1
|
Chaudhary N, Salgotra RK, Chauhan BS. Genetic Enhancement of Cereals Using Genomic Resources for Nutritional Food Security. Genes (Basel) 2023; 14:1770. [PMID: 37761910 PMCID: PMC10530810 DOI: 10.3390/genes14091770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Advances in genomics resources have facilitated the evolution of cereal crops with enhanced yield, improved nutritional values, and heightened resistance to various biotic and abiotic stresses. Genomic approaches present a promising avenue for the development of high-yielding varieties, thereby ensuring food and nutritional security. Significant improvements have been made within the omics domain, specifically in genomics, transcriptomics, and proteomics. The advent of Next-Generation Sequencing (NGS) techniques has yielded an immense volume of data, accompanied by substantial progress in bioinformatic tools for proficient analysis. The synergy between genomics and computational tools has been acknowledged as pivotal for unravelling the intricate mechanisms governing genome-wide gene regulation. Within this review, the essential genomic resources are delineated, and their harmonization in the enhancement of cereal crop varieties is expounded upon, with a paramount focus on fulfilling the nutritional requisites of humankind. Furthermore, an encompassing compendium of the available genomic resources for cereal crops is presented, accompanied by an elucidation of their judicious utilization in the advancement of crop attributes.
Collapse
Affiliation(s)
- Neeraj Chaudhary
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu 180009, Jammu and Kashmir, India; (N.C.); (R.K.S.)
| | - Romesh Kumar Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu 180009, Jammu and Kashmir, India; (N.C.); (R.K.S.)
| | - Bhagirath Singh Chauhan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
2
|
Jabran M, Ali MA, Zahoor A, Muhae-Ud-Din G, Liu T, Chen W, Gao L. Intelligent reprogramming of wheat for enhancement of fungal and nematode disease resistance using advanced molecular techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1132699. [PMID: 37235011 PMCID: PMC10206142 DOI: 10.3389/fpls.2023.1132699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Wheat (Triticum aestivum L.) diseases are major factors responsible for substantial yield losses worldwide, which affect global food security. For a long time, plant breeders have been struggling to improve wheat resistance against major diseases by selection and conventional breeding techniques. Therefore, this review was conducted to shed light on various gaps in the available literature and to reveal the most promising criteria for disease resistance in wheat. However, novel techniques for molecular breeding in the past few decades have been very fruitful for developing broad-spectrum disease resistance and other important traits in wheat. Many types of molecular markers such as SCAR, RAPD, SSR, SSLP, RFLP, SNP, and DArT, etc., have been reported for resistance against wheat pathogens. This article summarizes various insightful molecular markers involved in wheat improvement for resistance to major diseases through diverse breeding programs. Moreover, this review highlights the applications of marker assisted selection (MAS), quantitative trait loci (QTL), genome wide association studies (GWAS) and the CRISPR/Cas-9 system for developing disease resistance against most important wheat diseases. We also reviewed all reported mapped QTLs for bunts, rusts, smuts, and nematode diseases of wheat. Furthermore, we have also proposed how the CRISPR/Cas-9 system and GWAS can assist breeders in the future for the genetic improvement of wheat. If these molecular approaches are used successfully in the future, they can be a significant step toward expanding food production in wheat crops.
Collapse
Affiliation(s)
- Muhammad Jabran
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Adil Zahoor
- Department of Biotechnology, Chonnam National University, Yeosu, Republic of Korea
| | - Ghulam Muhae-Ud-Din
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Gao
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Kou H, Zhang Z, Yang Y, Wei C, Xu L, Zhang G. Advances in the Mining of Disease Resistance Genes from Aegilops tauschii and the Utilization in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040880. [PMID: 36840228 PMCID: PMC9966637 DOI: 10.3390/plants12040880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 06/02/2023]
Abstract
Aegilops tauschii is one of the malignant weeds that affect wheat production and is also the wild species ancestor of the D genome of hexaploid wheat (Triticum aestivum, AABBDD). It contains many disease resistance genes that have been lost in the long-term evolution of wheat and is an important genetic resource for the mining and utilization of wheat disease resistance genes. In recent years, the genome sequence of Aegilops tauschii has been preliminarily completed, which has laid a good foundation for the further exploration of wheat disease resistance genes in Aegilops tauschii. There are many studies on disease resistance genes in Aegilops tauschii; in order to provide better help for the disease resistance breeding of wheat, this paper analyzes and reviews the relationship between Aegilops tauschii and wheat, the research progress of Aegilops tauschii, the discovery of disease resistance genes from Aegilops tauschii, and the application of disease resistance genes from Aegilops tauschii to modern wheat breeding, providing a reference for the further exploration and utilization of Aegilops tauschii in wheat disease resistance breeding.
Collapse
Affiliation(s)
- Hongyun Kou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Zhenbo Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Yu Yang
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Changfeng Wei
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Lili Xu
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
- Shandong Shofine Seed Technology Co., Ltd., Jining 272400, China
| |
Collapse
|
4
|
Phenotyping and validation of molecular markers associated with rust resistance genes in wheat cultivars in Egypt. Mol Biol Rep 2021; 49:1903-1915. [PMID: 34843039 DOI: 10.1007/s11033-021-07002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Thirteen Egyptian wheat cultivars were evaluated and characterized for adult plant resistance to yellow, leaf, and stem rusts. SSR markers linked to yellow, leaf and stem rust resistance genes were validated and subsequently used to identify wheat cultivars containing more than one rust resistance gene. RESULTS Results of the molecular marker detection indicated that several genes, either alone or in different combinations, were present among the wheat cultivars, including Yr, Yr78 (stripe rust), Lr, Lr70 (leaf rust), Sr. Sr33, SrTA10187, Sr13, and Sr35 (stem rust), and Lr34/Yr18 and Lr49/Yr29 (leaf/stripe rust). The cultivar Sakha-95 was resistant to leaf and stem rusts, and partially resistant to stripe rust; however, this cultivar contained additional rust resistance genes (Lr, Sr and Lr/Yr). The area under the disease progress curve (AUDPC) type for the various wheat cultivars differed depending on the type of rust infection (yellow, leaf, or stem rust, indicated by Yr, Lr, and Sr). The cultivars Gem-12, Sids-14, Giza-171, and Giza-168 had AUDPC types of partial resistance and resistance. All six cultivars, however, contained additional rust resistance genes. CONCLUSIONS Marker-assisted selection can be applied to improve wheat cultivars with efficient gene combinations that would directly support the development of durable resistance in Egypt. Once the expression of the resistance genes targeted in this study have been confirmed by phenotypic screening, the preferable cultivars can be used as donors by Egyptian wheat breeders. The results of this study will help breeders determine the extent of resistance under field conditions when breeding for rust resistance in bread wheat.
