1
|
Xu X, Du Y, Li S, Tan M, Sohail H, Liu X, Qi X, Yang X, Chen X. A genome-wide association study reveals molecular mechanism underlying powdery mildew resistance in cucumber. Genome Biol 2024; 25:252. [PMID: 39358737 PMCID: PMC11445940 DOI: 10.1186/s13059-024-03402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Powdery mildew is a disease with one of the most substantial impacts on cucumber production globally. The most efficient approach for controlling powdery mildew is the development of genetic resistance; however, few genes associated with inherent variations in cucumber powdery mildew resistance have been identified as of yet. RESULTS In this study, we re-sequence 299 cucumber accessions, which are divided into four geographical groups. A genome-wide association study identifies 50 sites significantly associated with natural variations in powdery mildew resistance. Linkage disequilibrium analysis further divides these 50 sites into 32 linkage disequilibrium blocks containing 41 putative genes. Virus-induced gene silencing and gene expression analysis implicate CsGy5G015960, which encodes a phosphate transporter, as the candidate gene regulating powdery mildew resistance. On the basis of the resequencing data, we generate five CsGy5G015960 haplotypes, identifying Hap.1 as the haplotype most likely associated with powdery mildew resistance. In addition, we determine that a 29-bp InDel in the 3' untranslated region of CsGy5G015960 is responsible for mRNA stability. Overexpression of CsGy5G015960Hap.1 in the susceptible line enhances powdery mildew resistance and phosphorus accumulation. Further comparative RNA-seq analysis demonstrates that CsGy5G015960Hap.1 may regulate cucumber powdery mildew resistance by maintaining a higher H2O2 level through the depletion of multiple class III peroxidases. CONCLUSIONS Here we identify a candidate powdery mildew-resistant gene in cucumber using GWAS. The identified gene may be a promising target for molecular breeding and genetic engineering in cucumber to enhance powdery mildew resistance.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yujiao Du
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Suhao Li
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Ming Tan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hamza Sohail
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xueli Liu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaohua Qi
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiaodong Yang
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
2
|
Li H, Khan IU, Anarjan MB, Hussain M, Lee S. The mutant STAY-GREEN ( Cssgr) in cucumber interacts with the CSEP30 protein to elicit a defense response against Podosphaera xanthii. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:67. [PMID: 39345972 PMCID: PMC11436540 DOI: 10.1007/s11032-024-01504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Disease-resistant plants activate immune responses by specifically recognition Candidate Secreted Effector Proteins (CSEPs) through resistance (R) proteins. In research on cucumber powdery mildew resistance breeding, several R genes and CSEPs have been identified; however, the specific interactions between R proteins and CSEPs are still largely unexplored. In this study, we used a luciferase reporter assay to identify six CSEPs from Podosphaera xanthii that potentially induce cell death in cucumber. Subsequent yeast two-hybrid analysis revealed that only the mature form of CSEP30 (CSEP30∆SP) interacted with the cucumber mutant STAY-GREEN (Cssgr), a gene previously recognized for its broad-spectrum resistance in genetic studies. This interaction was confirmed using pull-down and co-immunoprecipitation assays. Additionally, to determine if the interaction leads to phenotypic changes, Cssgr and CSEP30∆SP were transiently expressed in tobacco leaves. The infiltration of Cssgr in tobacco resulted in reduced chlorosis compared to the wild-type CsSGR. Co-infiltration of Cssgr with CSEP30∆SP induced distinct dry necrotic lesions, contrasting the effects observed when Cssgr and CSEP30∆SP were infiltrated separately. Additionally, after P. xanthii infection in moderately powdery mildew-resistant Gy14 cucumber, similar necrotic lesions and specific expression of Cssgr, as along with defense response-related genes (CsPR1 and CsLecRK6.1), were observed. This study suggests that the interaction between Cssgr and CSEP30∆SP could trigger cell death and defense response, offering new insights into the molecular function of Cssgr in disease resistance in Gy14 cucumber. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01504-6.
Collapse
Affiliation(s)
- Haisu Li
- Plant Genomics Laboratory, Department of Bio-Resource Engineering, College of Life Sciences, Sejong University, Room 409B Kwanggaetokwan, 209 Neungdong-Ro, Gwanjing-Gu, Seoul, 05006 Republic of Korea
| | - Irfan Ullah Khan
- Plant Genomics Laboratory, Department of Bio-Resource Engineering, College of Life Sciences, Sejong University, Room 409B Kwanggaetokwan, 209 Neungdong-Ro, Gwanjing-Gu, Seoul, 05006 Republic of Korea
| | - Mahdi Badri Anarjan
- Plant Genomics Laboratory, Department of Bio-Resource Engineering, College of Life Sciences, Sejong University, Room 409B Kwanggaetokwan, 209 Neungdong-Ro, Gwanjing-Gu, Seoul, 05006 Republic of Korea
| | - Muhammad Hussain
- Plant Genomics Laboratory, Department of Bio-Resource Engineering, College of Life Sciences, Sejong University, Room 409B Kwanggaetokwan, 209 Neungdong-Ro, Gwanjing-Gu, Seoul, 05006 Republic of Korea
| | - Sanghyeob Lee
- Plant Genomics Laboratory, Department of Bio-Resource Engineering, College of Life Sciences, Sejong University, Room 409B Kwanggaetokwan, 209 Neungdong-Ro, Gwanjing-Gu, Seoul, 05006 Republic of Korea
- Plant Engineering Research Institute, Sejong University, 209 Neungdong-Ro, Gwanjing-Gu, Seoul, 05006 Republic of Korea
| |
Collapse
|
3
|
Chen Q, Zhou S, Qu M, Yang Y, Chen Q, Meng X, Fan H. Cucumber (Cucumis sativus L.) translationally controlled tumor protein interacts with CsRab11A and promotes activation of target of rapamycin in response to Podosphaera xanthii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:332-347. [PMID: 38700955 DOI: 10.1111/tpj.16766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
The target of rapamycin (TOR) kinase serves as a central regulator that integrates nutrient and energy signals to orchestrate cellular and organismal physiology in both animals and plants. Despite significant advancements having been made in understanding the molecular and cellular functions of plant TOR kinases, the upstream regulators that modulate TOR activity are not yet fully elucidated. In animals, the translationally controlled tumor protein (TCTP) is recognized as a key player in TOR signaling. This study reveals that two TCTP isoforms from Cucumis sativus, when introduced into Arabidopsis, are instrumental in balancing growth and defense mechanisms against the fungal pathogen Golovinomyces cichoracearum. We hypothesize that plant TCTPs act as upstream regulators of TOR in response to powdery mildew caused by Podosphaera xanthii in Cucumis. Our research further uncovers a stable interaction between CsTCTP and a small GTPase, CsRab11A. Transient transformation assays indicate that CsRab11A is involved in the defense against P. xanthii and promotes the activation of TOR signaling through CsTCTP. Moreover, our findings demonstrate that the critical role of TOR in plant disease resistance is contingent upon its regulated activity; pretreatment with a TOR inhibitor (AZD-8055) enhances cucumber plant resistance to P. xanthii, while pretreatment with a TOR activator (MHY-1485) increases susceptibility. These results suggest a sophisticated adaptive response mechanism in which upstream regulators, CsTCTP and CsRab11A, coordinate to modulate TOR function in response to P. xanthii, highlighting a novel aspect of plant-pathogen interactions.
Collapse
Affiliation(s)
- Qiumin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuang Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Mengqi Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yun Yang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Qinglei Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
4
|
Liu R, Tan X, Wang Y, Lin F, Li P, Rahman FU, Sun L, Jiang J, Fan X, Liu C, Zhang Y. The cysteine-rich receptor-like kinase CRK10 targeted by Coniella diplodiella effector CdE1 contributes to white rot resistance in grapevine. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3026-3039. [PMID: 38318854 DOI: 10.1093/jxb/erae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Grape white rot is a devastating fungal disease caused by Coniella diplodiella. The pathogen delivers effectors into the host cell that target crucial immune components to facilitate its infection. Here, we examined a secreted effector of C. diplodiella, known as CdE1, which has been found to inhibit Bax-triggered cell death in Nicotiana benthamiana plants. The expression of CdE1 was induced at 12-48 h after inoculation with C. diplodiella, and the transient overexpression of CdE1 led to increased susceptibility of grapevine to the fungus. Subsequent experiments revealed an interaction between CdE1 and Vitis davidii cysteine-rich receptor-like kinase 10 (VdCRK10) and suppression of VdCRK10-mediated immunity against C. diplodiella, partially by decreasing the accumulation of VdCRK10 protein. Furthermore, our investigation revealed that CRK10 expression was significantly higher and was up-regulated in the resistant wild grapevine V. davidii during C. diplodiella infection. The activity of the VdCRK10 promoter is induced by C. diplodiella and is higher than that of Vitis vitifera VvCRK10, indicating the involvement of transcriptional regulation in CRK10 gene expression. Taken together, our results highlight the potential of VdCRK10 as a resistant gene for enhancing white rot resistance in grapevine.
