1
|
Agho CA, Runno-Paurson E, Tähtjärv T, Kaurilind E, Niinemets Ü. Variation in Leaf Volatile Emissions in Potato ( Solanum tuberosum) Cultivars with Different Late Blight Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112100. [PMID: 37299080 DOI: 10.3390/plants12112100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Volatile organic compounds (VOCs) play key roles in plant abiotic and biotic stress resistance, but even for widespread crops, there is limited information on variations in the magnitude and composition of constitutive VOC emissions among cultivars with varying stress resistance. The foliage VOC emissions from nine local and commercial potato cultivars (Alouette, Sarme, Kuras, Ando, Anti, Jõgeva Kollane, Teele, 1681-11, and Reet) with medium to late maturities and varying Phytophthora infestans (the causative agent of late blight disease) resistance backgrounds were analyzed to gain an insight into the genetic diversity of constitutive VOC emissions and to test the hypothesis that cultivars more resistant to Phytophthora infestans have greater VOC emissions and different VOC fingerprints. Forty-six VOCs were identified in the emission blends of potato leaves. The majority of the VOCs were sesquiterpenes (50% of the total number of compounds and 0.5-36.9% of the total emissions) and monoterpenes (30.4% of the total number of compounds and 57.8-92.5% of the total VOC emissions). Qualitative differences in leaf volatiles, mainly in sesquiterpenes, were related to the potato genotype background. Among the volatile groups, the monoterpenes α-pinene, β-pinene, Δ3-carene, limonene, and p-cymene, the sesquiterpenes (E)-β-caryophyllene and α-copaene, and green leaf volatile hexanal were the major volatiles in all cultivars. A higher share of VOCs known to have antimicrobial activities was observed. Interestingly, the cultivars were grouped into high and low resistance categories based on the VOC profiles, and the total terpenoid and total constitutive VOC emission scale positively with resistance. To support and expedite advances in breeding for resistance to diseases such as late blight disease, the plant research community must develop a fast and precise approach to measure disease resistance. We conclude that the blend of emitted volatiles is a fast, non-invasive, and promising indicator to identify cultivars resistant to potato late blight disease.
Collapse
Affiliation(s)
- C A Agho
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - E Runno-Paurson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - T Tähtjärv
- The Centre of Estonian Rural Research and Knowledge, J. Aamisepa 1, 48309 Jõgeva, Estonia
| | - E Kaurilind
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Ü Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
2
|
Late Blight Resistance Conferred by Rpi-Smira2/R8 in Potato Genotypes In Vitro Depends on the Genetic Background. PLANTS 2022; 11:plants11101319. [PMID: 35631743 PMCID: PMC9145795 DOI: 10.3390/plants11101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/28/2022]
Abstract
Potato production worldwide is threatened by late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary. Highly resistant potato cultivars were developed in breeding programs, using resistance gene pyramiding methods. In Sárpo Mira potatoes, five resistance genes (R3a, R3b, R4, Rpi-Smira1, and Rpi-Smira2/R8) are reported, with the latter gene assumed to be the major contributor. To study the level of late blight resistance conferred by the Rpi-Smira2/R8 gene, potato genotypes with only the Rpi-Smira2/R8 gene were selected from progeny population in which susceptible cultivars were crossed with Sárpo Mira. Ten R8 potato genotypes were obtained using stepwise marker-assisted selection, and agroinfiltration of the avirulence effector gene Avr4. Nine of these R8 genotypes were infected with both Slovenian P. infestans isolates and aggressive foreign isolates. All the progeny R8 genotypes are resistant to the Slovenian P. infestans isolate 02_07, and several show milder late blight symptoms than the corresponding susceptible parent after inoculation with other isolates. When inoculated with foreign P. infestans isolates, the genotype C571 shows intermediate resistance, similar to that of Sárpo Mira. These results suggest that Rpi-Smira2/R8 contributes to late blight resistance, although this resistance is not guaranteed solely by the presence of the R8 in the genome.
