1
|
Huang C, Gangola MP, Kutcher HR, Hucl P, Ganeshan S, Chibbar RN. In Vitro Wheat Immature Spike Culture Screening Identified Fusarium Head Blight Resistance in Wheat Spike Cultured Derived Variants and in the Progeny of Their Crosses with an Elite Cultivar. THE PLANT PATHOLOGY JOURNAL 2020; 36:558-569. [PMID: 33312091 PMCID: PMC7721538 DOI: 10.5423/ppj.oa.07.2020.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/24/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Fusarium head blight (FHB) is a devastating fungal disease of wheat (Triticum aestivum L.). The lack of genetic resources with stable FHB resistance combined with a reliable and rapid screening method to evaluate FHB resistance is a major limitation to the development of FHB resistant wheat germplasm. The present study utilized an immature wheat spike culture method to screen wheat spike culture derived variants (SCDV) for FHB resistance. Mycotoxin concentrations determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) correlated significantly (P < 0.01) with FHB severity and disease progression during in vitro spike culture. Selected SCDV lines assessed for FHB resistance in a Fusarium field disease nursery in Carman, Manitoba, Canada in 2016 showed significant (P < 0.01) correlation of disease severity to the in vitro spike culture screening method. Selected resistant SCDV lines were also crossed with an elite cv. CDC Hughes and the progeny of F2 and BC1F2 were screened by high resolution melt curve (HRM) analyses for the wheat UDPglucosyl transferase gene (TaUGT-3B) single nucleotide polymorphism to identify resistant (T-allele) and susceptible (G-allele) markers. The progeny from the crosses were also screened for FHB severity using the immature spike culture method and identified resistant progeny grouped according to the HRM genotyping data. The results demonstrate a reliable approach using the immature spike culture to screen for FHB resistance in progeny of crosses in early stage of breeding programs.
Collapse
Affiliation(s)
- Chen Huang
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Manu P. Gangola
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - H. Randy Kutcher
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Pierre Hucl
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Seedhabadee Ganeshan
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Ravindra N. Chibbar
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Saskatchewan, Canada
| |
Collapse
|
2
|
A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
3
|
Yumurtaci A, Sipahi H, Al-Abdallat A, Jighly A, Baum M. Construction of new EST-SSRs for Fusarium resistant wheat breeding. Comput Biol Chem 2017; 68:22-28. [PMID: 28231525 DOI: 10.1016/j.compbiolchem.2017.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/12/2016] [Accepted: 02/02/2017] [Indexed: 11/29/2022]
Abstract
Surveying Fusarium resistance in wheat with easy applicable molecular markers such as simple sequence repeats (SSRs) is a prerequest for molecular breeding. Expressed sequence tags (ESTs) are one of the main sources for development of new SSR candidates. Therefore, 18.292 publicly available wheat ESTs were mined and genotyping of newly developed 55 EST-SSR derived primer pairs produced clear fragments in ten wheat cultivars carrying different levels of Fusarium resistance. Among the proved markers, 23 polymorphic EST-SSRs were obtained and related alleles were mostly found on B and D genome. Based on the fragment profiling and similarity analysis, a 327bp amplicon, which was a product of contig 1207 (chromosome 5BL), was detected only in Fusarium head blight (FHB) resistant cultivars (CM82036 and Sumai) and the amino acid sequences showed a similarity to pathogen related proteins. Another FHB resistance related EST-SSR, Contig 556 (chromosome 1BL) produced a 151bp fragment in Sumai and was associated to wax2-like protein. A polymorphic 204bp fragment, derived from Contig 578 (chromosome 1DL), was generated from root rot (FRR) resistant cultivars (2-49; Altay2000 and Sunco). A total of 98 alleles were displayed with an average of 1.8 alleles per locus and the polymorphic information content (PIC) ranged from 0.11 to 0.78. Dendrogram tree with two main and five sub-groups were displayed the highest genetic relationship between FRR resistant cultivars (2-49 and Altay2000), FRR sensitive cultivars (Seri82 and Scout66) and FHB resistant cultivars (CM82036 and Sumai). Thus, exploitation of these candidate EST-SSRs may help to genotype other wheat sources for Fusarium resistance.