Collapse
Affiliation(s)
- Ruitao Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453400, China
| | - Xibei Tan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yiming Wang
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Faiz Ur Rahman
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Lei Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jianfu Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xiucai Fan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Chonghuai Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Ying Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453400, China
| |
Collapse
|
5
|
Sun J, Nie J, Xiao T, Guo C, Lv D, Zhang K, He HL, Pan J, Cai R, Wang G. CsPM5.2, a phosphate transporter protein-like gene, promotes powdery mildew resistance in cucumber. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1487-1502. [PMID: 38048475 DOI: 10.1111/tpj.16576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
Powdery mildew (PM) is one of the most serious fungal diseases affecting cucumbers (Cucumis sativus L.). The mechanism of PM resistance in cucumber is intricate and remains fragmentary as it is controlled by several genes. In this study, we detected the major-effect Quantitative Trait Locus (QTL), PM5.2, involved in PM resistance by QTL mapping. Through fine mapping, the dominant PM resistance gene, CsPM5.2, was cloned and its function was confirmed by transgenic complementation and natural variation identification. In cultivar 9930, a dysfunctional CsPM5.2 mutant resulted from a single nucleotide polymorphism in the coding region and endowed susceptibility to PM. CsPM5.2 encodes a phosphate transporter-like protein PHO1; H3. The expression of CsPM5.2 is ubiquitous and induced by the PM pathogen. In cucumber, both CsPM5.2 and Cspm5.1 (Csmlo1) are required for PM resistance. Transcriptome analysis suggested that the salicylic acid (SA) pathway may play an important role in CsPM5.2-mediated PM resistance. Our findings help parse the mechanisms of PM resistance and provide strategies for breeding PM-resistant cucumber cultivars.
Collapse
Affiliation(s)
- Jingxian Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Jingtao Nie
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Tingting Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Chunli Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Duo Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Keyan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Huan-Le He
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, 200240, China
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, 200240, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, 200240, China
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, 200240, China
| |
Collapse
|
6
|
Dong S, Liu X, Han J, Miao H, Beckles DM, Bai Y, Liu X, Guan J, Yang R, Gu X, Sun J, Yang X, Zhang S. CsMLO8/11 are required for full susceptibility of cucumber stem to powdery mildew and interact with CsCRK2 and CsRbohD. HORTICULTURE RESEARCH 2024; 11:uhad295. [PMID: 38404593 PMCID: PMC10894460 DOI: 10.1093/hr/uhad295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/20/2023] [Indexed: 02/27/2024]
Abstract
Powdery mildew (PM) is one of the most destructive diseases that threaten cucumber production globally. Efficient breeding of novel PM-resistant cultivars will require a robust understanding of the molecular mechanisms of cucumber resistance against PM. Using a genome-wide association study, we detected a locus significantly correlated with PM resistance in cucumber stem, pm-s5.1. A 1449-bp insertion in the CsMLO8 coding region at the pm-s5.1 locus resulted in enhanced stem PM resistance. Knockout mutants of CsMLO8 and CsMLO11 generated by CRISPR/Cas9 both showed improved PM resistance in the stem, hypocotyl, and leaves, and the double mutant mlo8mlo11 displayed even stronger resistance. We found that reactive oxygen species (ROS) accumulation was higher in the stem of these mutants. Protein interaction assays suggested that CsMLO8 and CsMLO11 could physically interact with CsRbohD and CsCRK2, respectively. Further, we showed that CsMLO8 and CsCRK2 competitively interact with the C-terminus of CsRbohD to affect CsCRK2-CsRbohD module-mediated ROS production during PM defense. These findings provide new insights into the understanding of CsMLO proteins during PM defense responses.
Collapse
Affiliation(s)
- Shaoyun Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| | - Xin Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| | - Jianan Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| | - Han Miao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| | - Diane M Beckles
- Department of Plant Sciences, University of California Davis, One Shield Avenue, Davis, CA 95616, USA
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Xiaoping Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| | - Jiantao Guan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| | - Ruizhen Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xingfang Gu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xueyong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| | - Shengping Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing China
| |
Collapse
|
7
|
Zhang Y, Tian H, Chen D, Zhang H, Sun M, Chen S, Qin Z, Ding Z, Dai S. Cysteine-rich receptor-like protein kinases: emerging regulators of plant stress responses. TRENDS IN PLANT SCIENCE 2023; 28:776-794. [PMID: 37105805 DOI: 10.1016/j.tplants.2023.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 06/17/2023]
Abstract
Cysteine-rich receptor-like kinases (CRKs) belong to a large DUF26-containing receptor-like kinase (RLK) family. They play key roles in immunity, abiotic stress response, and growth and development. How CRKs regulate diverse processes is a long-standing question. Recent studies have advanced our understanding of the molecular mechanisms underlying CRK functions in Ca2+ influx, reactive oxygen species (ROS) production, mitogen-activated protein kinase (MAPK) cascade activation, callose deposition, stomatal immunity, and programmed cell death (PCD). We review the CRK structure-function relationship with a focus on the roles of CRKs in immunity, the abiotic stress response, and the growth-stress tolerance tradeoff. We provide a critical analysis and synthesis of how CRKs control sophisticated regulatory networks that determine diverse plant phenotypic outputs.
Collapse
Affiliation(s)
- Yongxue Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Haodong Tian
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Daniel Chen
- MD Program of Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Heng Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Meihong Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Sixue Chen
- Department of Biology, The University of Mississippi, Oxford, MS 38677, USA
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Zhaojun Ding
- Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
8
|
Yuan Q, Zhang J, Zhang W, Nie J. Genome-wide characterization, phylogenetic and expression analysis of ABCG gene subfamily in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1178710. [PMID: 37251762 PMCID: PMC10211247 DOI: 10.3389/fpls.2023.1178710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023]
Abstract
The ABCG is the largest subfamily of the ABC family with extensive functions, and only a few members have been identified in detail. However, more and more studies have shown that the members of this family are very important and are involved in many life processes such as plant development and response to various stresses. Cucumber is an important vegetable crops around the world. The cucumber development is essential for its production and quality. Meanwhile, various stresses have caused serious losses of cucumber. However, the ABCG genes were not well characterized and functioned in cucumber. In this study, the cucumber CsABCG gene family were identified and characterized, and their evolutionary relationship and functions were analyzed. The cis-acting elements and expression analysis showed that they played important role in development and responding to various biotic and abiotic stresses in cucumber. Phylogenetic analysis, sequence alignment and MEME (Multiple Em for Motif Elicitation) analysis indicated that the functions of ABCG proteins in different plants are evolutionarily conserved. Collinear analysis revealed that the ABCG gene family was highly conserved during the evolution. In addition, the potential binding sites of the CsABCG genes targeted by miRNA were predicted. These results will lay a foundation for further research on the function of the CsABCG genes in cucumber.
Collapse
Affiliation(s)
- Qi Yuan
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jing Zhang
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Wanlu Zhang
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jingtao Nie
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Nanda S, Rout P, Ullah I, Nag SR, Reddy VV, Kumar G, Kumar R, He S, Wu H. Genome-wide identification and molecular characterization of CRK gene family in cucumber (Cucumis sativus L.) under cold stress and sclerotium rolfsii infection. BMC Genomics 2023; 24:219. [PMID: 37101152 PMCID: PMC10131431 DOI: 10.1186/s12864-023-09319-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND The plant cysteine-rich receptor-like kinases (CRKs) are a large family having multiple roles, including defense responses under both biotic and abiotic stress. However, the CRK family in cucumbers (Cucumis sativus L.) has been explored to a limited extent. In this study, a genome-wide characterization of the CRK family has been performed to investigate the structural and functional attributes of the cucumber CRKs under cold and fungal pathogen stress. RESULTS A total of 15 C. sativus CRKs (CsCRKs) have been characterized in the cucumber genome. Chromosome mapping of the CsCRKs revealed that 15 genes are distributed in cucumber chromosomes. Additionally, the gene duplication analysis of the CsCRKs yielded information on their divergence and expansion in cucumbers. Phylogenetic analysis divided the CsCRKs into two clades along with other plant CRKs. Functional predictions of the CsCRKs suggested their role in signaling and defense response in cucumbers. The expression analysis of the CsCRKs by using transcriptome data and via qRT-PCR indicated their involvement in both biotic and abiotic stress responses. Under the cucumber neck rot pathogen, Sclerotium rolfsii infection, multiple CsCRKs exhibited induced expressions at early, late, and both stages. Finally, the protein interaction network prediction results identified some key possible interacting partners of the CsCRKs in regulating cucumber physiological processes. CONCLUSIONS The results of this study identified and characterized the CRK gene family in cucumbers. Functional predictions and validation via expression analysis confirmed the involvement of the CsCRKs in cucumber defense response, especially against S. rolfsii. Moreover, current findings provide better insights into the cucumber CRKs and their involvement in defense responses.
Collapse
Affiliation(s)
- Satyabrata Nanda
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, India
| | - Priyadarshini Rout
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, India
| | - Ikram Ullah
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China
| | - Swapna Rani Nag
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, India
| | - Velagala Veerraghava Reddy
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, India
| | - Gagan Kumar
- Krishi Vigyan Kendra, Narkatiaganj, Dr. Rajendra Prasad Central Agricultural University, Pusa Samastipur, Bihar, 848125, India
| | - Ritesh Kumar
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, India
| | - Shuilian He
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China
| | - Hongzhi Wu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
10
|
Phenotypic Characterization and Fine Mapping of a Major-Effect Fruit Shape QTL FS5.2 in Cucumber, Cucumis sativus L., with Near-Isogenic Line-Derived Segregating Populations. Int J Mol Sci 2022; 23:ijms232113384. [DOI: 10.3390/ijms232113384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Cucumber (Cucumis sativus L.) fruit size/shape (FS) is an important yield and quality trait that is quantitatively inherited. Many quantitative trait loci (QTLs) for fruit size/shape have been identified, but very few have been fine-mapped or cloned. In this study, through marker-assisted foreground and background selections, we developed near-isogenic lines (NILs) for a major-effect fruit size/shape QTL FS5.2 in cucumber. Morphological and microscopic characterization of NILs suggests that the allele of fs5.2 from the semi-wild Xishuangbanna (XIS) cucumber (C. s. var. xishuangbannesis) reduces fruit elongation but promotes radial growth resulting in shorter but wider fruit, which seems to be due to reduced cell length, but increased cellular layers. Consistent with this, the NIL carrying the homozygous XIS allele (fs5.2) had lower auxin/IAA contents in both the ovary and the developing fruit. Fine genetic mapping with NIL-derived segregating populations placed FS5.2 into a 95.5 kb region with 15 predicted genes, and a homolog of the Arabidopsis CRABS CLAW (CsCRC) appeared to be the most possible candidate for FS5.2. Transcriptome profiling of NIL fruits at anthesis identified differentially expressed genes enriched in the auxin biosynthesis and signaling pathways, as well as genes involved in cell cycle, division, and cell wall processes. We conclude that the major-effect QTL FS5.2 controls cucumber fruit size/shape through regulating auxin-mediated cell division and expansion for the lateral and longitudinal fruit growth, respectively. The gibberellic acid (GA) signaling pathway also plays a role in FS5.2-mediated fruit elongation.