Collapse
|
3
|
Paluchowska P, Śliwka J, Yin Z. Late blight resistance genes in potato breeding. PLANTA 2022; 255:127. [PMID: 35576021 PMCID: PMC9110483 DOI: 10.1007/s00425-022-03910-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Using late blight resistance genes targeting conservative effectors of Phytophthora infestans and the constructing gene pyramids may lead to durable, broad-spectrum resistance, which could be accelerated through genetic engineering. Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. In 2020, potato production was estimated to be more than 359 million tons according to the Food and Agriculture Organization (FAO). Potato is affected by many pathogens, among which Phytophthora infestans, causing late blight, is of the most economic importance. Crop protection against late blight requires intensive use of fungicides, which has an impact on the environment and humans. Therefore, new potato cultivars have been bred using resistance genes against P. infestans (Rpi genes) that originate from wild relatives of potato. Such programmes were initiated 100 years ago, but the process is complex and long. The development of genetic engineering techniques has enabled the direct transfer of resistance genes from potato wild species to cultivars and easier pyramiding of multiple Rpi genes, which potentially increases the durability and spectrum of potato resistance to rapidly evolving P. infestans strains. In this review, we summarize the current knowledge concerning Rpi genes. We also discuss the use of Rpi genes in breeding as well as their detection in existing potato cultivars. Last, we review new sources of Rpi genes and new methods used to identify them and discuss interactions between P. infestans and host.
Collapse
Affiliation(s)
- Paulina Paluchowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland.
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| | - Zhimin Yin
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
4
|
Abstract
Potatoes (Solanum tuberosum L. subsp. tuberosum and andigena) and seven other related species, which are cultivated today, have become the most important non-cereal crop in the world. It is grown on a significant scale in 130 countries, with a gross production value of 63.6 billion US dollars in 2016, with the yearly potato production of 368 million tons in 2018. Today potato is grown for food, animal feed, industrial uses, and seed tuber production, depending on the region, country development, and historical reasons. The food production is both for fresh ware markets and for processing into crisps, french fries, canned potatoes, flakes, etc. More than 10,000 potato varieties have been grown worldwide to date, many of which are still grown. Despite such a large number of varieties, there is still a need for new varieties. Classical breeding of new potato varieties in many programs around the world has changed little in decades and differs mainly in terms of scope and technologies used. Until the turn of the millennium, it was based primarily on empirical experience and selection of individual phenotypic traits. The great genetic diversity that exists in potato and its wild relatives is both an opportunity and a challenge to introduce traits that do not currently exist in the potato gene pool into modern potato varieties. Molecular marker technology development has reached the point where published markers for use in commercial breeding are available. Markers can be used during the whole selection process, with an even more important role of molecular breeding in pre-breeding programs and creation of the most appropriate parental lines.
Collapse
|
5
|
Janiszewska M, Sobkowiak S, Stefańczyk E, Śliwka J. Population Structure of Phytophthora infestans from a Single Location in Poland Over a Long Period of Time in Context of Weather Conditions. MICROBIAL ECOLOGY 2021; 81:746-757. [PMID: 33123759 PMCID: PMC7982385 DOI: 10.1007/s00248-020-01630-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Phytophthora infestans (Mont.) de Bary is a destructive potato pathogen. Changing weather conditions are among the factors that influence the pathogen population structure. In this study, 237 P. infestans isolates were collected from a single unprotected experimental field in an area with high late-blight pressure located in Boguchwała in the southeastern part of Poland during 15 growing seasons (2000-2014). The isolates were assessed for mating type, mitochondrial haplotype, resistance to metalaxyl, virulence, and polymorphism of 14 single-sequence repeat markers (SSRs). The results revealed 89 unique genotypes among the 237 P. infestans isolates. Eighty-seven isolates belonged to genotype 34_A1, which was detected in all the years of research except 2012. Isolates of P. infestans from individual years were very similar to each other, as shown by Nei's genetic identity based on 14 SSR markers. The obtained results on isolate characteristics were analyzed in terms of meteorological data (air temperature and precipitation) and indicated that frost, long winters, and hot, dry summers did not directly affect the P. infestans population structure. We described the variability in metalaxyl resistance and virulence among isolates of the P. infestans genotype 34_A1.