Collapse
|
5
|
Hasan N, Choudhary S, Naaz N, Sharma N, Laskar RA. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J Genet Eng Biotechnol 2021; 19:128. [PMID: 34448979 PMCID: PMC8397809 DOI: 10.1186/s43141-021-00231-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022]
Abstract
Background DNA markers improved the productivity and accuracy of classical plant breeding by means of marker-assisted selection (MAS). The enormous number of quantitative trait loci (QTLs) mapping read for different plant species have given a plenitude of molecular marker-gene associations. Main body of the abstract In this review, we have discussed the positive aspects of molecular marker-assisted selection and its precise applications in plant breeding programmes. Molecular marker-assisted selection has considerably shortened the time for new crop varieties to be brought to the market. To explore the information about DNA markers, many reviews have been published in the last few decades; all these reviews were intended by plant breeders to obtain information on molecular genetics. In this review, we intended to be a synopsis of recent developments of DNA markers and their application in plant breeding programmes and devoted to early breeders with little or no knowledge about the DNA markers. The progress made in molecular plant breeding, plant genetics, genomics selection, and editing of genome contributed to the comprehensive understanding of DNA markers and provides several proofs on the genetic diversity available in crop plants and greatly complemented plant breeding devices. Short conclusion MAS has revolutionized the process of plant breeding with acceleration and accuracy, which is continuously empowering plant breeders around the world.
Collapse
Affiliation(s)
- Nazarul Hasan
- Cytogenetic and Plant Breeding Lab, Department of Botany, Aligarh Muslim University, Aligarh, U.P, 202002, India.
| | - Sana Choudhary
- Cytogenetic and Plant Breeding Lab, Department of Botany, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | - Neha Naaz
- Cytogenetic and Plant Breeding Lab, Department of Botany, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | - Nidhi Sharma
- Cytogenetic and Plant Breeding Lab, Department of Botany, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | | |
Collapse
|
6
|
Sharma JS, Overlander M, Faris JD, Klindworth DL, Rouse MN, Kang H, Long Y, Jin Y, Lagudah ES, Xu SS. Characterization of synthetic wheat line Largo for resistance to stem rust. G3 (BETHESDA, MD.) 2021; 11:6292116. [PMID: 34849816 PMCID: PMC8496286 DOI: 10.1093/g3journal/jkab193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022]
Abstract
Resistance breeding is an effective approach against wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt). The synthetic hexaploid wheat line Largo (pedigree: durum wheat “Langdon” × Aegilops tauschii PI 268210) was found to have resistance to a broad spectrum of Pgt races including the Ug99 race group. To identify the stem rust resistance (Sr) genes, we genotyped a population of 188 recombinant inbred lines developed from a cross between the susceptible wheat line ND495 and Largo using the wheat Infinium 90 K SNP iSelect array and evaluated the population for seedling resistance to the Pgt races TTKSK, TRTTF, and TTTTF in the greenhouse conditions. Based on genetic linkage analysis using the marker and rust data, we identified six quantitative trait loci (QTL) with effectiveness against different races. Three QTL on chromosome arms 6AL, 2BL, and 2BS corresponded to Sr genes Sr13c, Sr9e, and a likely new gene from Langdon, respectively. Two other QTL from PI 268210 on 2DS and 1DS were associated with a potentially new allele of Sr46 and a likely new Sr gene, respectively. In addition, Sr7a was identified as the underlying gene for the 4AL QTL from ND495. Knowledge of the Sr genes in Largo will help to design breeding experiments aimed to develop new stem rust-resistant wheat varieties. Largo and its derived lines are particularly useful for introducing two Ug99-effective genes Sr13c and Sr46 into modern bread wheat varieties. The 90 K SNP-based high-density map will be useful for identifying the other important genes in Largo.