Collapse
|
11
|
He Y, Wei M, Yan Y, Yu C, Cheng S, Sun Y, Zhu X, Wei L, Wang H, Miao L. Research Advances in Genetic Mechanisms of Major Cucumber Diseases Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:862486. [PMID: 35665153 PMCID: PMC9161162 DOI: 10.3389/fpls.2022.862486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 06/15/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important economic vegetable crop worldwide that is susceptible to various common pathogens, including powdery mildew (PM), downy mildew (DM), and Fusarium wilt (FM). In cucumber breeding programs, identifying disease resistance and related molecular markers is generally a top priority. PM, DM, and FW are the major diseases of cucumber in China that cause severe yield losses and the genetic-based cucumber resistance against these diseases has been developed over the last decade. Still, the molecular mechanisms of cucumber disease resistance remain unclear. In this review, we summarize recent findings on the inheritance, molecular markers, and quantitative trait locus mapping of cucumber PM, DM, and FM resistance. In addition, several candidate genes, such as PM, DM, and FM resistance genes, with or without functional verification are reviewed. The data help to reveal the molecular mechanisms of cucumber disease resistance and provide exciting new opportunities for further resistance breeding.
Collapse
Affiliation(s)
- Yujin He
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Mingming Wei
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree, State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Yanyan Yan
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Chao Yu
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Siqi Cheng
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yihan Sun
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiangtao Zhu
- College of Jiyang, Zhejiang Agriculture and Forestry University, Zhuji, China
| | - Lingling Wei
- Institute of Ecological Civilization, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Huasen Wang
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree, State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Li Miao
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
12
|
Klymiuk V, Coaker G, Fahima T, Pozniak CJ. Tandem Protein Kinases Emerge as New Regulators of Plant Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1094-1102. [PMID: 34096764 PMCID: PMC8761531 DOI: 10.1094/mpmi-03-21-0073-cr] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plant-pathogen interactions result in disease development in a susceptible host. Plants actively resist pathogens via a complex immune system comprising both surface-localized receptors that sense the extracellular space as well as intracellular receptors recognizing pathogen effectors. To date, the majority of cloned resistance genes encode intracellular nucleotide-binding leucine-rich repeat receptor proteins. Recent discoveries have revealed tandem kinase proteins (TKPs) as another important family of intracellular proteins involved in plant immune responses. Five TKP genes-barley Rpg1 and wheat WTK1 (Yr15), WTK2 (Sr60), WTK3 (Pm24), and WTK4-protect against devastating fungal diseases. Moreover, a large diversity and numerous putative TKPs exist across the plant kingdom. This review explores our current knowledge of TKPs and serves as a basis for future studies that aim to develop and exploit a deeper understanding of innate plant immunity receptor proteins.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Valentyna Klymiuk
- Crop Development Centre and Department of Plant Sciences,
University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Gitta Coaker
- Department of Plant Pathology, University of California,
Davis, CA, U.S.A
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, 199 Abba-Hushi
Avenue, Mt. Carmel, 3498838 Haifa, Israel
- Department of Evolutionary and Environmental Biology,
University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838 Haifa, Israel
| | - Curtis J. Pozniak
- Crop Development Centre and Department of Plant Sciences,
University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
13
|
Nie J, Wang H, Zhang W, Teng X, Yu C, Cai R, Wu G. Characterization of lncRNAs and mRNAs Involved in Powdery Mildew Resistance in Cucumber. PHYTOPATHOLOGY 2021; 111:1613-1624. [PMID: 33522835 DOI: 10.1094/phyto-11-20-0521-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Powdery mildew (PM) is a severe fungal disease of cucumber worldwide. Identification of genetic factors resistant to PM is of great importance for marker-assisted breeding to ensure cucumber production. Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have been shown to play important roles in plant development and immunity; however, whether they have a role in PM response in cucurbit crops remains unknown. We performed strand-specific RNA sequencing and miRNA sequencing using RNA from cucumber leaves of two near-isogenic lines (NILs), S1003 and NIL (Pm5.1) infected with PM, and systematically characterized the profiles of cucumber lncRNAs and messenger RNA (mRNAs) responsive to PM. In total, we identified 12,903 lncRNAs and 25,598 mRNAs responsive to PM. Differential expression (DE) analysis showed that 119 lncRNAs and 136 mRNAs correlated with PM resistance. Functional analysis of these DE lncRNAs and DE mRNAs revealed that they are significantly associated with phenylpropanoid biosynthesis, phenylalanine metabolism, ubiquinone and other terpenoid-quinone biosynthesis, and endocytosis. Particularly, two lncRNAs, LNC_006805 and LNC_012667, might play important roles in PM resistance. In addition, we also predicted mature miRNAs and competing endogenous RNA (ceRNA) networks of lncRNA-miRNA-mRNA involved in PM resistance. A total of 49 DE lncRNAs could potentially act as target mimics for 106 miRNAs. Taken together, our results provide an abundant resource for further exploration of cucumber lncRNAs, mRNAs, miRNAs, and ceRNAs in PM resistance, and will facilitate the molecular breeding for PM-resistant varieties to control this severe disease in cucumber.
Collapse
Affiliation(s)
- Jingtao Nie
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Huasen Wang
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wanlu Zhang
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xue Teng
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Chao Yu
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Wu
- The Laboratory of Plant Molecular and Developmental Biology, College of Agriculture and Food Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
14
|
Wang Y, Qi C, Luo Y, Zhang F, Dai Z, Li M, Qu S. Identification and mapping of CpPM10.1, a major gene involved in powdery mildew (race 2 France of Podosphaera xanthii) resistance in zucchini (Cucurbita pepo L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2531-2545. [PMID: 33914112 DOI: 10.1007/s00122-021-03840-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Powdery mildew resistance in zucchini is controlled by one major dominant locus, CpPM10.1. CpPM10.1 was fine mapped. The expression of candidate gene Cp4.1LG10g02780 in resistant individuals was significantly upregulated after inoculation with the powdery mildew. Powdery mildew (PM) is one of the most destructive fungal diseases, reducing the productivity of Cucurbita crops globally. PM influences the photosynthesis, growth and development of infected zucchini and seriously reduces fruit yield and quality. In the present study, the zucchini inbred line 'X10' had highly stable PM resistance, and the inbred line 'Jin234' was highly susceptible to PM in the seedling stage and adult stages. Genetic analysis revealed that PM resistance in 'X10' is controlled by one major dominant locus. Based on the strategy of QTL-seq combined with linkage analysis and developed molecular markers, the major locus was found to be located in a 382.9-kb candidate region on chromosome 10; therefore, the major locus was named CpPM10.1. Using 1,400 F2 individuals derived from a cross between 'X10' and 'JIN234' and F2:3 offspring of the recombinants, the CpPM10.1 locus was defined in a region of approximately 20.9 kb that contained 5 coding genes. Among them, Cp4.1LG10g02780 contained a conserved domain (RPW8), which controls resistance to a broad range of PM pathogens. Cp4.1LG10g02780 also had nonsynonymous SNPs between the resistant 'X10' and susceptible 'Jin234.' Furthermore, the expression of Cp4.1LG10g02780 was strongly positively involved in PM resistance in the key period of inoculation. Further allelic diversity analysis in zucchini germplasm resources indicated that PM resistance was associated with two SNPs in the Cp4.1LG10g02780 RPW8 domain. This study not only provides highly stable PM resistance gene resources for cucurbit crops but also lays the foundation for the functional analysis of PM resistance and resistance breeding in zucchini.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Cong Qi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yusong Luo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Feng Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Zuyun Dai
- Anhui Jianghuai Horticulture Seeds Corporation Limited, Hefei, 230031, China
| | - Man Li
- Anhui Jianghuai Horticulture Seeds Corporation Limited, Hefei, 230031, China
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
15
|
Genome-Wide Identification and Characterization of Cysteine-Rich Receptor-Like Protein Kinase Genes in Tomato and Their Expression Profile in Response to Heat Stress. DIVERSITY 2021. [DOI: 10.3390/d13060258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During plant growth, development and stress adaption, receptor-like protein kinases (RLKs) are essential components in perceiving and integrating extracellular stimuli and transmitting the signals to activate the downstream signaling pathways. Cysteine-rich receptor-like protein kinases (CRKs) are a large subfamily of RLKs and their roles in modulating plant disease resistance are well elucidated. However, the roles of CRKs in plant abiotic stress responses, especially heat stress, are largely unknown. In this study, 35 SlCRK genes were identified in tomato (Solanum lycopersicum) based on the multiple sequence alignment and phylogenetic relationships. SlCRK genes are tandemly distributed on seven chromosomes and have similar exon–intron organization and common conserved motifs. Various phytohormone responsive, stress responsive cis-regulatory elements and heat shock elements are predicted in the promoter regions of SlCRK genes. Transcriptome analysis of tomato fruits under heat stress revealed that most SlCRK genes were downregulated upon heat treatment. GO enrichment analyses of genes that were co-expressed with SlCRK members have identified various stress responses related and proteasomal protein catabolic process related genes, which may be involved in heat stress signaling. Overall, our results provide valuable information for further research on the roles of SlCRKs in response to abiotic stress, especially heat stress.