Collapse
Affiliation(s)
- Aysen Yumurtaci
- University of Marmara, Faculty of Science and Letters, Department of Biology, 34722 İstanbul, Turkey.
| | - Hulya Sipahi
- University of Sinop, Faculty of Arts and Sciences, Department of Biology, 57000 Sinop, Turkey.
| | - Ayed Al-Abdallat
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt; University of Jordan, Faculty of Agriculture, Department of Horticulture and Crop Science, 11942 Amman, Jordan.
| | - Abdulqader Jighly
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas (ICARDA), Av. Mohamed Belarbi Alaoui, PO Box 6299, Al Irfane, Rabat, Morocco.
| |
Collapse
|
4
|
Lemmens M, Steiner B, Sulyok M, Nicholson P, Mesterhazy A, Buerstmayr H. Masked mycotoxins: does breeding for enhanced Fusarium head blight resistance result in more deoxynivalenol-3-glucoside in new wheat varieties? WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.2029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
From economic and environmental points of view, enhancing resistance to Fusarium head blight (FHB) in wheat is regarded as the best option to reduce fungal colonisation and the concomitant mycotoxin contamination. This review focuses on the effect of FHB resistance on deoxynivalenol (DON) and the masked metabolite deoxynivalenol-3-glucoside (DON-3-glucoside) in wheat. Based on published information complemented with our own results we draw the following conclusions: (1) All investigated wheat cultivars can convert DON to DON-3-glucoside. Hence, detoxification of DON to DON-3-glucoside is not a new trait introduced by recent resistance breeding against FHB. (2) The amount of DON-3-glucoside relative to DON contamination can be substantial (up to 35%) and is among other things dependent on genetic and environmental factors. (3) Correlation analyses showed a highly significant relationship between the amount of FHB symptoms and DON contamination: breeding for FHB resistance reduces DON contamination. (4) DON contamination data are highly correlated with DON-3-glucoside concentration data: in other words, reduction of DON content through resistance breeding results in a concomitant reduction in DON-3-glucoside content. (5) The DON-3-glucoside/DON ratio increases with decreasing DON contamination: the most resistant lines with the lowest DON contamination show the highest relative level of DON-3-glucoside to DON. In summary, introgressing FHB resistance reduces both DON and DON-3-glucoside levels in the grain, but the reduction is lower for the masked toxin. DON-3-glucoside can represent a possible hazard to human and animal health, especially in wheat samples contaminated with DON close to permitted limits.
Collapse
Affiliation(s)
- M. Lemmens
- Institute for Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - B. Steiner
- Institute for Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - M. Sulyok
- Center for Analytical Chemistry, BOKU-University of Natural Resources and Life Sciences Vienna, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - P. Nicholson
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - A. Mesterhazy
- Cereal Research non-profit Ltd., 6701 Szeged, P.O. Box 391, Hungary
| | - H. Buerstmayr
- Institute for Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| |
Collapse
|
5
|
Ferrigo D, Raiola A, Causin R. Fusarium Toxins in Cereals: Occurrence, Legislation, Factors Promoting the Appearance and Their Management. Molecules 2016; 21:E627. [PMID: 27187340 PMCID: PMC6274039 DOI: 10.3390/molecules21050627] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 12/18/2022] Open
Abstract
Fusarium diseases of small grain cereals and maize cause significant yield losses worldwide. Fusarium infections result in reduced grain yield and contamination with mycotoxins, some of which have a notable impact on human and animal health. Regulations on maximum limits have been established in various countries to protect consumers from the harmful effects of these mycotoxins. Several factors are involved in Fusarium disease and mycotoxin occurrence and among them environmental factors and the agronomic practices have been shown to deeply affect mycotoxin contamination in the field. In the present review particular emphasis will be placed on how environmental conditions and stress factors for the crops can affect Fusarium infection and mycotoxin production, with the aim to provide useful knowledge to develop strategies to prevent mycotoxin accumulation in cereals.
Collapse
Affiliation(s)
- Davide Ferrigo
- Department of Land, Environment, Agriculture and Forestry, University of Padua, Campus of Agripolis, Viale Università 16, 35020 Legnaro, Padua, Italy.
| | - Alessandro Raiola
- Department of Land, Environment, Agriculture and Forestry, University of Padua, Campus of Agripolis, Viale Università 16, 35020 Legnaro, Padua, Italy.
| | - Roberto Causin
- Department of Land, Environment, Agriculture and Forestry, University of Padua, Campus of Agripolis, Viale Università 16, 35020 Legnaro, Padua, Italy.
| |
Collapse
|