Collapse
Affiliation(s)
- M Janiszewska
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland.
| | - S Sobkowiak
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland
| | - E Stefańczyk
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland
| | - J Śliwka
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
6
|
Meade F, Hutten R, Wagener S, Prigge V, Dalton E, Kirk HG, Griffin D, Milbourne D. Detection of Novel QTLs for Late Blight Resistance Derived from the Wild Potato Species Solanum microdontum and Solanum pampasense. Genes (Basel) 2020; 11:E732. [PMID: 32630103 PMCID: PMC7396981 DOI: 10.3390/genes11070732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 12/30/2022] Open
Abstract
Wild potato species continue to be a rich source of genes for resistance to late blight in potato breeding. Whilst many dominant resistance genes from such sources have been characterised and used in breeding, quantitative resistance also offers potential for breeding when the loci underlying the resistance can be identified and tagged using molecular markers. In this study, F1 populations were created from crosses between blight susceptible parents and lines exhibiting strong partial resistance to late blight derived from the South American wild species Solanum microdontum and Solanum pampasense. Both populations exhibited continuous variation for resistance to late blight over multiple field-testing seasons. High density genetic maps were created using single nucleotide polymorphism (SNP) markers, enabling mapping of quantitative trait loci (QTLs) for late blight resistance that were consistently expressed over multiple years in both populations. In the population created with the S. microdontum source, QTLs for resistance consistently expressed over three years and explaining a large portion (21-47%) of the phenotypic variation were found on chromosomes 5 and 6, and a further resistance QTL on chromosome 10, apparently related to foliar development, was discovered in 2016 only. In the population created with the S. pampasense source, QTLs for resistance were found in over two years on chromosomes 11 and 12. For all loci detected consistently across years, the QTLs span known R gene clusters and so they likely represent novel late blight resistance genes. Simple genetic models following the effect of the presence or absence of SNPs associated with consistently effective loci in both populations demonstrated that marker assisted selection (MAS) strategies to introgress and pyramid these loci have potential in resistance breeding strategies.
Collapse
Affiliation(s)
- Fergus Meade
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (F.M.); (D.G.)
| | - Ronald Hutten
- Wageningen University & Research (WUR), 6708 PB Wageningen, The Netherlands;
| | - Silke Wagener
- SaKa Pflanzenzucht GmbH & Co., 22761 Hamburg, Germany; (S.W.); (V.P.)
| | - Vanessa Prigge
- SaKa Pflanzenzucht GmbH & Co., 22761 Hamburg, Germany; (S.W.); (V.P.)
| | | | | | - Denis Griffin
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (F.M.); (D.G.)
| | - Dan Milbourne
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (F.M.); (D.G.)
| |
Collapse
|
7
|
Álvarez MF, Angarita M, Delgado MC, García C, Jiménez-Gomez J, Gebhardt C, Mosquera T. Identification of Novel Associations of Candidate Genes with Resistance to Late Blight in Solanum tuberosum Group Phureja. FRONTIERS IN PLANT SCIENCE 2017; 8:1040. [PMID: 28674545 PMCID: PMC5475386 DOI: 10.3389/fpls.2017.01040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/30/2017] [Indexed: 05/16/2023]
Abstract
The genetic basis of quantitative disease resistance has been studied in crops for several decades as an alternative to R gene mediated resistance. The most important disease in the potato crop is late blight, caused by the oomycete Phytophthora infestans. Quantitative disease resistance (QDR), as any other quantitative trait in plants, can be genetically mapped to understand the genetic architecture. Association mapping using DNA-based markers has been implemented in many crops to dissect quantitative traits. We used an association mapping approach with candidate genes to identify the first genes associated with quantitative resistance to late blight in Solanum tuberosum Group Phureja. Twenty-nine candidate genes were selected from a set of genes that were differentially expressed during the resistance response to late blight in tetraploid European potato cultivars. The 29 genes were amplified and sequenced in 104 accessions of S. tuberosum Group Phureja from Latin America. We identified 238 SNPs in the selected genes and tested them for association with resistance to late blight. The phenotypic data were obtained under field conditions by determining the area under disease progress curve (AUDPC) in two seasons and in two locations. Two genes were associated with QDR to late blight, a potato homolog of thylakoid lumen 15 kDa protein (StTL15A) and a stem 28 kDa glycoprotein (StGP28). Key message: A first association mapping experiment was conducted in Solanum tuberosum Group Phureja germplasm, which identified among 29 candidates two genes associated with quantitative resistance to late blight.