Collapse
|
16
|
Shimomura K, Sugiyama M, Kawazu Y, Yoshioka Y. Identification of quantitative trait loci for powdery mildew resistance in highly resistant cucumber ( Cucumis sativus L.) using ddRAD-seq analysis. BREEDING SCIENCE 2021; 71:326-333. [PMID: 34776739 PMCID: PMC8573554 DOI: 10.1270/jsbbs.20141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/08/2021] [Indexed: 06/13/2023]
Abstract
Powdery mildew, caused by Podosphaera xanthii (syn. Sphaerotheca fuliginea ex Fr. Poll.), is one of the most economically important foliar diseases in cucumber (Cucumis sativus L.). Cucumber parental line 'Kyuri Chukanbohon Nou 5 Go', developed from weedy cucumber line CS-PMR1, is highly resistant to powdery mildew and is promising breeding material. We performed quantitative trait locus (QTL) analysis using double-digest restriction-site-associated DNA sequencing (ddRAD-Seq) in a population from a cross between 'Kyuri Chukanbohon Nou 5 Go' and the Japanese native cultivar 'Kaga-aonaga-fushinari', which is susceptible to powdery mildew. The resistance of the population and its parents was evaluated using leaf disc assays and image analysis. We detected one major QTL on Chr. 5 that was effective at both 20°C and 25°C and one minor QTL on Chr. 1 effective at 20°C. We detected two additional QTLs in subpopulation: one on Chr. 3 effective at 20°C and one on Chr. 5 effective at both 20°C and 25°C in a position different from the major QTL. The resistance alleles at all four QTLs were contributed by 'Kyuri Chukanbohon Nou 5 Go'. The results of this study can be used to develop practical DNA markers tightly linked to genes for powdery mildew resistance.
Collapse
Affiliation(s)
- Koichiro Shimomura
- Institute of Vegetable and Floriculture Science (NIVFS), National Agriculture and Food Research Organization (NARO), Kusawa 360, Ano, Tsu, Mie 514-2392, Japan
| | - Mitsuhiro Sugiyama
- Institute of Vegetable and Floriculture Science (NIVFS), National Agriculture and Food Research Organization (NARO), Kusawa 360, Ano, Tsu, Mie 514-2392, Japan
| | - Yoichi Kawazu
- Institute of Vegetable and Floriculture Science (NIVFS), National Agriculture and Food Research Organization (NARO), Kusawa 360, Ano, Tsu, Mie 514-2392, Japan
| | - Yosuke Yoshioka
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
17
|
Li Y, Wang Y, Wu X, Wang J, Wu X, Wang B, Lu Z, Li G. Novel Genomic Regions of Fusarium Wilt Resistance in Bottle Gourd [ Lagenaria siceraria (Mol.) Standl.] Discovered in Genome-Wide Association Study. FRONTIERS IN PLANT SCIENCE 2021; 12:650157. [PMID: 34025697 PMCID: PMC8137845 DOI: 10.3389/fpls.2021.650157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Fusarium wilt (FW) is a typical soil-borne disease that seriously affects the yield and fruit quality of bottle gourd. Thus, to improve resistance to FW in bottle gourd, the genetic mechanism underlying FW resistance needs to be explored. In this study, we performed a genome-wide association study (GWAS) based on 5,330 single-nucleotide polymorphisms (SNPs) and 89 bottle gourd accessions. The GWAS results revealed a total of 10 SNPs (P ≤ 0.01, -log10 P ≥ 2.0) significantly associated with FW resistance that were detected in at least two environments (2019DI, 2020DI, and the average across the 2 years); these SNPs were located on chromosomes 1, 2, 3, 4, 8, and 9. Linkage disequilibrium (LD) block structure analysis predicted three potential candidate genes for FW resistance. Genes HG_GLEAN_10001030 and HG_GLEAN_10001042 were within the range of the mean LD block of the marker BGReSe_14202; gene HG_GLEAN_10011803 was 280 kb upstream of the marker BGReSe_00818. Real-time quantitative PCR (qRT-PCR) analysis showed that HG_GLEAN_10011803 was significantly up-regulated in FW-infected plants of YD-4, Yin-10, and Hanbi; HG_GLEAN_10001030 and HG_GLEAN_10001042 were specifically up-regulated in FW-infected plants of YD-4. Therefore, gene HG_GLEAN_10011803 is likely the major effect candidate gene for resistance against FW in bottle gourd. This work provides scientific evidence for the exploration of candidate gene and development of functional markers in FW-resistant bottle gourd breeding programs.
Collapse
|
18
|
Liu X, Gu X, Lu H, Liu P, Miao H, Bai Y, Zhang S. Identification of Novel Loci and Candidate Genes for Resistance to Powdery Mildew in a Resequenced Cucumber Germplasm. Genes (Basel) 2021; 12:genes12040584. [PMID: 33923788 PMCID: PMC8072792 DOI: 10.3390/genes12040584] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/04/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
Powdery mildew (PM) is one of the most serious diseases in cucumber and causes huge yield loss. Multiple quantitative trait loci (QTLs) for PM resistance have been reported in previous studies using a limited number of cucumber accessions. In this study, a cucumber core germplasm (CG) consisting of 94 resequenced lines was evaluated for PM resistance in four trials across three years (2013, 2014, and 2016). These trials were performed on adult plants in the field with natural infection. Using genome-wide association study (GWAS), 13 loci (pmG1.1, pmG1.2, pmG2.1, pmG2.2, pmG3.1, pmG4.1, pmG4.2, pmG5.1, pmG5.2, pmG5.3, pmG5.4, pmG6.1, and pmG6.2) associated with PM resistance were detected on all chromosomes except for Chr.7. Among these loci, ten were mapped to chromosomal intervals where QTLs had been reported in previous studies, while, three (pmG2.1, pmG3.1, and pmG4.1) were novel. The loci of pmG2.1, pmG5.2, pmG5.3 showed stronger signal in four trials. Based on the annotation of homologous genes in Arabidopsis and pairwise LD correlation analysis, candidate genes located in the QTL intervals were predicted. SNPs in these candidate genes were analyzed between haplotypes of highly resistant (HR) and susceptible (HS) CG lines, which were defined based on combing disease index data of all trials. Furthermore, candidate genes (Csa5G622830 and CsGy5G015660) reported in previous studies for PM resistance and cucumber orthologues of several PM susceptibility (S) genes (PMR5, PMR-6, and MLO) that are colocalized with certain QTLs, were analyzed for their potential contribution to the QTL effect on both PM and DM in the CG population. This study shows that the CG germplasm is a very valuable resource carrying known and novel QTLs for both PM and DM resistance, which can be exploited in cucumber breeding.
Collapse
Affiliation(s)
- Xiaoping Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.G.); (H.L.); (P.L.); (H.M.)
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.G.); (H.L.); (P.L.); (H.M.)
| | - Hongwei Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.G.); (H.L.); (P.L.); (H.M.)
| | - Panna Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.G.); (H.L.); (P.L.); (H.M.)
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.G.); (H.L.); (P.L.); (H.M.)
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Correspondence: (Y.B.); (S.Z.); Tel.: +86-10-82105952 (Y.B.); Fax: +86-10-62174123 (Y.B.)
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (X.G.); (H.L.); (P.L.); (H.M.)
- Correspondence: (Y.B.); (S.Z.); Tel.: +86-10-82105952 (Y.B.); Fax: +86-10-62174123 (Y.B.)
| |
Collapse
|
19
|
Zhang C, Badri Anarjan M, Win KT, Begum S, Lee S. QTL-seq analysis of powdery mildew resistance in a Korean cucumber inbred line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:435-451. [PMID: 33070226 DOI: 10.1007/s00122-020-03705-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
QTL mapping and RT-PCR analyses identified the CsGy5G015660 as a strong powdery mildew resistance candidate gene and natural variation of CsGy5G015660 allele was observed using 115 core germplasm. Powdery mildew (PM) is among the most serious fungal diseases encountered in the cultivation of cucurbits. The development of PM-resistant inbred lines is thus of considerable significance for cucumber breeding programs. In this study, we applied bulked segregant analysis combined with QTL-seq to identify PM resistance loci using F2 population derived from a cross between two Korean cucumber inbred lines, PM-R (resistant) and PM-S (susceptible). Genome-wide SNP profiling using bulks of the two extreme phenotypes identified two QTLs on chromosomes 5 and 6, designated pm5.2 and pm6.1, respectively. The two PM resistance loci were validated using molecular marker-based classical QTL analysis: pm5.2 (30% R2 at LOD 11) and pm6.1 (11% R2 at LOD 3.2). Furthermore, reverse transcriptase-PCR analyses, using genes found to be polymorphic between PM-R and PM-S, were conducted to identify the candidate gene(s) responsible for PM resistance. We found that transcripts of the gene CsGy5G015660, encoding a putative leucine-rich repeat receptor-like serine/threonine-protein kinase (RPK2), showed specific accumulation in PM-R prior to the appearance of disease symptoms, and was accordingly considered a strong candidate gene for PM resistance. In addition, cleaved amplified polymorphic sequence markers from CsGy5G015660 were developed and used to screen 35 inbred lines. Natural variation in the CsGy5G015660 allele was also observed based on analysis of a core collection of 115 cucumber accessions. Our results provide new genetic insights for gaining a better understanding of the genetic basis of PM resistance in cucumber, and pave the way for further utilization in cucumber PM resistance breeding programs.
