1
|
Clare SJ, Alhashel AF, Li M, Effertz KM, Poudel RS, Zhang J, Brueggeman RS. High resolution mapping of a novel non-transgressive hybrid susceptibility locus in barley exploited by P. teres f. maculata. BMC PLANT BIOLOGY 2024; 24:622. [PMID: 38951756 PMCID: PMC11218204 DOI: 10.1186/s12870-024-05303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
Hybrid genotypes can provide significant yield gains over conventional inbred varieties due to heterosis or hybrid vigor. However, hybrids can also display unintended negative attributes or phenotypes such as extreme pathogen susceptibility. The necrotrophic pathogen Pyrenophora teres f. maculata (Ptm) causes spot form net blotch, which has caused significant yield losses to barley worldwide. Here, we report on a non-transgressive hybrid susceptibility locus in barley identified between the three parental lines CI5791, Tifang and Golden Promise that are resistant to Ptm isolate 13IM.3. However, F2 progeny from CI5791 × Tifang and CI5791 × Golden Promise crosses exhibited extreme susceptibility. The susceptible phenotype segregated in a ratio of 1 resistant:1 susceptible representing a genetic segregation ratio of 1 parental (res):2 heterozygous (sus):1 parental (res) suggesting a single hybrid susceptibility locus. Genetic mapping using a total of 715 CI5791 × Tifang F2 individuals (1430 recombinant gametes) and 149 targeted SNPs delimited the hybrid susceptibility locus designated Susceptibility to Pyrenophora teres 2 (Spt2) to an ~ 198 kb region on chromosome 5H of the Morex V3 reference assembly. This single locus was independently mapped with 83 CI5791 × Golden Promise F2 individuals (166 recombinant gametes) and 180 genome wide SNPs that colocalized to the same Spt2 locus. The CI5791 genome was sequenced using PacBio Continuous Long Read technology and comparative analysis between CI5791 and the publicly available Golden Promise genome assembly determined that the delimited region contained a single high confidence Spt2 candidate gene predicted to encode a pentatricopeptide repeat-containing protein.
Collapse
Affiliation(s)
- Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Abdullah F Alhashel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mengyuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Karl M Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Dewey Scientific, Pullman, WA, 99163, USA
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
- Syngenta Seed Inc, Durham, NC, 27709, USA
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
2
|
Richards JK, Li J, Koladia V, Wyatt NA, Rehman S, Brueggeman RS, Friesen TL. A Moroccan Pyrenophora teres f. teres Population Defeats Rpt5, the Broadly Effective Resistance on Barley Chromosome 6H. PHYTOPATHOLOGY 2024; 114:193-199. [PMID: 37386751 DOI: 10.1094/phyto-04-23-0117-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Net form net blotch (NFNB), caused by Pyrenophora teres f. teres, is an important barley disease. The centromeric region of barley chromosome 6H has often been associated with resistance or susceptibility to NFNB, including the broadly effective dominant resistance gene Rpt5 derived from barley line CIho 5791. We characterized a population of Moroccan P. teres f. teres isolates that had overcome Rpt5 resistance and identified quantitative trait loci (QTL) that were effective against these isolates. Eight Moroccan P. teres f. teres isolates were phenotyped on barley lines CIho 5791 and Tifang. Six isolates were virulent on CIho 5791, and two were avirulent. A CIho 5791 × Tifang recombinant inbred line (RIL) population was phenotyped with all eight isolates and confirmed the defeat of the 6H resistance locus formerly mapped as Rpt5 in barley line CI9819. A major QTL on chromosome 3H with the resistance allele derived from Tifang, as well as minor QTL, was identified and provided resistance against these isolates. F2 segregation ratios supported dominant inheritance for both the 3H and 6H resistance. Furthermore, inoculation of progeny isolates derived from a cross of P. teres f. teres isolates 0-1 (virulent on Tifang/avirulent on CIho 5791) and MorSM 40-3 (avirulent on Tifang/virulent on CIho 5791) onto the RIL and F2 populations determined that recombination between isolates can generate novel genotypes that overcome both resistance genes. Markers linked to the QTL identified in this study can be used to incorporate both resistance loci into elite barley cultivars for durable resistance.