Collapse
Affiliation(s)
- Jyoti Saini Sharma
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Megan Overlander
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND 58102, USA
| | - Justin D Faris
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND 58102, USA
| | - Daryl L Klindworth
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND 58102, USA
| | - Matthew N Rouse
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Houyang Kang
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.,Triticeae Research Institute, Sichuan Agricultural University, Sichuan 611130, China
| | - Yunming Long
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Yue Jin
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Evans S Lagudah
- Agriculture Flagship, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT 2601, Australia
| | - Steven S Xu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.,Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Fargo, ND 58102, USA
| |
Collapse
|
7
|
Zhang Q, Wei W, Zuansun X, Zhang S, Wang C, Liu N, Qiu L, Wang W, Guo W, Ma J, Peng H, Hu Z, Sun Q, Xie C. Fine Mapping of the Leaf Rust Resistance Gene Lr65 in Spelt Wheat 'Altgold'. FRONTIERS IN PLANT SCIENCE 2021; 12:666921. [PMID: 34262578 PMCID: PMC8274547 DOI: 10.3389/fpls.2021.666921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Wheat leaf rust (also known as brown rust), caused by the fungal pathogen Puccinia triticina Erikss. (Pt), is one by far the most troublesome wheat disease worldwide. The exploitation of resistance genes has long been considered as the most effective and sustainable method to control leaf rust in wheat production. Previously the leaf rust resistance gene Lr65 has been mapped to the distal end of chromosome arm 2AS linked to molecular marker Xbarc212. In this study, Lr65 was delimited to a 0.8 cM interval between flanking markers Alt-64 and AltID-11, by employing two larger segregating populations obtained from crosses of the resistant parent Altgold Rotkorn (ARK) with the susceptible parents Xuezao and Chinese Spring (CS), respectively. 24 individuals from 622 F2 plants of crosses between ARK and CS were obtained that showed the recombination between Lr65 gene and the flanking markers Alt-64 and AltID-11. With the aid of the CS reference genome sequence (IWGSC RefSeq v1.0), one SSR marker was developed between the interval matched to the Lr65-flanking marker and a high-resolution genetic linkage map was constructed. The Lr65 was finally located to a region corresponding to 60.11 Kb of the CS reference genome. The high-resolution genetic linkage map founded a solid foundation for the map-based cloning of Lr65 and the co-segregating marker will facilitate the marker-assisted selection (MAS) of the target gene.
Collapse
|
8
|
Jlassi I, Bnejdi F, Saadoun M, Hajji A, Mansouri D, Ben-Attia M, El-Gazzah M, El-Bok S. SSR markers and seed quality traits revealed genetic diversity in durum wheat (Triticum durum Desf.). Mol Biol Rep 2021; 48:3185-3193. [PMID: 33974178 DOI: 10.1007/s11033-021-06385-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/24/2021] [Indexed: 11/25/2022]
Abstract
Genetic diversity and differences among durum-wheat cultivars evolved in various regions of the world are important for sustainable production in the current climate change scenario. Information regarding genetic differences was also important for the correct choice of parental material for the selection of high quality cultivars. Two elite and six obsolete cultivars of durum-wheat were characterized with 25-simple sequence repeats (SSR) markers. All accessions were evaluated for 2-agronomic-traits (Yield (Y) and Thousand-Kernel-Weight (TKW)) and 11 grain quality-traits (grain protein content (GPC), grain moisture contents (H), carotene content (CT), sedimentation test (SDS), gluten content (GC), gluten index (GI), semolina color index (L*, a*, b*) and alveographic parameters (W and P/L)) under randomized complete block design with three replication for two crop seasons (2015-2017). Genetic characterization through SSR markers revealed 126 alleles with an average of 5.04 alleles locus-1 and had average 0.79 polymorphism information content (PIC). The comparisons revealed that elite accessions were more productive in terms of grain yield and TKW, whereas obsolete accessions showed high GPC and end-use quality-traits. The generated dendrogram based on SSR markers, agronomic, seed quality-traits clearly differentiate the genotypes in two main groups obsolete and elite accessions. Analysis of correlation revealed a significant association between the traits TKW, Y, b*, a*, GPC, GC, SDS and H. High genetic diversity found between elite and obsolete cultivars for parameters such as yield, end-use quality and their correlation with SSR markers could help breeders for an eventual breeding program on durum-wheat.
Collapse
Affiliation(s)
- Ines Jlassi
- Faculty of Sciences of Tunis, Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), University of Tunis El-Manar, 2092, Tunis, Tunisia
| | - Fethi Bnejdi
- Faculty of Sciences of Tunis, Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), University of Tunis El-Manar, 2092, Tunis, Tunisia
- Department of Biological Sciences, University of Sousse, The Higher Institute of Agronomic Sciences of Chott-Mariem, 4042, Chott-Mariem, Sousse, Tunisia
| | - Mourad Saadoun
- Faculty of Sciences of Tunis, Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), University of Tunis El-Manar, 2092, Tunis, Tunisia
| | - Abdelhamid Hajji
- Faculty of Sciences of Tunis, Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), University of Tunis El-Manar, 2092, Tunis, Tunisia
| | - Dhouha Mansouri
- Faculty of Sciences of Tunis, Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), University of Tunis El-Manar, 2092, Tunis, Tunisia
| | - Mossadok Ben-Attia
- Bizerta Faculty of Sciences, Environment Biomonitoring Laboratory (LR01/ES14), University of Carthage, Zarzouna, 7021, Bizerta, Tunisia
| | - Mohamed El-Gazzah
- Faculty of Sciences of Tunis, Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), University of Tunis El-Manar, 2092, Tunis, Tunisia
| | - Safia El-Bok
- Faculty of Sciences of Tunis, Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), University of Tunis El-Manar, 2092, Tunis, Tunisia.
| |
Collapse
|
9
|
Joukhadar R, Hollaway G, Shi F, Kant S, Forrest K, Wong D, Petkowski J, Pasam R, Tibbits J, Bariana H, Bansal U, Spangenberg G, Daetwyler H, Gendall T, Hayden M. Genome-wide association reveals a complex architecture for rust resistance in 2300 worldwide bread wheat accessions screened under various Australian conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2695-2712. [PMID: 32504212 DOI: 10.1007/s00122-020-03626-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/25/2020] [Indexed: 05/13/2023]
Abstract
We utilized 2300 wheat accessions including worldwide landraces, cultivars and primary synthetic-derived germplasm with three Australian cultivars: Annuello, Yitpi and Correll, to investigate field-based resistance to leaf (Lr) rust, stem (Sr) rust and stripe (Yr) rust diseases across a range of Australian wheat agri-production zones. Generally, the resistance in the modern Australian cultivars, synthetic derivatives, South and North American materials outperformed other geographical subpopulations. Different environments for each trait showed significant correlations, with average r values of 0.53, 0.23 and 0.66 for Lr, Sr and Yr, respectively. Single-trait genome-wide association studies (GWAS) revealed several environment-specific and multi-environment quantitative trait loci (QTL). Multi-trait GWAS confirmed a cluster of Yr QTL on chromosome 3B within a 4.4-cM region. Linkage disequilibrium and comparative mapping showed that at least three Yr QTL exist within the 3B cluster including the durable rust resistance gene Yr30. An Sr/Lr QTL on chromosome 3D was found mainly in the synthetic-derived germplasm from Annuello background which is known to carry the Agropyron elongatum 3D translocation involving the Sr24/Lr24 resistance locus. Interestingly, estimating the SNP effects using a BayesR method showed that the correlation among the highest 1% of QTL effects across environments (excluding GWAS QTL) had significant correlations, with average r values of 0.26, 0.16 and 0.55 for Lr, Sr and Yr, respectively. These results indicate the importance of small effect QTL in achieving durable rust resistance which can be captured using genomic selection.
