration by Erysiphe necator. PHYTOPATHOLOGY 2015; 105:1097-103. [PMID: 26039640 DOI: 10.1094/phyto-09-14-0260-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Vitis rupestris B38 is a North American grapevine resistant to the major pathogen of cultivated grapevines, Erysiphe necator. Sources of powdery mildew resistance, like V. rotundifolia, are widely used in grape breeding but are already threatened, even before commercialization, by isolates that can reproduce on Run1 and other rotundifolia-derived breeding lines. Thus, complementary sources of resistance are needed to improve resistance durability. The segregation of foliar powdery mildew severity in an F1 family, derived from a cross of V. rupestris B38×V. vinifera 'Chardonnay', was observed in the field over three growing seasons and in potted vines following single-isolate inoculation. A pattern of continuous variation was observed in every instance. Mechanisms of resistance were analyzed on the resistant and susceptible parent by using microscopy to quantify the ability of the pathogen to penetrate and to form a colony on detached leaves. While 'Chardonnay' was susceptible in all tested conditions, V. rupestris B38 resistance was characterized by a reduction in pathogen penetration, with an effect of leaf position and significant differences among powdery mildew isolates. Segregation of the ability of the pathogen to penetrate and form a colony in F1 individuals showed a pattern of quantitative penetration resistance with no delay or restriction on colony formation once penetration has been achieved. Moreover, V. rupestris B38 showed an enhanced penetration resistance to a powdery mildew isolate with the ability to overcome the Run1 gene, making it an interesting resistance source to prolong the durability of this gene.
Collapse
Affiliation(s)
- Paola Barba
- First author: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; second and third authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; and fourth author: Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456
| | - Lance Cadle-Davidson
- First author: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; second and third authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; and fourth author: Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456
| | - Erin Galarneau
- First author: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; second and third authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; and fourth author: Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456
| | - Bruce Reisch
- First author: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; second and third authors: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456; and fourth author: Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456
| |
Collapse
|
43
|
Qiu W, Feechan A, Dry I. Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. HORTICULTURE RESEARCH 2015; 2:15020. [PMID: 26504571 PMCID: PMC4595975 DOI: 10.1038/hortres.2015.20] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/19/2015] [Accepted: 04/19/2015] [Indexed: 05/02/2023]
Abstract
The most economically important disease of cultivated grapevines worldwide is powdery mildew (PM) caused by the ascomycete fungus Erysiphe necator. The majority of grapevine cultivars used for wine, table grape, and dried fruit production are derived from the Eurasian grape species Vitis vinifera because of its superior aroma and flavor characteristics. However, this species has little genetic resistance against E. necator meaning that grape production is highly dependent on the frequent use of fungicides. The integration of effective genetic resistance into cultivated grapevines would lead to significant financial and environmental benefits and represents a major challenge for viticultural industries and researchers worldwide. This review will outline the strategies being used to increase our understanding of the molecular basis of V. vinifera susceptibility to this fungal pathogen. It will summarize our current knowledge of different resistance loci/genes that have evolved in wild grapevine species to restrict PM infection and assess the potential application of these defense genes in the generation of PM-resistant grapevine germplasm. Finally, it addresses future research priorities which will be important in the rapid identification, evaluation, and deployment of new PM resistance genes which are capable of conferring effective and durable resistance in the vineyard.