Collapse
Affiliation(s)
- Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Jinling Li
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Vaidehi Koladia
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Nathan A Wyatt
- Cereal Crops Research Unit, Edward T. Schaffer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco 10010
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, U.S.A
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
- Cereal Crops Research Unit, Edward T. Schaffer Agricultural Research Center, USDA-ARS, Fargo, ND 58102, U.S.A
| |
Collapse
|
3
|
Clare SJ, Çelik Oğuz A, Effertz K, Sharma Poudel R, See D, Karakaya A, Brueggeman RS. Genome-wide association mapping of Pyrenophora teres f. maculata and Pyrenophora teres f. teres resistance loci utilizing natural Turkish wild and landrace barley populations. G3 GENES|GENOMES|GENETICS 2021; 11:6332006. [PMID: 34849783 PMCID: PMC8527468 DOI: 10.1093/g3journal/jkab269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 11/15/2022]
Abstract
Unimproved landraces and wild relatives of crops are sources of genetic diversity that
were lost post domestication in modern breeding programs. To tap into this rich resource,
genome-wide association studies in large plant genomes have enabled the rapid genetic
characterization of desired traits from natural landrace and wild populations. Wild barley
(Hordeum spontaneum), the progenitor of domesticated barley
(Hordeum vulgare), is dispersed across Asia and North Africa, and has
co-evolved with the ascomycetous fungal pathogens Pyrenophora teres f.
teres and P. teres f. maculata, the
causal agents of the diseases net form of net blotch and spot form of net blotch,
respectively. Thus, these wild and local adapted barley landraces from the region of
origin of both the host and pathogen represent a diverse gene pool to identify new sources
of resistance, due to millions of years of co-evolution. The barley—P.
teres pathosystem is governed by complex genetic interactions with dominant,
recessive, and incomplete resistances and susceptibilities, with many isolate-specific
interactions. Here, we provide the first genome-wide association study of wild and
landrace barley from the Fertile Crescent for resistance to both forms of P.
teres. A total of 14 loci, four against P. teres f.
maculata and 10 against P. teres f.
teres, were identified in both wild and landrace populations, showing
that both are genetic reservoirs for novel sources of resistance. We also highlight the
importance of using multiple algorithms to both identify and validate additional loci.
Collapse
Affiliation(s)
- Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | - Arzu Çelik Oğuz
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, Ankara 06110, Turkey
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | | | - Deven See
- Wheat Health, Genetics and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99163, USA
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Aziz Karakaya
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, Ankara 06110, Turkey
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
4
|
Liu H, Sun Z, Zhang X, Qin L, Qi F, Wang Z, Du P, Xu J, Zhang Z, Han S, Li S, Gao M, Zhang L, Cheng Y, Zheng Z, Huang B, Dong W. QTL mapping of web blotch resistance in peanut by high-throughput genome-wide sequencing. BMC PLANT BIOLOGY 2020; 20:249. [PMID: 32493219 PMCID: PMC7268717 DOI: 10.1186/s12870-020-02455-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/21/2020] [Indexed: 06/08/2023]
Abstract
BACKGROUND Web blotch is one of the most important foliar diseases worldwide in peanut (Arachis hypogaea L.). The identification of quantitative trait loci (QTLs) for peanut web blotch resistance represents the basis for gene mining and the application of molecular breeding technologies. RESULTS In this study, a peanut recombinant inbred line (RIL) population was used to map QTLs for web blotch resistance based on high-throughput genome-wide sequencing. Frequency distributions of disease grade and disease index in five environments indicated wide phenotypic variations in response to web blotch among RILs. A high-density genetic map was constructed, containing 3634 bin markers distributed on 20 peanut linkage groups (LGs) with an average genetic distance of 0.5 cM. In total, eight QTLs were detected for peanut web blotch resistance in at least two environments, explaining from 2.8 to 15.1% of phenotypic variance. Two major QTLs qWBRA04 and qWBRA14 were detected in all five environments and were linked to 40 candidate genes encoding nucleotide-binding site leucine-rich repeat (NBS-LRR) or other proteins related to disease resistances. CONCLUSIONS The results of this study provide a basis for breeding peanut cultivars with web blotch resistance.