Collapse
Affiliation(s)
- Reem Joukhadar
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia.
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia.
| | - Grant Hollaway
- Agriculture Victoria, Natimuk Road, Horsham, VIC, 3401, Australia
| | - Fan Shi
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Surya Kant
- Agriculture Victoria, Natimuk Road, Horsham, VIC, 3401, Australia
| | - Kerrie Forrest
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Debbie Wong
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Joanna Petkowski
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Raj Pasam
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Josquin Tibbits
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Harbans Bariana
- Faculty of Agriculture and Environment, Plant Breeding Institute-Cobbitty, The University of Sydney, PMB4011, Narellan, NSW, 2567, Australia
| | - Urmil Bansal
- Faculty of Agriculture and Environment, Plant Breeding Institute-Cobbitty, The University of Sydney, PMB4011, Narellan, NSW, 2567, Australia
| | - German Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Hans Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Tony Gendall
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Matthew Hayden
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
10
|
Salgotra RK, Stewart CN. Functional Markers for Precision Plant Breeding. Int J Mol Sci 2020; 21:E4792. [PMID: 32640763 PMCID: PMC7370099 DOI: 10.3390/ijms21134792] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 07/02/2020] [Indexed: 01/24/2023] Open
Abstract
Advances in molecular biology including genomics, high-throughput sequencing, and genome editing enable increasingly faster and more precise cultivar development. Identifying genes and functional markers (FMs) that are highly associated with plant phenotypic variation is a grand challenge. Functional genomics approaches such as transcriptomics, targeting induced local lesions in genomes (TILLING), homologous recombinant (HR), association mapping, and allele mining are all strategies to identify FMs for breeding goals, such as agronomic traits and biotic and abiotic stress resistance. The advantage of FMs over other markers used in plant breeding is the close genomic association of an FM with a phenotype. Thereby, FMs may facilitate the direct selection of genes associated with phenotypic traits, which serves to increase selection efficiencies to develop varieties. Herein, we review the latest methods in FM development and how FMs are being used in precision breeding for agronomic and quality traits as well as in breeding for biotic and abiotic stress resistance using marker assisted selection (MAS) methods. In summary, this article describes the use of FMs in breeding for development of elite crop cultivars to enhance global food security goals.
Collapse
Affiliation(s)
- Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, Jammu 190008, India
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
11
|
Yang N, McDonald MC, Solomon PS, Milgate AW. Genetic mapping of Stb19, a new resistance gene to Zymoseptoria tritici in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2765-2773. [PMID: 30238255 DOI: 10.1007/s00122-018-3189-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/10/2018] [Indexed: 05/26/2023]
Abstract
A new and dominant R gene Stb19 is identified from a soft wheat cultivar 'Lorikeet' and was mapped on the distal region of chromosome 1DS. Two tightly linked KASP markers were also discovered and validated for molecular-assisted breeding programs. A new R gene, designated as Stb19, provides resistance to Zymoseptoria tritici in wheat. This new dominant gene resides on the short arm of chromosome 1D, exhibiting complete resistance to three Z. tritici isolates, WAI332, WAI251, and WAI161, at the seedling stage. A genetic linkage map, based on an F2:3 population of 'Lorikeet' and 'Summit,' found the Stb19 gene at a 9.3 cM region on 1DS, closely linked with two Kompetitive Allele-Specific PCR markers, snp_4909967 and snp_1218021. Further, the two markers were tested and validated in another F2:3 population and 266 different wheat accessions, which gave over 95% accuracy of resistance/susceptibility prediction. Combined with the physical location of the identified SNPs and the previous evidence of gene order on chromosome 1DS (centromere-Sr45-Sr33-Lr21-telomere), Stb19 is proposed to be located between Sr33 and Lr21. Thus, the newly discovered Stb19 along with the KASP markers represents an increase in genetic resources available for wheat breeding resistance to Z. tritici.