Collapse
Affiliation(s)
- María F. Álvarez
- Facultad de Ciencias Agrarias, Universidad Nacional de ColombiaBogotá, Colombia
- Rice Program International Centre for Tropical Agriculture (CIAT)Cali, Colombia
| | - Myrian Angarita
- Facultad de Ciencias Agrarias, Universidad Nacional de ColombiaBogotá, Colombia
| | - María C. Delgado
- Facultad de Ciencias Agrarias, Universidad Nacional de ColombiaBogotá, Colombia
| | - Celsa García
- Facultad de Ciencias Agrarias, Universidad Nacional de ColombiaBogotá, Colombia
| | - José Jiménez-Gomez
- Department of Genetics and Plant Breeding, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Christiane Gebhardt
- Department of Genetics and Plant Breeding, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Teresa Mosquera
- Facultad de Ciencias Agrarias, Universidad Nacional de ColombiaBogotá, Colombia
| |
Collapse
|
8
|
Stefańczyk E, Sobkowiak S, Brylińska M, Śliwka J. Expression of the Potato Late Blight Resistance Gene Rpi-phu1 and Phytophthora infestans Effectors in the Compatible and Incompatible Interactions in Potato. PHYTOPATHOLOGY 2017; 107:740-748. [PMID: 28134594 DOI: 10.1094/phyto-09-16-0328-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This study describes late blight resistance of potato breeding lines resulting from crosses between cultivar 'Sárpo Mira' and Rpi-phu1 gene donors. The progeny is investigated for the presence of Rpi-Smira1 and Rpi-phu1 resistance (R) genes. Interestingly, in detached-leaflet tests, plants with both R genes withstood the infection of the Phytophthora infestans isolate virulent to each gene separately, due to either interaction of these genes or the presence of additional resistance loci. The interaction was studied further in three chosen breeding lines on the transcriptional level. The Rpi-phu1 expression, measured over 5 days, revealed different patterns depending on the outcome of the interaction with P. infestans: it increased in infected plants whereas it remained low and stable when infection was unsuccessful. The expression patterns of P. infestans effectors Avr-vnt1, AvrSmira1, and Avr8, recognized by the Rpi-phu1, Rpi-Smira1, and Rpi-Smira2 genes, respectively, were evaluated in the same experimental setup. This is the first report that the Avr-vnt1 effector expression is not switched off permanently in virulent isolates to avoid recognition by an R protein but can reappear in a postbiotrophic phase and is present constantly when infecting plants without the corresponding R gene. Both a plant and a pathogen can react to the other interacting side by changing the transcript accumulation of R genes or effectors.
Collapse
Affiliation(s)
- Emil Stefańczyk
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland
| | - Sylwester Sobkowiak
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland
| | - Marta Brylińska
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
9
|
Vossen JH, van Arkel G, Bergervoet M, Jo KR, Jacobsen E, Visser RGF. The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1785-96. [PMID: 27314264 PMCID: PMC4983296 DOI: 10.1007/s00122-016-2740-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/04/2016] [Indexed: 05/22/2023]
Abstract
The potato late blight resistance gene R8 has been cloned. R8 is found in five late blight resistant varieties deployed in three different continents. R8 recognises Avr8 and is homologous to the NB-LRR protein Sw-5 from tomato. The broad spectrum late blight resistance gene R8 from Solanum demissum was cloned based on a previously published coarse map position on the lower arm of chromosome IX. Fine mapping in a recombinant population and bacterial artificial chromosome (BAC) library screening resulted in a BAC contig spanning 170 kb of the R8 haplotype. Sequencing revealed a cluster of at least ten R gene analogues (RGAs). The seven RGAs in the genetic window were subcloned for complementation analysis. Only one RGA provided late blight resistance and caused recognition of Avr8. From these results, it was concluded that the newly cloned resistance gene was indeed R8. R8 encodes a typical intracellular immune receptor with an N-terminal coiled coil, a central nucleotide binding site and 13 C-terminal leucine rich repeats. Phylogenetic analysis of a set of representative Solanaceae R proteins shows that R8 resides in a clearly distinct clade together with the Sw-5 tospovirus R protein from tomato. It was found that the R8 gene is present in late blight resistant potato varieties from Europe (Sarpo Mira), USA (Jacqueline Lee, Missaukee) and China (PB-06, S-60). Indeed, when tested under field conditions, R8 transgenic potato plants showed broad spectrum resistance to the current late blight population in the Netherlands, similar to Sarpo Mira.