Collapse
Affiliation(s)
- Hua Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, PR China
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, 450002, PR China
| | - Ziqi Sun
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, 450002, PR China
| | - Xinyou Zhang
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, 450002, PR China.
| | - Li Qin
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, 450002, PR China
| | - Feiyan Qi
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, 450002, PR China
| | - Zhenyu Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, PR China
| | - Pei Du
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, 450002, PR China
| | - Jing Xu
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, 450002, PR China
| | - Zhongxin Zhang
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, 450002, PR China
| | - Suoyi Han
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, 450002, PR China
| | - Shaojian Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, PR China
| | - Meng Gao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, PR China
| | - Lina Zhang
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, 450002, PR China
| | - Yujie Cheng
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, 450002, PR China
| | - Zheng Zheng
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, 450002, PR China
| | - Bingyan Huang
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, 450002, PR China
| | - Wenzhao Dong
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Zhengzhou, 450002, PR China
| |
Collapse
|
5
|
Adhikari A, Steffenson BJ, Smith KP, Smith M, Dill-Macky R. Identification of quantitative trait loci for net form net blotch resistance in contemporary barley breeding germplasm from the USA using genome-wide association mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1019-1037. [PMID: 31900499 DOI: 10.1007/s00122-019-03528-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Association mapping study conducted in a population of 3490 elite barley breeding lines from ten barley breeding programs of the USA identified 12 QTLs for resistance/susceptibility to net form of net blotch. Breeding resistant varieties is the best management strategy for net form of net blotch (NFNB) in barley (Hordeum vulgare L.) caused by Pyrenophora teres f. teres (Ptt). Several resistance QTL have been previously identified in barley via linkage mapping and genome-wide association studies (GWAS). A GWAS conducted in a collection of advanced breeding lines (n = 3490) representing elite germplasm from ten barley breeding programs of the USA identified 42 unique marker-trait associations (MTA) for NFNB resistance. The lines were genotyped with 3072 SNP markers and phenotyped with four Ptt isolates in controlled environment. The lines were used to construct 13 different GWAS panels. Efficient mixed model association method with principal components and kinship was used for GWAS. Significance threshold for MTA was set at a false discovery rate of 0.05. Two, eight, six, one and 25 MTA were identified in chromosomes 1H, 3H, 4H, 5H and 6H, respectively. Based on genetic positions and linkage disequilibrium, these MTA's correspond to two, three, two, one and four QTLs in chromosome 1H, 3H, 4H, 5H and 6H, respectively. A comparison with previous linkage and GWAS studies revealed several previously identified and novel QTLs. Moreover, different genomic regions were found to be responsible for NFNB resistance in two-row versus six-row germplasm. The germplasm-specific SNP markers with additive effects and allelic distribution is reported to facilitate breeders in selection of markers for MAS to introgress novel net blotch resistance.
Collapse
Affiliation(s)
- Anil Adhikari
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA.
- Soil and Crop Science Department, Texas A&M University, College Station, TX, 77845, USA.
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Madeleine Smith
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
6
|
Clare SJ, Wyatt NA, Brueggeman RS, Friesen TL. Research advances in the Pyrenophora teres-barley interaction. MOLECULAR PLANT PATHOLOGY 2020; 21:272-288. [PMID: 31837102 PMCID: PMC6988421 DOI: 10.1111/mpp.12896] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pyrenophora teres f. teres and P. teres f. maculata are significant pathogens that cause net blotch of barley. An increased number of loci involved in P. teres resistance or susceptibility responses of barley as well as interacting P. teres virulence effector loci have recently been identified through biparental and association mapping studies of both the pathogen and host. Characterization of the resistance/susceptibility loci in the host and the interacting effector loci in the pathogen will provide a path for targeted gene validation for better-informed release of resistant barley cultivars. This review assembles concise consensus maps for all loci published for both the host and pathogen, providing a useful resource for the community to be used in pathogen characterization and barley breeding for resistance to both forms of P. teres.