Collapse
Affiliation(s)
- Nannan Yang
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia
| | - Megan C McDonald
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601, Australia
| | - Peter S Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601, Australia
| | - Andrew W Milgate
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
12
|
Randhawa MS, Singh RP, Dreisigacker S, Bhavani S, Huerta-Espino J, Rouse MN, Nirmala J, Sandoval-Sanchez M. Identification and Validation of a Common Stem Rust Resistance Locus in Two Bi-parental Populations. FRONTIERS IN PLANT SCIENCE 2018; 9:1788. [PMID: 30555507 PMCID: PMC6283910 DOI: 10.3389/fpls.2018.01788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/16/2018] [Indexed: 05/28/2023]
Abstract
Races belonging to Ug99 lineage of stem rust fungus Puccinia graminis f. sp. tritici (Pgt) continue to pose a threat to wheat (Triticum aestivum L.) production in various African countries. Growing resistant varieties is the most economical and environmentally friendly control measure. Recombinant inbred line (RIL) populations from the crosses of susceptible parent 'Cacuke' with the resistant parents 'Huhwa' and 'Yaye' were phenotyped for resistance at the seedling stage to Pgt race TTKSK (Ug99) and in adult plants in field trials at Njoro, Kenya for two seasons in 2016. Using the Affymetrix Axiom breeders SNP array, two stem rust resistance genes, temporarily designated as SrH and SrY, were identified and mapped on chromosome arm 2BL through selective genotyping and bulked segregant analysis (BSA), respectively. Kompetitive allele specific polymorphism (KASP) markers and simple sequence repeat (SSR) markers were used to saturate chromosome arm 2BL in both RIL populations. SrH mapped between markers cim109 and cim114 at a distance of 0.9 cM proximal, and cim117 at 2.9 cM distal. SrY was flanked by markers cim109 and cim116 at 0.8 cM proximal, and IWB45932 at 1.9 cM distal. Two Ug99-effective stem rust resistance genes derived from bread wheat, Sr9h and Sr28, have been reported on chromosome arm 2BL. Infection types and map position in Huhwa and Yaye indicated that Sr28 was absent in both the parents. However, susceptible reactions produced by resistant lines from both populations against Sr9h-virulent race TTKSF+ confirmed the presence of a common resistance locus Sr9h in both lines. Test of allelism is required to establish genetic relationships between genes identified in present study and Sr9h. Marker cim117 linked to SrH was genotyped on set of wheat lines with Huhwa in the pedigree and is advised to be used for marker assisted selection for this gene, however, a combination of phenotypic and genotypic assays is desirable for both genes especially for selection of Sr9h in breeding programs.
Collapse
Affiliation(s)
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | | | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | | | - Matthew N. Rouse
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, United States
| | - Jayaveeramuthu Nirmala
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, United States
| | - Maricarmen Sandoval-Sanchez
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
- Colegio de Postgraduados, Texcoco, Mexico
| |
Collapse
|
13
|
Xu X, Yuan D, Li D, Gao Y, Wang Z, Liu Y, Wang S, Xuan Y, Zhao H, Li T, Wu Y. Identification of stem rust resistance genes in wheat cultivars in China using molecular markers. PeerJ 2018; 6:e4882. [PMID: 29844997 PMCID: PMC5971096 DOI: 10.7717/peerj.4882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/11/2018] [Indexed: 11/20/2022] Open
Abstract
Wheat stem rust caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn. (Pgt), is a major disease that has been effectively controlled using resistance genes. The appearance and spread of Pgt races such as Ug99, TKTTF, and TTTTF, which are virulent to most stem rust-resistant genes currently deployed in wheat breeding programs, renewed the interest in breeding cultivars resistant to wheat stem rust. It is therefore important to investigate the levels of resistance or vulnerability of wheat cultivars to Pgt races. Resistance to Pgt races 21C3CTHQM, 34MKGQM, and 34C3RTGQM was evaluated in 136 Chinese wheat cultivars at the seedling stage. A total of 124 cultivars (91.2%) were resistant to the three races. Resistance genes Sr2, Sr24, Sr25, Sr26, Sr31, and Sr38 were analyzed using molecular markers closely linked to them, and 63 of the 136 wheat cultivars carried at least one of these genes: 21, 25, and 28 wheat cultivars likely carried Sr2, Sr31, and Sr38, respectively. Cultivars "Kehan 3" and "Jimai 22" likely carried Sr25. None of the cultivars carried Sr24 or Sr26. These cultivars with known stem rust resistance genes provide valuable genetic material for breeding resistant wheat cultivars.
Collapse
Affiliation(s)
- Xiaofeng Xu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Depeng Yuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dandan Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yue Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Ziyuan Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yang Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Siting Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Hui Zhao
- Henan Academy of Agricultural Science, Institute of Plant Protection, Henan, China
| | - Tianya Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
14
|
Qureshi N, Bariana HS, Zhang P, McIntosh R, Bansal UK, Wong D, Hayden MJ, Dubcovsky J, Shankar M. Genetic Relationship of Stripe Rust Resistance Genes Yr34 and Yr48 in Wheat and Identification of Linked KASP Markers. PLANT DISEASE 2018; 102:413-420. [PMID: 30673523 DOI: 10.1094/pdis-08-17-1144-re] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Australian continent was free from wheat stripe rust caused by Puccinia striiformis f. sp. tritici until exotic incursions occurred in 1979 and 2002. The 2002 incursion enabled the identification of a new stripe rust resistance gene (Yr34) in the advanced breeding line WAWHT2046. In this study, we developed and validated markers closely linked with Yr34, which is located in the distal region in the long arm of chromosome 5A. Four kompetitive allele-specific polymerase chain reaction (KASP) and three sequence-tagged site (STS) markers derived from the International Wheat Genome Sequencing Consortium RefSeq v1.0 scaffold-77836 cosegregated with Yr34. Markers sun711, sun712, sun725, sunKASP_109, and sunKASP_112 were shown to be suitable for marker-assisted selection in a validation panel of 71 Australian spring wheat genotypes, with the exception of cultivar Orion that carried the Yr34-linked alleles for sunKASP_109 and sunKASP_112. Markers previously reported to be linked with adult plant stripe rust resistance gene Yr48 also cosegregated with Yr34. Wheat genotypes carrying Yr34 and Yr48 produced identical haplotypes for the Yr34-linked markers identified in this study and those previously reported to be linked with Yr48. Phenotypic testing of genotypes carrying Yr34 and Yr48 showed that both genes conferred similar seedling responses to pre-2002 and post-2002 P. striiformis f. sp. tritici pathotypes. Further testing of 600 F2 plants from a cross between WAWHT2046 and RIL143 (Yr48) with P. striiformis f. sp. tritici pathotype 134 E16A+Yr17+Yr27+ failed to reveal any susceptible segregants. Our results strongly suggest that Yr34 and Yr48 are the same gene, and that Yr48 should be considered a synonym of Yr34.