Collapse
Affiliation(s)
- Jack H Vossen
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
| | - Gert van Arkel
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Marjan Bergervoet
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Kwang-Ryong Jo
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Evert Jacobsen
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| |
Collapse
|
10
|
Sun K, Wolters AMA, Vossen JH, Rouwet ME, Loonen AEHM, Jacobsen E, Visser RGF, Bai Y. Silencing of six susceptibility genes results in potato late blight resistance. Transgenic Res 2016; 25:731-42. [PMID: 27233778 PMCID: PMC5023794 DOI: 10.1007/s11248-016-9964-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/21/2016] [Indexed: 01/01/2023]
Abstract
Phytophthora infestans, the causal agent of late blight, is a major threat to commercial potato production worldwide. Significant costs are required for crop protection to secure yield. Many dominant genes for resistance (R-genes) to potato late blight have been identified, and some of these R-genes have been applied in potato breeding. However, the P. infestans population rapidly accumulates new virulent strains that render R-genes ineffective. Here we introduce a new class of resistance which is based on the loss-of-function of a susceptibility gene (S-gene) encoding a product exploited by pathogens during infection and colonization. Impaired S-genes primarily result in recessive resistance traits in contrast to recognition-based resistance that is governed by dominant R-genes. In Arabidopsis thaliana, many S-genes have been detected in screens of mutant populations. In the present study, we selected 11 A. thalianaS-genes and silenced orthologous genes in the potato cultivar Desiree, which is highly susceptible to late blight. The silencing of five genes resulted in complete resistance to the P. infestans isolate Pic99189, and the silencing of a sixth S-gene resulted in reduced susceptibility. The application of S-genes to potato breeding for resistance to late blight is further discussed.
Collapse
Affiliation(s)
- Kaile Sun
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Anne-Marie A Wolters
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jack H Vossen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Maarten E Rouwet
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Annelies E H M Loonen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Evert Jacobsen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Yuling Bai
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Brylińska M, Sobkowiak S, Stefańczyk E, Śliwka J. Potato cultivation system affects population structure of Phytophthora infestans. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Jo KR, Kim CJ, Kim SJ, Kim TY, Bergervoet M, Jongsma MA, Visser RGF, Jacobsen E, Vossen JH. Development of late blight resistant potatoes by cisgene stacking. BMC Biotechnol 2014; 14:50. [PMID: 24885731 PMCID: PMC4075930 DOI: 10.1186/1472-6750-14-50] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 05/20/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Phytophthora infestans, causing late blight in potato, remains one of the most devastating pathogens in potato production and late blight resistance is a top priority in potato breeding. The introduction of multiple resistance (R) genes with different spectra from crossable species into potato varieties is required. Cisgenesis is a promising approach that introduces native genes from the crops own gene pool using GM technology, thereby retaining favourable characteristics of established varieties. RESULTS We pursued a cisgenesis approach to introduce two broad spectrum potato late blight R genes, Rpi-sto1 and Rpi-vnt1.1 from the crossable species Solanum stoloniferum and Solanum venturii, respectively, into three different potato varieties. First, single R gene-containing transgenic plants were produced for all varieties to be used as references for the resistance levels and spectra to be expected in the respective genetic backgrounds. Next, a construct containing both cisgenic late blight R genes (Rpi-vnt1.1 and Rpi-sto1), but lacking the bacterial kanamycin resistance selection marker (NPTII) was transformed to the three selected potato varieties using Agrobacterium-mediated transformation. Gene transfer events were selected by PCR among regenerated shoots. Through further analyses involving morphological evaluations in the greenhouse, responsiveness to Avr genes and late blight resistance in detached leaf assays, the selection was narrowed down to eight independent events. These cisgenic events were selected because they showed broad spectrum late blight resistance due to the activity of both introduced R genes. The marker-free transformation was compared to kanamycin resistance assisted transformation in terms of T-DNA and vector backbone integration frequency. Also, differences in regeneration time and genotype dependency were evaluated. CONCLUSIONS We developed a marker-free transformation pipeline to select potato plants functionally expressing a stack of late blight R genes. Marker-free transformation is less genotype dependent and less prone to vector backbone integration as compared to marker-assisted transformation. Thereby, this study provides an important tool for the successful deployment of R genes in agriculture and contributes to the production of potentially durable late blight resistant potatoes.