Collapse
Affiliation(s)
- Chunying Zhang
- Plant Genomics Laboratory, Department of Bio-Resource Engineering, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea
- Department of Integrated Bioindustry, Graduate School of Hanseo University, 46 hanseo 1-ro, Haemi-myun, Seosan-si, Chungcheongnam-do, 31962, Republic of Korea
| | - Mahdi Badri Anarjan
- Plant Genomics Laboratory, Department of Bio-Resource Engineering, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea
| | - Khin Thanda Win
- Plant Genomics Laboratory, Department of Bio-Resource Engineering, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea
| | - Shahida Begum
- Plant Genomics Laboratory, Department of Bio-Resource Engineering, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea
| | - Sanghyeob Lee
- Plant Genomics Laboratory, Department of Bio-Resource Engineering, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea.
- Plant Engineering Research Institute, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 05006, Republic of Korea.
| |
Collapse
|
20
|
Saintenac C, Cambon F, Aouini L, Verstappen E, Ghaffary SMT, Poucet T, Marande W, Berges H, Xu S, Jaouannet M, Favery B, Alassimone J, Sánchez-Vallet A, Faris J, Kema G, Robert O, Langin T. A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch. Nat Commun 2021; 12:433. [PMID: 33469010 PMCID: PMC7815785 DOI: 10.1038/s41467-020-20685-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
The poverty of disease resistance gene reservoirs limits the breeding of crops for durable resistance against evolutionary dynamic pathogens. Zymoseptoria tritici which causes Septoria tritici blotch (STB), represents one of the most genetically diverse and devastating wheat pathogens worldwide. No fully virulent Z. tritici isolates against synthetic wheats carrying the major resistant gene Stb16q have been identified. Here, we use comparative genomics, mutagenesis and complementation to identify Stb16q, which confers broad-spectrum resistance against Z. tritici. The Stb16q gene encodes a plasma membrane cysteine-rich receptor-like kinase that was recently introduced into cultivated wheat and which considerably slows penetration and intercellular growth of the pathogen.
Collapse
Affiliation(s)
- Cyrille Saintenac
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France
| | - Florence Cambon
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France
| | - Lamia Aouini
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands ,grid.169077.e0000 0004 1937 2197Present Address: Department of Agronomy, Purdue University, West Lafayette, IN 47907 USA
| | - Els Verstappen
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands
| | - Seyed Mahmoud Tabib Ghaffary
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands ,Present Address: Seed and Plant Improvement Research Department, Safiabad Agricultural and Natural Resources Research and Education Center, AREEO, Dezful, Iran
| | - Théo Poucet
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France ,grid.11480.3c0000000121671098Present Address: Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain ,grid.412041.20000 0001 2106 639XPresent Address: Université de Bordeaux, 146 rue Leo-Saignat, Bordeaux, Cedex 33076 France
| | - William Marande
- grid.507621.7CNRGV (Centre National des Ressources Génomiques Végétales), INRAE, UPR 1258 Castanet-Tolosan, France
| | - Hélène Berges
- grid.507621.7CNRGV (Centre National des Ressources Génomiques Végétales), INRAE, UPR 1258 Castanet-Tolosan, France ,grid.508749.7Present Address: Inari Agriculture, One Kendall Square Building 600/700, Cambridge, MA 02139 USA
| | - Steven Xu
- grid.463419.d0000 0001 0946 3608United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102 USA
| | - Maëlle Jaouannet
- grid.4444.00000 0001 2112 9282INRAE, Université Côte d’Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| | - Bruno Favery
- grid.4444.00000 0001 2112 9282INRAE, Université Côte d’Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| | - Julien Alassimone
- grid.5801.c0000 0001 2156 2780Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Andrea Sánchez-Vallet
- grid.5801.c0000 0001 2156 2780Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland ,grid.5690.a0000 0001 2151 2978Present Address: Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus de Montegancedo-UPM, 28223-Pozuelo de Alarcón Madrid, Spain
| | - Justin Faris
- grid.463419.d0000 0001 0946 3608United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102 USA
| | - Gert Kema
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands ,grid.4818.50000 0001 0791 5666Present Address: Wageningen University (Laboratory of Phytopathology), 6700AA Wageningen, The Netherlands
| | - Oliver Robert
- Florimond-Desprez, 3 rue Florimond-Desprez, BP 41, 59242 Cappelle-en-Pevele, France
| | - Thierry Langin
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France
| |
Collapse
|
21
|
Zhang P, Zhu Y, Zhou S. Comparative analysis of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L.) varieties to reveal the metabolic responses to Sphaerotheca fuliginea infection. BMC PLANT BIOLOGY 2021; 21:24. [PMID: 33413112 PMCID: PMC7791650 DOI: 10.1186/s12870-020-02797-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/14/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Cucumber (Cucumis sativus L.) is a widely planted vegetable crop that suffers from various pathogen infections. Powdery mildew (PM) is typical disease caused by Sphaerotheca fuliginea infection and destroys the production of cucumber. However, the metabolic responses to S. fuliginea infection are largely unknown. RESULTS In our study, a PM resistant variety 'BK2' and a susceptible variety 'H136' were used to screen differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs) under S. fuliginea infection. Most of DEGs and DAMs were enriched in several primary and secondary metabolic pathways, including flavonoid, hormone, fatty acid and diterpenoid metabolisms. Our data showed that many flavonoid-related metabolites were significantly accumulated in BK2 rather than H136, suggesting an essential role of flavonoids in formation of resistant quality. Changes in expression of CYP73A, CYP81E1, CHS, F3H, HCT and F3'M genes provided a probable explanation for the differential accumulation of flavonoid-related metabolites. Interestingly, more hormone-related DEGs were detected in BK2 compared to H136, suggesting a violent response of hormone signaling pathways in the PM-resistant variety. The number of fatty acid metabolism-related DAMs in H136 was larger than that in BK2, indicating an active fatty acid metabolism in the PM-susceptible variety. CONCLUSIONS Many differentially expressed transcription factor genes were identified under S. fuliginea infection, providing some potential regulators for the improvement of PM resistance. PM resistance of cucumber was controlled by a complex network consisting of various hormonal and metabolic pathways.
Collapse
Affiliation(s)
- Peng Zhang
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Yuqiang Zhu
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| | - Shengjun Zhou
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, China
| |
Collapse
|
22
|
Feng S, Zhang J, Mu Z, Wang Y, Wen C, Wu T, Yu C, Li Z, Wang H. Recent progress on the molecular breeding of Cucumis sativus L. in China. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1777-1790. [PMID: 31754760 DOI: 10.1007/s00122-019-03484-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Molecular breeding of Cucumis sativus L. is based on traditional breeding techniques and modern biological breeding in China. There are opportunities for further breeding improvement by molecular design breeding and the automation of phenotyping technology using untapped sources of genetic diversity. Cucumber (Cucumis sativus L.) is an important vegetable cultivated worldwide. It bears fruits of light fragrance, and crisp texture with high nutrition. China is the largest producer and consumer of cucumber, accounting for 70% of the world's total production. With increasing consumption demand, the production of Cucurbitaceae crops has been increasing yearly. Thus, new cultivars that can produce high-quality cucumber with high yield and easy cultivation are in need. Conventional genetic breeding has played an essential role in cucumber cultivar innovation over the past decades. However, its progress is slow due to the long breeding period, and difficulty in selecting stable genetic characters or genotypes, prompting researchers to apply molecular biotechnologies in cucumber breeding. Here, we first summarize the achievements of conventional cucumber breeding such as crossing and mutagenesis, and then focus on the current status of molecular breeding of cucumber in China, including the progress and achievements on cucumber genomics, molecular mechanism underlying important agronomic traits, and also on the creation of high-quality multi-resistant germplasm resources, new variety breeding and ecological breeding. Future development trends and prospects of cucumber molecular breeding in China are also discussed.