Collapse
Affiliation(s)
- N Qureshi
- The University of Sydney Plant Breeding Institute, Faculty of Science, Cobbitty, NSW 2570, Australia
| | - H S Bariana
- The University of Sydney Plant Breeding Institute, Faculty of Science, Cobbitty, NSW 2570, Australia
| | - P Zhang
- The University of Sydney Plant Breeding Institute, Faculty of Science, Cobbitty, NSW 2570, Australia
| | - R McIntosh
- The University of Sydney Plant Breeding Institute, Faculty of Science, Cobbitty, NSW 2570, Australia
| | - U K Bansal
- The University of Sydney Plant Breeding Institute, Faculty of Science, Cobbitty, NSW 2570, Australia
| | - D Wong
- Department of Economic Development, Jobs, Transport and Resources, AgriBio Centre, La Trobe Research and Development Park, Bundoora, VIC 3083, Australia
| | - M J Hayden
- Department of Economic Development, Jobs, Transport and Resources, AgriBio Centre, La Trobe Research and Development Park, Bundoora, VIC 3083, Australia
| | - J Dubcovsky
- Department of Plant Sciences, University of California, Davis 95616
| | - M Shankar
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia; and School of Agriculture and Environment, University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
15
|
Edae EA, Pumphrey MO, Rouse MN. A Genome-Wide Association Study of Field and Seedling Response to Individual Stem Rust Pathogen Races Reveals Combinations of Race-Specific Genes in North American Spring Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:52. [PMID: 29441083 PMCID: PMC5797647 DOI: 10.3389/fpls.2018.00052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/10/2018] [Indexed: 05/22/2023]
Abstract
Stem rust of wheat caused by the fungal pathogen Puccinia graminis f. sp. tritici historically caused major yield losses of wheat worldwide. To understand the genetic basis of stem rust resistance in contemporary North American spring wheat, genome-wide association analysis (GWAS) was conducted on an association mapping panel comprised of 250 elite lines. The lines were evaluated in separate nurseries each inoculated with a different P. graminis f. sp. tritici race for 3 years (2013, 2015, and 2016) at Rosemount, Minnesota allowing the evaluation of race-specificity separate from the effect of environment. The lines were also challenged with the same four races at the seedling stage in a greenhouse facility at the USDA-ARS Cereal Disease Laboratory. A total of 22,310 high-quality SNPs obtained from the Infinium 90,000 SNPs chip were used to perform association analysis. We observed often negative and sometimes weak correlations between responses to different races that highlighted the abundance of race-specific resistance and the inability to predict the response of the lines across races. Markers strongly associated with resistance to the four races at seedling and field environments were identified. At the seedling stage, the most significant marker-trait associations were detected in the regions of known major genes (Sr6, Sr7a, and Sr9b) except for race QFCSC where a strong association was detected on chromosome arm 1AL. We postulated the presence of Sr2, Sr6, Sr7a, Sr8a, Sr9b, Sr11, Sr12, Sr24, Sr25, Sr31, and Sr57 (Lr34) in this germplasm based on phenotypic and marker data. We found over half of the panel possessed three or more Sr genes, and most commonly included various combinations of Sr6, Sr7a, Sr8a, Sr9b, Sr11, Sr12, and Sr57. Most of these genes confer resistance to specific P. graminis f. sp. tritici races accounting for the prevalent stem rust resistance in North American spring wheat.
Collapse
Affiliation(s)
- Erena A. Edae
- Cereal Disease Laboratory, United States Department of Agriculture - Agricultural Research Service (USDA ARS), St. Paul, MN, United States
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Michael O. Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Matthew N. Rouse
- Cereal Disease Laboratory, United States Department of Agriculture - Agricultural Research Service (USDA ARS), St. Paul, MN, United States
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
16
|
Wang X, Luo G, Yang W, Li Y, Sun J, Zhan K, Liu D, Zhang A. Genetic diversity, population structure and marker-trait associations for agronomic and grain traits in wild diploid wheat Triticum urartu. BMC PLANT BIOLOGY 2017; 17:112. [PMID: 28668082 PMCID: PMC5494140 DOI: 10.1186/s12870-017-1058-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/14/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Wild diploid wheat, Triticum urartu (T. urartu) is the progenitor of bread wheat, and understanding its genetic diversity and genome function will provide considerable reference for dissecting genomic information of common wheat. RESULTS In this study, we investigated the morphological and genetic diversity and population structure of 238 T. urartu accessions collected from different geographic regions. This collection had 19.37 alleles per SSR locus and its polymorphic information content (PIC) value was 0.76, and the PIC and Nei's gene diversity (GD) of high-molecular-weight glutenin subunits (HMW-GSs) were 0.86 and 0.88, respectively. UPGMA clustering analysis indicated that the 238 T. urartu accessions could be classified into two subpopulations, of which Cluster I contained accessions from Eastern Mediterranean coast and those from Mesopotamia and Transcaucasia belonged to Cluster II. The wide range of genetic diversity along with the manageable number of accessions makes it one of the best collections for mining valuable genes based on marker-trait association. Significant associations were observed between simple sequence repeats (SSR) or HMW-GSs and six morphological traits: heading date (HD), plant height (PH), spike length (SPL), spikelet number per spike (SPLN), tiller angle (TA) and grain length (GL). CONCLUSIONS Our data demonstrated that SSRs and HMW-GSs were useful markers for identification of beneficial genes controlling important traits in T. urartu, and subsequently for their conservation and future utilization, which may be useful for genetic improvement of the cultivated hexaploid wheat.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Guangbin Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Kehui Zhan
- College of Agronomy/The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002 China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
- College of Agronomy/The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002 China
| |
Collapse
|
17
|
Yu G, Champouret N, Steuernagel B, Olivera PD, Simmons J, Williams C, Johnson R, Moscou MJ, Hernández-Pinzón I, Green P, Sela H, Millet E, Jones JDG, Ward ER, Steffenson BJ, Wulff BBH. Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1207-1222. [PMID: 28275817 PMCID: PMC5440502 DOI: 10.1007/s00122-017-2882-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/17/2017] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE We identified two novel wheat stem rust resistance genes, Sr-1644-1Sh and Sr-1644-5Sh in Aegilops sharonensis that are effective against widely virulent African races of the wheat stem rust pathogen. Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goatgrass species Aegilops sharonesis (Sharon goatgrass) as a rich reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F6 recombinant inbred line and an F2 population, two genes were identified that mapped to the short arm of chromosome 1Ssh, designated as Sr-1644-1Sh, and the long arm of chromosome 5Ssh, designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (a member of the Ug99 race group), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors.