Collapse
Affiliation(s)
- Kwang-Ryong Jo
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
- Research Institute of Agrobiology, Academy of Agricultural Sciences, Pyongyang, DPR Korea
| | - Chol-Jun Kim
- Research Institute of Agrobiology, Academy of Agricultural Sciences, Pyongyang, DPR Korea
| | - Sung-Jin Kim
- Research Institute of Agrobiology, Academy of Agricultural Sciences, Pyongyang, DPR Korea
| | - Tok-Yong Kim
- Research Institute of Agrobiology, Academy of Agricultural Sciences, Pyongyang, DPR Korea
| | - Marjan Bergervoet
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Maarten A Jongsma
- Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Richard GF Visser
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Evert Jacobsen
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Jack H Vossen
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
13
|
Tomczyńska I, Jupe F, Hein I, Marczewski W, Śliwka J. Hypersensitive response to Potato virus Y in potato cultivar Sárpo Mira is conferred by the Ny- Smira gene located on the long arm of chromosome IX. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2014; 34:471-480. [PMID: 25076838 PMCID: PMC4092237 DOI: 10.1007/s11032-014-0050-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/03/2014] [Indexed: 05/29/2023]
Abstract
Potato virus Y (PVY, Potyvirus) is the fifth most important plant virus worldwide in terms of economic and scientific impact. It infects members of the family Solanaceae and causes losses in potato, tomato, tobacco, pepper and petunia production. In potato and its wild relatives, two types of resistance genes against PVY have been identified. While Ry genes confer symptomless extreme resistance, Ny genes cause a hypersensitive response visible as local necrosis that may also be able to prevent the virus from spreading under certain environmental conditions. The potato cultivar Sárpo Mira originates from Hungary and is highly resistant to PVY, although the source of this resistance remains unknown. We show that cv. Sárpo Mira reacts with a hypersensitive response leading to necrosis after PVYNTN infection in detached leaf, whole plant and grafting assays. The hypersensitivity to PVYNTN segregated amongst 140 individuals of tetraploid progeny of cvs. Sárpo Mira × Maris Piper in a 1:1 ratio, indicating that it was conferred by a single, dominant gene in simplex. Moreover, we identified five DNA markers linked to this trait and located the underlying locus (Ny-Smira) to the long arm of potato chromosome IX. This position corresponds to the location of the Rychc and Ny-1 genes for PVY resistance. A simple PCR marker, located 1 cM from the Ny-Smira gene, can be recommended for selection of PVY-resistant progeny of cv. Sárpo Mira.
Collapse
Affiliation(s)
- Iga Tomczyńska
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Centre, Platanowa 19, 05-831 Młochów, Poland
| | - Florian Jupe
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
- Cell and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA UK
| | - Ingo Hein
- Cell and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA UK
| | - Waldemar Marczewski
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Centre, Platanowa 19, 05-831 Młochów, Poland
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Centre, Platanowa 19, 05-831 Młochów, Poland
| |
Collapse
|