Collapse
Affiliation(s)
- Shengjun Feng
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Juping Zhang
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zihan Mu
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yuji Wang
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, 100097, China
| | - Tao Wu
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
| | - Chao Yu
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Huasen Wang
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
23
|
Xu X, Zhong C, Tan M, Song Y, Qi X, Xu Q, Chen X. Identification of MicroRNAs and Their Targets That Respond to Powdery Mildew Infection in Cucumber by Small RNA and Degradome Sequencing. Front Genet 2020; 11:246. [PMID: 32273882 PMCID: PMC7113371 DOI: 10.3389/fgene.2020.00246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/02/2020] [Indexed: 01/04/2023] Open
Abstract
Powdery mildew (PM) is a prevalent disease known to limit cucumber production worldwide. MicroRNAs (miRNAs) are single-stranded molecules that regulate host defense responses through posttranscriptional gene regulation. However, which specific miRNAs are involved and how they regulate cucumber PM resistance remain elusive. A PM-resistant single-segment substitution line, SSSL508-28, was developed previously using marker-assisted backcrossing of the PM-susceptible cucumber inbred D8 line. In this study, we applied small RNA and degradome sequencing to identify PM-responsive miRNAs and their target genes in the D8 and SSSL508-28 lines. The deep sequencing resulted in the identification of 156 known and 147 novel miRNAs. Among them, 32 and six differentially expressed miRNAs (DEMs) were detected in D8 and SSSL508-28, respectively. The positive correlation between DEMs measured by small RNA sequencing and stem-loop quantitative real-time reverse transcription-polymerase chain reaction confirmed the accuracy of the observed miRNA abundances. The 32 DEMs identified in the PM-susceptible D8 were all upregulated, whereas four of the six DEMs identified in the PM-resistant SSSL508-28 were downregulated. Using in silico and degradome sequencing approaches, 517 and 20 target genes were predicted for the D8 and SSSL508-28 DEMs, respectively. Comparison of the DEM expression profiles with the corresponding mRNA expression profiles obtained in a previous study with the same experimental design identified 60 and three target genes in D8 and SSSL508-28, respectively, which exhibited inverse expression patterns with their respective miRNAs. In particular, five DEMs were located in the substituted segment that contained two upregulated DEMs, Csa-miR172c-3p and Csa-miR395a-3p, in D8 and two downregulated DEMs, Csa-miR395d-3p and Csa-miR398b-3p, in SSSL508-28. One gene encoding L-aspartate oxidase, which was targeted by Csa-miR162a, was also located on the same segment and was specifically downregulated in PM-inoculated D8 leaves. Our results will facilitate the future use of miRNAs in breeding cucumber varieties with enhanced resistance to PM.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Cailian Zhong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Min Tan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Ya Song
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiaohua Qi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qiang Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, China
| |
Collapse
|
24
|
Wang Y, Bo K, Gu X, Pan J, Li Y, Chen J, Wen C, Ren Z, Ren H, Chen X, Grumet R, Weng Y. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. HORTICULTURE RESEARCH 2020; 7:3. [PMID: 31908806 PMCID: PMC6938495 DOI: 10.1038/s41438-019-0226-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/05/2019] [Accepted: 11/08/2019] [Indexed: 05/06/2023]
Abstract
Cucumber, Cucumis sativus L. (2n = 2x = 14), is an important vegetable crop worldwide. It was the first specialty crop with a publicly available draft genome. Its relatively small, diploid genome, short life cycle, and self-compatible mating system offers advantages for genetic studies. In recent years, significant progress has been made in molecular mapping, and identification of genes and QTL responsible for key phenotypic traits, but a systematic review of the work is lacking. Here, we conducted an extensive literature review on mutants, genes and QTL that have been molecularly mapped or characterized in cucumber. We documented 81 simply inherited trait genes or major-effect QTL that have been cloned or fine mapped. For each gene, detailed information was compiled including chromosome locations, allelic variants and associated polymorphisms, predicted functions, and diagnostic markers that could be used for marker-assisted selection in cucumber breeding. We also documented 322 QTL for 42 quantitative traits, including 109 for disease resistances against seven pathogens. By alignment of these QTL on the latest version of cucumber draft genomes, consensus QTL across multiple studies were inferred, which provided insights into heritable correlations among different traits. Through collaborative efforts among public and private cucumber researchers, we identified 130 quantitative traits and developed a set of recommendations for QTL nomenclature in cucumber. This is the first attempt to systematically summarize, analyze and inventory cucumber mutants, cloned or mapped genes and QTL, which should be a useful resource for the cucurbit research community.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Horticulture, University of Wisconsin, Madison, WI 53706 USA
| | - Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Junsong Pan
- Department of Plant Sciences, Shanghai Jiaotong University, Shanghai, 200240 China
| | - Yuhong Li
- Horticulture College, Northwest A&F University, Yangling, 712100 China
| | - Jinfeng Chen
- Horticulture College, Nanjing Agricultural University, Nanjing, 210095 China
| | - Changlong Wen
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097 China
| | - Zhonghai Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 China
| | - Huazhong Ren
- College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Xuehao Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin, Madison, WI 53706 USA
- USDA-ARS Vegetable Crops Research Unit, 1575 Linden Dr., Madison, WI 53706 USA
| |
Collapse
|
25
|
Liu B, Guan D, Zhai X, Yang S, Xue S, Chen S, Huang J, Ren H, Liu X. Selection footprints reflect genomic changes associated with breeding efforts in 56 cucumber inbred lines. HORTICULTURE RESEARCH 2019; 6:127. [PMID: 31754434 PMCID: PMC6856066 DOI: 10.1038/s41438-019-0209-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/01/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Cucumber selective breeding over recent decades has dramatically increased productivity and quality, but the genomic characterizations and changes associated with this breeding history remain unclear. Here, we analyzed the genome resequencing data of 56 artificially selected cucumber inbred lines that exhibit various phenotypes to detect trait-associated sequence variations that reflect breeding improvement. We found that the 56 cucumber lines could be assigned to group 1 and group 2, and the two groups formed a distinctive genetic structure due to the breeding history involving hybridization and selection. Differentially selected regions were identified between group 1 and group 2, with implications for genomic-selection breeding signatures. These regions included known quantitative trait loci or genes that were reported to be associated with agronomic traits. Our results advance knowledge of cucumber genomics, and the 56 selected inbred lines could be good germplasm resources for breeding.
Collapse
Affiliation(s)
- Bin Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
| | - Xuling Zhai
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Sen Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Shudan Xue
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Shuying Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Jing Huang
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN 47907 USA
| | - Huazhong Ren
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Xingwang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| |
Collapse
|
26
|
Zheng X, Yang J, Lou T, Zhang J, Yu W, Wen C. Transcriptome Profile Analysis Reveals that CsTCP14 Induces Susceptibility to Foliage Diseases in Cucumber. Int J Mol Sci 2019; 20:E2582. [PMID: 31130701 PMCID: PMC6567058 DOI: 10.3390/ijms20102582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 11/16/2022] Open
Abstract
Foliage diseases are prevalent in cucumber production and cause serious yield reduction across the world. Identifying resistance or susceptible genes under foliage-disease stress is essential for breeding resistant varieties, of which leaf-specific expressed susceptible genes are extremely important but rarely studied in crops. This study performed an in-depth mining of public transcriptome data both in different cucumber tissues and under downy mildew (DM) inoculation, and found that the expression of leaf-specific expressed transcription factor CsTCP14 was significantly increased after treatment with DM, as well as being upregulated under stress from another foliage disease, watermelon mosaic virus (WMV), in susceptible cucumbers. Furthermore, the Pearson correlation analysis identified genome-wide co-expressed defense genes with CsTCP14. A potential target CsNBS-LRR gene, Csa6M344280.1, was obtained as obviously reduced and was negatively correlated with the expression of the susceptible gene CsTCP14. Moreover, the interaction experiments of electrophoretic mobility shift assay (EMSA) and yeast one-hybrid assay (Y1H) were successfully executed to prove that CsTCP14 could transcriptionally repress the expression of the CsNBS-LRR gene, Csa6M344280.1, which resulted in inducing susceptibility to foliage diseases in cucumber. As such, we constructed a draft model showing that the leaf-specific expressed gene CsTCP14 was negatively regulating the defense gene Csa6M344280.1 to induce susceptibility to foliage diseases in cucumber. Therefore, this study explored key susceptible genes in response to foliage diseases based on a comprehensive analysis of public transcriptome data and provided an opportunity to breed new varieties that can resist foliage diseases in cucumber, as well as in other crops.
Collapse
Affiliation(s)
- Xuyang Zheng
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing 100097, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), MOAR, Beijing 100097, China.
- Agricultural College, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Jingjing Yang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing 100097, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), MOAR, Beijing 100097, China.
| | - Tengxue Lou
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing 100097, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), MOAR, Beijing 100097, China.
| | - Jian Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing 100097, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), MOAR, Beijing 100097, China.
| | - Wenjin Yu
- Agricultural College, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing 100097, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), MOAR, Beijing 100097, China.
| |
Collapse
|
27
|
Xu X, Liu X, Yan Y, Wang W, Gebretsadik K, Qi X, Xu Q, Chen X. Comparative proteomic analysis of cucumber powdery mildew resistance between a single-segment substitution line and its recurrent parent. HORTICULTURE RESEARCH 2019; 6:115. [PMID: 31645969 PMCID: PMC6804742 DOI: 10.1038/s41438-019-0198-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/04/2019] [Accepted: 08/27/2019] [Indexed: 05/04/2023]
Abstract
Powdery mildew (PM) is considered a major cause of yield losses and reduced quality in cucumber worldwide, but the molecular basis of PM resistance remains poorly understood. A segment substitution line, namely, SSL508-28, was developed with dominant PM resistance in the genetic background of PM-susceptible cucumber inbred line D8. The substituted segment contains 860 genes. An iTRAQ-based comparative proteomic technology was used to map the proteomes of PM-inoculated and untreated (control) D8 and SSL508-28. The number of differentially regulated proteins (DRPs) in SSL508-28 was almost three times higher than that in D8. Fourteen DRPs were located in the substituted segment interval. Comparative gene expression analysis revealed that nodulin-related protein 1 (NRP1) may be a good candidate for PM resistance. Gene Ontology enrichment analysis showed that DRPs functioning in tetrapyrrole biosynthetic process, sulfur metabolic process and cell redox homeostasis were specifically enriched in the resistant line SSL508-28. DRPs categorized in the KEGG term photosynthesis increased in both lines upon PM infection, suggesting that the strategies used by cucumber may be different from those used by other crops to react to PM attacks at the initial stage. The measurement of hydrogen peroxide and superoxide anion production and net photosynthetic rate were consistent with the changes in protein abundance, suggesting that the proteomic results were reliable. There was a poor correlation between DRPs measured by iTRAQ and the corresponding gene expression changes measured by RNA-seq with the same experimental design. Taken together, these findings improve the understanding of the molecular mechanisms underlying the response of cucumber to PM infection.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, Jiangsu China
| | - Xueli Liu
- School of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, Jiangsu China
| | - Yali Yan
- School of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, Jiangsu China
| | - Wei Wang
- School of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, Jiangsu China
| | - Kiros Gebretsadik
- School of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, Jiangsu China
| | - Xiaohua Qi
- School of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, Jiangsu China
| | - Qiang Xu
- School of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, Jiangsu China
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, Jiangsu China
| |
Collapse
|
28
|
Dong J, Xu J, Xu X, Xu Q, Chen X. Inheritance and Quantitative Trait Locus Mapping of Fusarium Wilt Resistance in Cucumber. FRONTIERS IN PLANT SCIENCE 2019; 10:1425. [PMID: 31850001 PMCID: PMC6900741 DOI: 10.3389/fpls.2019.01425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/14/2019] [Indexed: 05/15/2023]
Abstract
Fusarium wilt (FW) is a very serious soil-borne disease worldwide, which usually results in huge yield losses in cucumber production. However, the inheritance and molecular mechanism of the response to FW are still unknown in cucumber (Cucumis sativus L.). In this study, two inbred cucumber lines Superina (P1) and Rijiecheng (P2) were used as the sensitive and resistant lines, respectively. A mixed major gene plus polygene inheritance model was used to analyze the resistance to FW in different generations of cucumber, namely, P1, P2, F1 (P1×P2), B1, and B2, obtained by backcrossing F1 plants with Superina (B1) or Rijiecheng (B2), and F2, obtained by self-crossing the F1 plants. After screening 18 genetic models, we chose the E-1 model, which included two pairs of additive-dominance-epistatic major genes and additive-dominance polygenes, as the optimal model for resistance to FW on the basis of fitness tests. The major effect quantitative trait locus (QTL) fw2.1 was detected in a 1.91-Mb-long region of chromosome 2 by bulked-segregant analysis. We used five insertion/deletion markers to fine-map the fw2.1 to a 0.60 Mb interval from 1,248,093 to 1,817,308 bp on chromosome 2 that contained 80 candidate genes. We also used the transcriptome data of Rijiecheng inoculated with Fusarium oxysporum f. sp. cucumerinum (Foc) to screen the candidate genes. Twelve differentially expressed genes were detected in fw2.1, and five of them were significantly induced by FW. The expression levels of the five genes were higher in FW-resistant Rijiecheng inoculated with Foc than in the control inoculated with water. Our results will contribute to a better understanding of the genetic basis of FW resistance in cucumber, which may help in breeding FW-resistant cucumber lines in the future.