Collapse
Affiliation(s)
- Guotai Yu
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- 2Blades Foundation, 1630 Chicago Avenue, Suite 1901, Evanston, IL, 60201, USA
| | - Nicolas Champouret
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
- J.R. Simplot Company, 5369 West Irving Street, Boise, ID, 83706, USA
| | | | - Pablo D Olivera
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Jamie Simmons
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Cole Williams
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Ryan Johnson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Matthew J Moscou
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Phon Green
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Hanan Sela
- Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eitan Millet
- Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | - Eric R Ward
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
- 2Blades Foundation, 1630 Chicago Avenue, Suite 1901, Evanston, IL, 60201, USA
- AgBiome Inc, 104 T. W. Alexander Drive, Building 1, Research Triangle Park, NC, 27709, USA
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Brande B H Wulff
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
18
|
Wiersma AT, Brown LK, Brisco EI, Liu TL, Childs KL, Poland JA, Sehgal SK, Olson EL. Fine mapping of the stem rust resistance gene SrTA10187. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2369-2378. [PMID: 27581540 DOI: 10.1007/s00122-016-2776-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
SrTA10187 was fine-mapped to a 1.1 cM interval, candidate genes were identified in the region of interest, and molecular markers were developed for marker-assisted selection and Sr gene pyramiding. Stem rust (Puccinia graminis f. sp. tritici, Pgt) races belonging to the Ug99 (TTKSK) race group pose a serious threat to global wheat (Triticum aestivum L.) production. To improve Pgt host resistance, the Ug99-effective resistance gene SrTA10187 previously identified in Aegilops tauschii Coss. was introgressed into wheat, and mapped to the short arm of wheat chromosome 6D. In this study, high-resolution mapping of SrTA10187 was done using a population of 1,060 plants. Pgt resistance was screened using race QFCSC. PCR-based SNP and STS markers were developed from genotyping-by-sequencing tags and SNP sequences available in online databases. SrTA10187 segregated as expected in a 3:1 ratio of resistant to susceptible individuals in three out of six BC3F2 families, and was fine-mapped to a 1.1 cM region on wheat chromosome 6DS. Marker context sequence was aligned to the reference Ae. tauschii genome to identify the physical region encompassing SrTA10187. Due to the size of the corresponding region, candidate disease resistance genes could not be identified with confidence. Comparisons with the Ae. tauschii genetic map developed by Luo et al. (PNAS 110(19):7940-7945, 2013) enabled identification of a discrete genetic locus and a BAC minimum tiling path of the region spanning SrTA10187. Annotation of pooled BAC library sequences led to the identification of candidate genes in the region of interest-including a single NB-ARC-LRR gene. The shorter genetic interval and flanking KASP™ and STS markers developed in this study will facilitate marker-assisted selection, gene pyramiding, and positional cloning of SrTA10187.
Collapse
Affiliation(s)
- Andrew T Wiersma
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Room A286, East Lansing, MI, 48824, USA
| | - Linda K Brown
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Room A286, East Lansing, MI, 48824, USA
| | - Elizabeth I Brisco
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Room A286, East Lansing, MI, 48824, USA
| | - Tiffany L Liu
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, Room 166, East Lansing, MI, 48824, USA
| | - Kevin L Childs
- Department of Plant Biology and Center for Genomics-Enabled Plant Science, Michigan State University, 612 Wilson Rd, Room 166, East Lansing, MI, 48824, USA
| | - Jesse A Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, 4011 Throckmorton Plant Sciences Center, Manhattan, KS, 66506, USA
| | - Sunish K Sehgal
- Department of Plant Science, South Dakota State University, Plant Science-Box 2140C, Brookings, SD, 57007, USA
| | - Eric L Olson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Room A286, East Lansing, MI, 48824, USA.
| |
Collapse
|
19
|
Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN, Yu G, Hatta A, Ayliffe M, Bariana H, Jones JDG, Lagudah ES, Wulff BBH. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 2016; 34:652-5. [PMID: 27111722 DOI: 10.1038/nbt.3543] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 03/16/2016] [Indexed: 01/18/2023]
Abstract
Wild relatives of domesticated crop species harbor multiple, diverse, disease resistance (R) genes that could be used to engineer sustainable disease control. However, breeding R genes into crop lines often requires long breeding timelines of 5-15 years to break linkage between R genes and deleterious alleles (linkage drag). Further, when R genes are bred one at a time into crop lines, the protection that they confer is often overcome within a few seasons by pathogen evolution. If several cloned R genes were available, it would be possible to pyramid R genes in a crop, which might provide more durable resistance. We describe a three-step method (MutRenSeq)-that combines chemical mutagenesis with exome capture and sequencing for rapid R gene cloning. We applied MutRenSeq to clone stem rust resistance genes Sr22 and Sr45 from hexaploid bread wheat. MutRenSeq can be applied to other commercially relevant crops and their relatives, including, for example, pea, bean, barley, oat, rye, rice and maize.