Collapse
Affiliation(s)
- Wenping Qiu
- Center for Grapevine Biotechnology, W. H. Darr School of Agriculture, Missouri State University, Mountain Grove, MO 65711, USA
| | - Angela Feechan
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ian Dry
- CSIRO Agriculture, Wine Innovation West Building, Waite Campus, Hartley Grove, Urrbrae, SA 5064, Australia
| |
Collapse
|
44
|
Rex F, Fechter I, Hausmann L, Töpfer R. QTL mapping of black rot (Guignardia bidwellii) resistance in the grapevine rootstock 'Börner' (V. riparia Gm183 × V. cinerea Arnold). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1667-77. [PMID: 24865508 DOI: 10.1007/s00122-014-2329-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 05/05/2014] [Indexed: 05/08/2023]
Abstract
In the grapevine cultivar 'Börner' QTLs for black rot resistance were detected consistently in several independent experiments. For one QTL on chromosome 14 closely linked markers were developed and a detailed map provided. Black rot is a serious grapevine disease that causes substantial yield loss under unfavourable conditions. All traditional European grapevine cultivars are susceptible to the causative fungus Guignardia bidwellii which is native to North America. The cultivar 'Börner', an interspecific hybrid of V. riparia and V. cinerea, shows a high resistance to black rot. Therefore, a mapping population derived from the cross of the susceptible breeding line V3125 ('Schiava grossa' × 'Riesling') with 'Börner' was used to carry out QTL analysis. A resistance test was established based on potted plants which were artificially inoculated in a climate chamber with in vitro produced G. bidwellii spores. Several rating systems were developed and tested. Finally, a five class scheme was applied for scoring the level of resistance. A major QTL was detected based on a previously constructed genetic map and data from six independent resistance tests in the climate chamber and one rating of natural infections in the field. The QTL is located on linkage group 14 (Rgb1) and explained up to 21.8 % of the phenotypic variation (LOD 10.5). A second stable QTL mapped on linkage group 16 (Rgb2; LOD 4.2) and explained 8.5 % of the phenotypic variation. These two QTLs together with several minor QTLs observed on the integrated map indicate a polygenic nature of the black rot resistance in 'Börner'. A detailed genetic map is presented for the locus Rgb1 with tightly linked markers valuable for the development for marker-assisted selection for black rot resistance in grapevine breeding.
Collapse
Affiliation(s)
- Friederike Rex
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany
| | | | | | | |
Collapse
|
45
|
Feechan A, Anderson C, Torregrosa L, Jermakow A, Mestre P, Wiedemann-Merdinoglu S, Merdinoglu D, Walker AR, Cadle-Davidson L, Reisch B, Aubourg S, Bentahar N, Shrestha B, Bouquet A, Adam-Blondon AF, Thomas MR, Dry IB. Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:661-74. [PMID: 24033846 DOI: 10.1111/tpj.12327] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/22/2013] [Accepted: 09/02/2013] [Indexed: 05/20/2023]
Abstract
The most economically important diseases of grapevine cultivation worldwide are caused by the fungal pathogen powdery mildew (Erysiphe necator syn. Uncinula necator) and the oomycete pathogen downy mildew (Plasmopara viticola). Currently, grapegrowers rely heavily on the use of agrochemicals to minimize the potentially devastating impact of these pathogens on grape yield and quality. The wild North American grapevine species Muscadinia rotundifolia was recognized as early as 1889 to be resistant to both powdery and downy mildew. We have now mapped resistance to these two mildew pathogens in M. rotundifolia to a single locus on chromosome 12 that contains a family of seven TIR-NB-LRR genes. We further demonstrate that two highly homologous (86% amino acid identity) members of this gene family confer strong resistance to these unrelated pathogens following genetic transformation into susceptible Vitis vinifera winegrape cultivars. These two genes, designated resistance to Uncinula necator (MrRUN1) and resistance to Plasmopara viticola (MrRPV1) are the first resistance genes to be cloned from a grapevine species. Both MrRUN1 and MrRPV1 were found to confer resistance to multiple powdery and downy mildew isolates from France, North America and Australia; however, a single powdery mildew isolate collected from the south-eastern region of North America, to which M. rotundifolia is native, was capable of breaking MrRUN1-mediated resistance. Comparisons of gene organization and coding sequences between M. rotundifolia and the cultivated grapevine V. vinifera at the MrRUN1/MrRPV1 locus revealed a high level of synteny, suggesting that the TIR-NB-LRR genes at this locus share a common ancestor.
Collapse
Affiliation(s)
- Angela Feechan
- CSIRO Plant Industry, PO Box 350, Glen Osmond, SA, 5064, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|