Collapse
|
29
|
Zhang K, Wang X, Zhu W, Qin X, Xu J, Cheng C, Lou Q, Li J, Chen J. Complete resistance to powdery mildew and partial resistance to downy mildew in a Cucumis hystrix introgression line of cucumber were controlled by a co-localized locus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2229-2243. [PMID: 30078164 DOI: 10.1007/s00122-018-3150-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/23/2018] [Indexed: 05/16/2023]
Abstract
Key message A single recessive gene for complete resistance to powdery mildew and a major-effect QTL for partial resistance to downy mildew were co-localized in a Cucumis hystrix introgression line of cucumber. Downy mildew (DM) and powdery mildew (PM) are two major foliar diseases in cucumber. DM resistance (DMR) and PM resistance (PMR) may share common components; however, the genetic relationship between them remains unclear. IL52, a Cucumis hystrix introgression line of cucumber which has been reported to possess DMR, was recently identified to exhibit PMR as well. In this study, a single recessive gene pm for PMR was mapped to an approximately 468-kb region on chromosome 5 with 155 recombinant inbred lines (RILs) and 193 F2 plants derived from the cross between a susceptible line 'changchunmici' and IL52. Interestingly, pm was co-localized with the major-effect DMR QTL dm5.2 confirmed by combining linkage analysis and BSA-seq, which was consistent with the observed linkage of DMR and PMR in IL52. Further, phenotype-genotype correlation analysis of DMR and PMR in the RILs indicated that the co-localized locus pm/dm5.2 confers complete resistance to PM and partial resistance to DM. Seven candidate genes for DMR were identified within dm5.2 by BSA-seq analysis, of which Csa5M622800.1, Csa5M622830.1 and Csa5M623490.1 were also the same candidate genes for PMR. A single nucleotide polymorphism that is present in the 3' untranslated region (3'UTR) of Csa5M622830.1 co-segregated perfectly with PMR. The GATA transcriptional factor gene Csa5M622830.1 may be a likely candidate gene for DMR and PMR. This study has provided a clear evidence for the relationship between DMR and PMR in IL52 and sheds new light on the potential value of IL52 for cucumber DMR and PMR breeding program.
Collapse
Affiliation(s)
- Kaijing Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Xing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Wenwei Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Xiaodong Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Jian Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China.
| |
Collapse
|
30
|
Wu Y, Ma X, Pan Z, Kale SD, Song Y, King H, Zhang Q, Presley C, Deng X, Wei CI, Xiao S. Comparative genome analyses reveal sequence features reflecting distinct modes of host-adaptation between dicot and monocot powdery mildew. BMC Genomics 2018; 19:705. [PMID: 30253736 PMCID: PMC6156980 DOI: 10.1186/s12864-018-5069-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 09/11/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Powdery mildew (PM) is one of the most important and widespread plant diseases caused by biotrophic fungi. Notably, while monocot (grass) PM fungi exhibit high-level of host-specialization, many dicot PM fungi display a broad host range. To understand such distinct modes of host-adaptation, we sequenced the genomes of four dicot PM biotypes belonging to Golovinomyces cichoracearum or Oidium neolycopersici. RESULTS We compared genomes of the four dicot PM together with those of Blumeria graminis f.sp. hordei (both DH14 and RACE1 isolates), B. graminis f.sp. tritici, and Erysiphe necator infectious on barley, wheat and grapevine, respectively. We found that despite having a similar gene number (6620-6961), the PM genomes vary from 120 to 222 Mb in size. This high-level of genome size variation is indicative of highly differential transposon activities in the PM genomes. While the total number of genes in any given PM genome is only about half of that in the genomes of closely related ascomycete fungi, most (~ 93%) of the ascomycete core genes (ACGs) can be found in the PM genomes. Yet, 186 ACGs were found absent in at least two of the eight PM genomes, of which 35 are missing in some dicot PM biotypes, but present in the three monocot PM genomes, indicating remarkable, independent and perhaps ongoing gene loss in different PM lineages. Consistent with this, we found that only 4192 (3819 singleton) genes are shared by all the eight PM genomes, the remaining genes are lineage- or biotype-specific. Strikingly, whereas the three monocot PM genomes possess up to 661 genes encoding candidate secreted effector proteins (CSEPs) with families containing up to 38 members, all the five dicot PM fungi have only 116-175 genes encoding CSEPs with limited gene amplification. CONCLUSIONS Compared to monocot (grass) PM fungi, dicot PM fungi have a much smaller effectorome. This is consistent with their contrasting modes of host-adaption: while the monocot PM fungi show a high-level of host specialization, which may reflect an advanced host-pathogen arms race, the dicot PM fungi tend to practice polyphagy, which might have lessened selective pressure for escalating an with a particular host.
Collapse
Affiliation(s)
- Ying Wu
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
| | - Xianfeng Ma
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, 410128 China
| | - Zhiyong Pan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shiv D. Kale
- Biocomplexity Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - Yi Song
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Harlan King
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
| | - Qiong Zhang
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
| | - Christian Presley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Cheng-I Wei
- College of Agriculture & Natural Resources, University of Maryland, College Park, MD 20742 USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20850 USA
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
31
|
Xie Q, Liu P, Shi L, Miao H, Bo K, Wang Y, Gu X, Zhang S. Combined fine mapping, genetic diversity, and transcriptome profiling reveals that the auxin transporter gene ns plays an important role in cucumber fruit spine development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1239-1252. [PMID: 29492617 DOI: 10.1007/s00122-018-3074-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/16/2018] [Indexed: 05/24/2023]
Abstract
Map-based cloning was used to identify the ns gene, which was involved in the formation of cucumber numerous fruit spines together with other genes under regulation by plant hormone signal transduction. The cucumber (Cucumis sativus) fruit spine density has an important impact on the commercial value. However, little is known about the regulatory mechanism for the fruit spine formation. Here, we identified NUMEROUS SPINES (NS), which regulate fruit spine development by modulating the Auxin signaling pathway. We fine-mapped the ns using a 2513 F2 population derived from NCG122 (numerous fruit spines line) and NCG121 (few fruit spines line), and showed that NS encoded auxin transporter-like protein 3. Genetic diversity analysis of the NS gene in natural populations revealed that one SNP and one InDel in the coding region of ns are co-segregated with the fruit spine density. The NS protein sequence was highly conserved among plants, but its regulation of fruit spine development in cucumber seems to be a novel function. Transcriptome profiling indicated that the plant hormone signal transduction-related genes were highly enriched in the up-regulated genes in NCG122 versus NCG121. Moreover, expression pattern analysis of the auxin signal pathway-related genes in NCG122 versus NCG121 showed that upstream genes of the pathway (like ns candidate gene Csa2M264590) are down-regulated, while the downstream genes are up-regulated. Quantitative reverse transcription PCR confirmed the differential expression during the fruit spine development. Therefore, reduced expression of ns may promote the fruit spine formation. Our findings provide a valuable framework for dissecting the regulatory mechanism for the fruit spine development.