Collapse
Affiliation(s)
| | - Sambasivam K Periyannan
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Canberra, NSW, Australia
| | | | | | - Matthew N Rouse
- USDA-ARS Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | | | - Asyraf Hatta
- John Innes Centre, Norwich, UK
- Department of Agriculture Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mick Ayliffe
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Canberra, NSW, Australia
| | - Harbans Bariana
- University of Sydney, Plant Breeding Institute, Cobbitty, NSW, Australia
| | | | - Evans S Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Canberra, NSW, Australia
| | - Brande B H Wulff
- The Sainsbury Laboratory, Norwich, UK
- John Innes Centre, Norwich, UK
| |
Collapse
|
20
|
Goutam U, Kukreja S, Yadav R, Salaria N, Thakur K, Goyal AK. Recent trends and perspectives of molecular markers against fungal diseases in wheat. Front Microbiol 2015; 6:861. [PMID: 26379639 PMCID: PMC4548237 DOI: 10.3389/fmicb.2015.00861] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/06/2015] [Indexed: 01/24/2023] Open
Abstract
Wheat accounts for 19% of the total production of major cereal crops in the world. In view of ever increasing population and demand for global food production, there is an imperative need of 40-60% increase in wheat production to meet the requirement of developing world in coming 40 years. However, both biotic and abiotic stresses are major hurdles for attaining the goal. Among the most important diseases in wheat, fungal diseases pose serious threat for widening the gap between actual and attainable yield. Fungal disease management, mainly, depends on the pathogen detection, genetic and pathological variability in population, development of resistant cultivars and deployment of effective resistant genes in different epidemiological regions. Wheat protection and breeding of resistant cultivars using conventional methods are time-consuming, intricate and slow processes. Molecular markers offer an excellent alternative in development of improved disease resistant cultivars that would lead to increase in crop yield. They are employed for tagging the important disease resistance genes and provide valuable assistance in increasing selection efficiency for valuable traits via marker assisted selection (MAS). Plant breeding strategies with known molecular markers for resistance and functional genomics enable a breeder for developing resistant cultivars of wheat against different fungal diseases.
Collapse
Affiliation(s)
- Umesh Goutam
- Department of Biotechnology, Lovely Professional University, PhagwaraPunjab, India
| | - Sarvjeet Kukreja
- Department of Biotechnology, Lovely Professional University, PhagwaraPunjab, India
| | - Rakesh Yadav
- Department of Bio and Nano technology, Guru Jambheshwar University of Science and TechnologyHisar, India
| | - Neha Salaria
- Department of Biotechnology, Lovely Professional University, PhagwaraPunjab, India
| | - Kajal Thakur
- Department of Biotechnology, Lovely Professional University, PhagwaraPunjab, India
| | - Aakash K. Goyal
- International Center for Agriculture Research in the Dry Areas (ICARDA)Morocco
| |
Collapse
|
21
|
Kage U, Kumar A, Dhokane D, Karre S, Kushalappa AC. Functional molecular markers for crop improvement. Crit Rev Biotechnol 2015; 36:917-30. [DOI: 10.3109/07388551.2015.1062743] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Udaykumar Kage
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada, H9X3V9
| | - Arun Kumar
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada, H9X3V9
| | - Dhananjay Dhokane
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada, H9X3V9
| | - Shailesh Karre
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada, H9X3V9
| | - Ajjamada C. Kushalappa
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada, H9X3V9
| |
Collapse
|
22
|
Wang Z, Li H, Zhang D, Guo L, Chen J, Chen Y, Wu Q, Xie J, Zhang Y, Sun Q, Dvorak J, Luo MC, Liu Z. Genetic and physical mapping of powdery mildew resistance gene MlHLT in Chinese wheat landrace Hulutou. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:365-73. [PMID: 25471672 DOI: 10.1007/s00122-014-2436-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/21/2014] [Indexed: 05/21/2023]
Abstract
A powdery mildew resistance gene MlHLT derived from a Chinese wheat landrace maps within a 3.6 centimorgan (cM) genetic interval spanning a 13.4 megabase (Mb) physical genomic region on chromosome 1DS. Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt) is a devastating disease that can cause severe yield losses. Chinese wheat landrace Hulutou confers nearly immune resistance against prevailing Bgt isolate E09 in Beijing. Genetic analysis indicate that the powdery mildew resistance of Hulutou is controlled by a single dominant gene, provisionally designated MlHLT. Bulked segregant analysis(BSA) and simple sequence repeat (SSR) mapping showed that MlHLT is located on chromosome arm 1DS between markers Xgwm337 and Xcfd83/Xcfd72. By applying comparative genomics analysis, collinearity genomic regions of the MlHLT locus on Aegilops tauschii chromosome 1DS were identified in Brachypodium distachyon chromosome 2, rice chromosome 5 and sorghum chromosome 9, respectively. Three new polymorphic markers were developed using the draft genome sequences and the extended single nucleotide polymorphism (SNP) marker sequences of Ae. tauschii accession AL8/78, as well as the Triticum aestivum cv. Chinese Spring 454 contig sequences and the International Wheat Genome Sequencing Consortium (IWGSC) survey sequences. MlHLT mapped into a 3.6 cM genetic interval spanning 13.4 Mb physical genomic region containing seven contigs (ctg220, ctg4623, ctg1063, ctg5929, ctg3163, ctg699 and ctg1065) on 1DS that has synteny with a 369.8 kb genomic region in Brachypodium, a 380.8 kb genomic region in rice and a 298.4 kb genomic region in sorghum. The genetic and physical maps of MlHLT provide framework for map-based cloning and marker-assisted selection (MAS) of the powdery mildew resistance gene MlHLT in Hulutou.
Collapse
Affiliation(s)
- Zhenzhong Wang
- Department of Plant Genetics and Breeding/State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|