Collapse
Affiliation(s)
- Shaun J. Clare
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
| | - Nathan A. Wyatt
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
| | - Robert S. Brueggeman
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
- Present address:
Department of Crop and Soil ScienceWashington State UniversityPullmanWA99164‐6420
| | - Timothy L. Friesen
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
- USDA‐ARS Cereal Crops Research UnitNorthern Crop Science LaboratoryEdward T. Schafer Agricultural Research Center1616 Albrecht Boulevard NFargoND58102‐2765USA
| |
Collapse
|
7
|
Novakazi F, Afanasenko O, Anisimova A, Platz GJ, Snowdon R, Kovaleva O, Zubkovich A, Ordon F. Genetic analysis of a worldwide barley collection for resistance to net form of net blotch disease (Pyrenophora teres f. teres). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2633-2650. [PMID: 31209538 DOI: 10.1007/s00122-019-03378-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/09/2019] [Indexed: 05/28/2023]
Abstract
A total of 449 barley accessions were phenotyped for Pyrenophora teres f. teres resistance at three locations and in greenhouse trials. Genome-wide association studies identified 254 marker-trait associations corresponding to 15 QTLs. Net form of net blotch is one of the most important diseases of barley and is present in all barley growing regions. Under optimal conditions, it causes high yield losses of 10-40% and reduces grain quality. The most cost-effective and environmentally friendly way to prevent losses is growing resistant cultivars, and markers linked to effective resistance factors can accelerate the breeding process. Here, 449 barley accessions expressing different levels of resistance comprising landraces and commercial cultivars from the centres of diversity were selected. The set was phenotyped for seedling resistance to three isolates in controlled-environment tests and for adult plant resistance at three field locations (Belarus, Germany and Australia) and genotyped with the 50 k iSelect chip. Genome-wide association studies using 33,818 markers and a compressed mixed linear model to account for population structure and kinship revealed 254 significant marker-trait associations corresponding to 15 distinct QTL regions. Four of these regions were new QTL that were not described in previous studies, while a total of seven regions influenced resistance in both seedlings and adult plants.
Collapse
Affiliation(s)
- Fluturë Novakazi
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Olga Afanasenko
- All-Russian Research Institute of Plant Protection, 196608 shosse Podbelski 3, Saint Petersburg, Russia
| | - Anna Anisimova
- All-Russian Research Institute of Plant Protection, 196608 shosse Podbelski 3, Saint Petersburg, Russia
| | - Gregory J Platz
- Queensland Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, 4370, Australia
| | - Rod Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Olga Kovaleva
- Federal Research Center the N. I. Vavilov All-Russian Institute of Plant Genetic Resources, 42-44, B. Morskaya Street, Saint Petersburg, Russia, 190000
| | - Alexandr Zubkovich
- Republican Unitary Enterprise, The Research and Practical Center of the National Academy of Sciences of Belarus for Arable Farming, Timiriazeva Street 1, 222160, Zhodino, Belarus
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Erwin Baur-Straße 27, 06484, Quedlinburg, Germany.
| |
Collapse
|
8
|
Monteagudo A, Casas AM, Cantalapiedra CP, Contreras-Moreira B, Gracia MP, Igartua E. Harnessing Novel Diversity From Landraces to Improve an Elite Barley Variety. FRONTIERS IN PLANT SCIENCE 2019; 10:434. [PMID: 31031782 PMCID: PMC6470277 DOI: 10.3389/fpls.2019.00434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/22/2019] [Indexed: 05/20/2023]
Abstract
The Spanish Barley Core Collection (SBCC) is a source of genetic variability of potential interest for breeding, particularly for adaptation to Mediterranean environments. Two backcross populations (BC2F5) were developed using the elite cultivar Cierzo as the recurrent parent. The donor parents, namely SBCC042 and SBCC073, were selected from the SBCC lines due to their outstanding yield in drought environments. Flowering time, yield and drought-related traits were evaluated in two field trials in Zaragoza (Spain) during the 2014-15 and 2015-16 seasons and validated in the 2017-18 season. Two hundred sixty-four lines of each population were genotyped with the Barley Illumina iSelect 50k SNP chip. Genetic maps for each population were generated. The map for SBCC042 × Cierzo contains 12,893 SNPs distributed in 9 linkage groups. The map for SBCC073 × Cierzo includes 12,026 SNPs in 7 linkage groups. Both populations shared two QTL hotspots. There are QTLs for flowering time, thousand-kernel weight (TKW), and hectoliter weight on a segment of 23 Mb at ~515 Mb on chromosome 1H, which encompasses the HvFT3 gene. In both populations, flowering was accelerated by the landrace allele, which also increased the TKW. In the same region, better soil coverage was contributed by SBCC042 but coincident with a lower hectoliter weight. The second large hotspot was on chromosome 6H and contained QTLs with wide intervals for grain yield, plant height and TKW. Landrace alleles contributed to increased plant height and TKW and reduced grain yield. Only SBCC042 contributed favorable alleles for "green area," with three significant QTLs that increased ground coverage after winter, which might be exploited as an adaptive trait of this landrace. Some genes of interest found in or very close to the peaks of the QTLs are highlighted. Strategies to deploy the QTLs found for breeding and pre-breeding are proposed.
Collapse
Affiliation(s)
| | - Ana M. Casas
- Aula Dei Experimental Station (EEAD-CSIC), Zaragoza, Spain
| | | | | | | | | |
Collapse
|