Collapse
Affiliation(s)
- Qing Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Panna Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixue Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ye Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
32
|
Xu Q, Xu X, Shi Y, Qi X, Chen X. Elucidation of the molecular responses of a cucumber segment substitution line carrying Pm5.1 and its recurrent parent triggered by powdery mildew by comparative transcriptome profiling. BMC Genomics 2017; 18:21. [PMID: 28056792 PMCID: PMC5217421 DOI: 10.1186/s12864-016-3438-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Powdery mildew (PM) is one of the most severe fungal diseases of cucurbits, but the molecular mechanisms underlying PM resistance in cucumber remain elusive. In this study, we developed a PM resistant segment substitution line SSL508-28 that carried a segment on chromosome five representing the Pm5.1 locus from PM resistant donor Jin5-508 using marker-assisted backcrossing of an elite PM susceptible cucumber inbred line D8. RESULTS Whole-genome resequencing of SSL508-28, Jin5-508 and D8 was performed to identify the exact boundaries of the breakpoints for this introgression because of the low density of available single sequence repeat markers. This led to the identification of a ~6.8 Mb substituted segment predicted to contain 856 genes. RNA-seq was used to study gene expression differences in PM treated (plants harvested 48 h after inoculation) and untreated (control) SSL508-28 and D8 lines. Exactly 1,248 and 1,325 differentially expressed genes (DEGs) were identified in SSL508-28 and D8, respectively. Of those, 88 DEGs were located in the ~6.8 Mb segment interval. Based on expression data and annotation, we identified 8 potential candidate genes that may participate in PM resistance afforded by Pm5.1, including two tandemly arrayed genes encoding receptor protein kinases, two transcription factors, two genes encoding remorin proteins, one gene encoding a P-type ATPase and one gene encoding a 70 kDa heat shock protein. The transcriptome data also revealed a complex regulatory network for Pm5.1-mediated PM resistance that may involve multiple signal regulators and transducers, cell wall modifications and the salicylic acid signaling pathway. CONCLUSION These findings shed light on the cucumber PM defense mechanisms mediated by Pm5.1 and provided valuable information for the fine mapping of Pm5.1 and breeding of cucumber with enhanced resistance to PM.
Collapse
Affiliation(s)
- Qiang Xu
- Department of horticulture, School of horticulture and plant protection, Yangzhou University, 48 east wenhui road, Yangzhou, Jiangsu 225009 China
| | - Xuewen Xu
- Department of horticulture, School of horticulture and plant protection, Yangzhou University, 48 east wenhui road, Yangzhou, Jiangsu 225009 China
| | - Yang Shi
- Department of horticulture, School of horticulture and plant protection, Yangzhou University, 48 east wenhui road, Yangzhou, Jiangsu 225009 China
| | - Xiaohua Qi
- Department of horticulture, School of horticulture and plant protection, Yangzhou University, 48 east wenhui road, Yangzhou, Jiangsu 225009 China
| | - Xuehao Chen
- Department of horticulture, School of horticulture and plant protection, Yangzhou University, 48 east wenhui road, Yangzhou, Jiangsu 225009 China
| |
Collapse
|
33
|
Xu X, Ji J, Xu Q, Qi X, Chen X. Inheritance and quantitative trail loci mapping of adventitious root numbers in cucumber seedlings under waterlogging conditions. Mol Genet Genomics 2016; 292:353-364. [PMID: 27988808 DOI: 10.1007/s00438-016-1280-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022]
Abstract
The hypocotyl-derived adventitious root (AR) is an important morphological acclimation to waterlogging stress; however, its genetic basis has not been adequately understood. In the present study, a mixed major gene plus polygene inheritance model was used to analyze AR numbers (ARN) 7 days after waterlogging treatment in six generations (P1, P2, F1, B1, B2, and F2), using cucumber waterlogging tolerant line Zaoer-N and sensitive Pepino as parents. The results showed that the genetic model D-4, mixed one negative dominance major gene and additive-dominance polygenes, is the best-fitting genetic model for waterlogging-triggered ARN phenotype. A genetic linkage map spanning 550.8 cM and consisting of 149 simple sequence repeat (SSR) markers segregating into seven linkage groups was constructed. Three QTLs (ARN3.1, ARN5.1, and ARN6.1) distributed on chromosomes 3, 5, and 6 were identified by composite interval mapping. The major-effect QTL, ARN6.1, located between SSR12898 and SSR04751, was the only locus detected in three seasons, with least likelihood (LOD) scores of 8.8, 10.4, and 9.5 and account for 17.6, 24, and 19.8% of the phenotypic variance, respectively. Using five additional single nucleotide polymorphism (SNP) makers, the ARN6.1 was narrowed down to a 0.79 Mb interval franked by SSR12898 and SNP25558853. Illumina RNA-sequencing data generated on hypocotyls of two parents 48 h after waterlogging treatment revealed 15 genes in the 0.79 Mb interval were differentially expressed, including Csa6G503880 encoding a salicylic acid methyl transferase-like protein, Csa6G504590 encoding a cytochrome P450 monooxygenase, and Csa6G505230 encoding a heavy metal-associated protein. Our findings shed light on the genetic architecture underlying adventitious rooting during waterlogging stress in cucumber, and provide a list of potential gene targets for further elucidating waterlogging tolerance in plants.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jing Ji
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Qiang Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xiaohua Qi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
34
|
Whole-Genome Resequencing of a Cucumber Chromosome Segment Substitution Line and Its Recurrent Parent to Identify Candidate Genes Governing Powdery Mildew Resistance. PLoS One 2016; 11:e0164469. [PMID: 27764118 PMCID: PMC5072683 DOI: 10.1371/journal.pone.0164469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
Cucumber is an economically important vegetable crop worldwide. Powdery mildew (PM) is one of the most severe diseases that can affect cucumber crops. There have been several research efforts to isolate PM resistance genes for breeding PM-resistant cucumber. In the present study, we used a chromosome segment substitution line, SSL508-28, which carried PM resistance genes from the donor parent, JIN5-508, through twelve generations of backcrossing with a PM-susceptible inbred line, D8. We performed whole-genome resequencing of SSL508-28 and D8 to identify single nucleotide polymorphisms (SNPs), and insertions and deletions (indels). When compared against the reference genome of the inbred cucumber line 9930, a total of 468,616 SNPs and 67,259 indels were identified in SSL508-28, and 537,352 SNPs and 91,698 indels were identified in D8. Of these, 3,014 non-synonymous SNPs and 226 frameshift indels in SSL508-28, and 3,104 non-synonymous SNPs and 251 frameshift indels in D8, were identified. Bioinformatics analysis of these variations revealed a total of 15,682 SNPs and 6,262 indels between SSL508-28 and D8, among which 120 non-synonymous SNPs and 30 frameshift indels in 94 genes were detected between SSL508-28 and D8. Finally, out of these 94 genes, five resistance genes with nucleotide-binding sites and leucine-rich repeat domains were selected for qRT-PCR analysis. This revealed an upregulation of two transcripts, Csa2M435460.1 and Csa5M579560.1, in SSL508-28. Furthermore, the results of qRT-PCR analysis of these two genes in ten PM resistant and ten PM susceptible cucumber lines showed that when exposed to PM, Csa2M435460.1 and Csa5M579560.1 exhibited a higher expression level of resistant lines than susceptible lines. This indicates that Csa2M435460.1 and Csa5M579560.1 are candidate genes for PM resistance in cucumber. In addition, the non-synonymous SNPs in Csa2M435460.1 and Csa5M579560.1, identified in SSL508-28 and D8, might be the key to high PM-resistance in SSL508-28.
Collapse
|
35
|
Yadav IS, Sharma A, Kaur S, Nahar N, Bhardwaj SC, Sharma TR, Chhuneja P. Comparative Temporal Transcriptome Profiling of Wheat near Isogenic Line Carrying Lr57 under Compatible and Incompatible Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:1943. [PMID: 28066494 PMCID: PMC5179980 DOI: 10.3389/fpls.2016.01943] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/07/2016] [Indexed: 05/08/2023]
Abstract
Leaf rust caused by Puccinia triticina (Pt) is one of the most important diseases of bread wheat globally. Recent advances in sequencing technologies have provided opportunities to analyse the complete transcriptomes of the host as well as pathogen for studying differential gene expression during infection. Pathogen induced differential gene expression was characterized in a near isogenic line carrying leaf rust resistance gene Lr57 and susceptible recipient genotype WL711. RNA samples were collected at five different time points 0, 12, 24, 48, and 72 h post inoculation (HPI) with Pt 77-5. A total of 3020 transcripts were differentially expressed with 1458 and 2692 transcripts in WL711 and WL711+Lr57, respectively. The highest number of differentially expressed transcripts was detected at 12 HPI. Functional categorization using Blast2GO classified the genes into biological processes, molecular function and cellular components. WL711+Lr57 showed much higher number of differentially expressed nucleotide binding and leucine rich repeat genes and expressed more protein kinases and pathogenesis related proteins such as chitinases, glucanases and other PR proteins as compared to susceptible genotype. Pathway annotation with KEGG categorized genes into 13 major classes with carbohydrate metabolism being the most prominent followed by amino acid, secondary metabolites, and nucleotide metabolism. Gene co-expression network analysis identified four and eight clusters of highly correlated genes in WL711 and WL711+Lr57, respectively. Comparative analysis of the differentially expressed transcripts led to the identification of some transcripts which were specifically expressed only in WL711+Lr57. It was apparent from the whole transcriptome sequencing that the resistance gene Lr57 directed the expression of different genes involved in building the resistance response in the host to combat invading pathogen. The RNAseq data and differentially expressed transcripts identified in present study is a genomic resource which can be used for further studying the host pathogen interaction for Lr57 and wheat transcriptome in general.
Collapse
Affiliation(s)
- Inderjit S. Yadav
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhiana, India
| | - Amandeep Sharma
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhiana, India
| | - Natasha Nahar
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhiana, India
| | - Subhash C. Bhardwaj
- Regional Research Station, Indian Institute of Wheat and Barley ResearchFlowerdale, Shimla
| | - Tilak R. Sharma
- National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhiana, India
- *Correspondence: Parveen Chhuneja
| |
Collapse
|