1
|
Desta KT, Choi YM, Yi J, Shin MJ, Jeon YA, Yoon H. Variations of Major Flavonoids, Nutritional Components, and Antioxidant Activities in Mung Beans ( Vigna radiate L.) of Different Seed Weights. Foods 2024; 13:3387. [PMID: 39517171 PMCID: PMC11545297 DOI: 10.3390/foods13213387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
This study examined the levels of major flavonoids, nutritional components, total secondary metabolite contents, and antioxidant activities in 136 mung bean accessions and statistically analyzed the effect of seed weight difference on each. Vitexin and isovitexin were detected in all the mung bean accessions, with isovitexin being in a higher concentration regardless of seed weight difference. The contents of total protein and total starch were in the ranges of 22.01-28.96 and 32.62-49.03 g/100 g, respectively. Five fatty acids were detected by GC-FID analysis in all mung bean accessions, with linoleic acid being the most dominant (37.96-50.71 g/100 g). Total saponin content (TSC), total phenol content (TPC), DPPH• scavenging activity, ABTS•+ scavenging activity, and ferric reducing antioxidant power (FRAP) showed more than five-fold differences. Analysis of variance supported by multivariate analysis demonstrated that seed weight difference had a significant effect on total starch, all individual fatty acids except for stearic acid and oleic acid, TSC, and all antioxidant activities except for ABTS•+ scavenging activity. On the other hand, vitexin, isovitexin, total protein, total phenol, and total fatty acid contents remained unaffected by seed weight difference. Overall, this study showed the diversity of key flavonoids, nutritional components, total secondary metabolite contents, and antioxidant activities in mung bean genetic materials. Moreover, the study unveiled how seed weight affects the analyzed parameters in mung beans for the first time. These findings could maximize the use of mung beans in food industries and breeding programs as well as lead to more studies in metabolomics and genomics.
Collapse
Affiliation(s)
- Kebede Taye Desta
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.T.D.); (Y.-M.C.); (J.Y.); (M.-J.S.); (Y.-a.J.)
- Department of Applied Chemistry, College of Natural and Computational Sciences, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.T.D.); (Y.-M.C.); (J.Y.); (M.-J.S.); (Y.-a.J.)
| | - Jungyoon Yi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.T.D.); (Y.-M.C.); (J.Y.); (M.-J.S.); (Y.-a.J.)
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.T.D.); (Y.-M.C.); (J.Y.); (M.-J.S.); (Y.-a.J.)
| | - Young-ah Jeon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.T.D.); (Y.-M.C.); (J.Y.); (M.-J.S.); (Y.-a.J.)
| | - Hyemyeong Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (K.T.D.); (Y.-M.C.); (J.Y.); (M.-J.S.); (Y.-a.J.)
| |
Collapse
|
2
|
Jha UC, Nayyar H, Thudi M, Beena R, Vara Prasad PV, Siddique KHM. Unlocking the nutritional potential of chickpea: strategies for biofortification and enhanced multinutrient quality. FRONTIERS IN PLANT SCIENCE 2024; 15:1391496. [PMID: 38911976 PMCID: PMC11190093 DOI: 10.3389/fpls.2024.1391496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024]
Abstract
Chickpea (Cicer arietinum L.) is a vital grain legume, offering an excellent balance of protein, carbohydrates, fats, fiber, essential micronutrients, and vitamins that can contribute to addressing the global population's increasing food and nutritional demands. Chickpea protein offers a balanced source of amino acids with high bioavailability. Moreover, due to its balanced nutrients and affordable price, chickpea is an excellent alternative to animal protein, offering a formidable tool for combating hidden hunger and malnutrition, particularly prevalent in low-income countries. This review examines chickpea's nutritional profile, encompassing protein, amino acids, carbohydrates, fatty acids, micronutrients, vitamins, antioxidant properties, and bioactive compounds of significance in health and pharmaceutical domains. Emphasis is placed on incorporating chickpeas into diets for their myriad health benefits and nutritional richness, aimed at enhancing human protein and micronutrient nutrition. We discuss advances in plant breeding and genomics that have facilitated the discovery of diverse genotypes and key genomic variants/regions/quantitative trait loci contributing to enhanced macro- and micronutrient contents and other quality parameters. Furthermore, we explore the potential of innovative breeding tools such as CRISPR/Cas9 in enhancing chickpea's nutritional profile. Envisioning chickpea as a nutritionally smart crop, we endeavor to safeguard food security, combat hunger and malnutrition, and promote dietary diversity within sustainable agrifood systems.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Council of Agricultural Research (ICAR) – Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India
- Department of Agronomy, Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Mahender Thudi
- College of Agriculture, Family Sciences and Technology, Fort Valley State University, Fort Valley, GA, United States
| | - Radha Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agriculture University, Thiruvananthapuram, Kerala, India
| | - P. V. Vara Prasad
- Department of Agronomy, Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
3
|
Wen Z, Lu X, Wen J, Wang Z, Chai M. Physical Seed Dormancy in Legumes: Molecular Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:1473. [PMID: 38891282 PMCID: PMC11174410 DOI: 10.3390/plants13111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Physical dormancy of seeds is a form of dormancy due to the presence of an impermeable seed coat layer, and it represents a feature for plants to adapt to environmental changes over an extended period of phylogenetic evolution. However, in agricultural practice, physical dormancy is problematic. because it prevents timely and uniform seed germination. Therefore, physical dormancy is an important agronomical trait to target in breeding and domestication, especially for many leguminous crops. Compared to the well-characterized physiological dormancy, research progress on physical dormancy at the molecular level has been limited until recent years, due to the lack of suitable research materials. This review focuses on the structure of seed coat, factors affecting physical dormancy, genes controlling physical dormancy, and plants suitable for studying physical dormancy at the molecular level. Our goal is to provide a plethora of information for further molecular research on physical dormancy.
Collapse
Affiliation(s)
- Zhaozhu Wen
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xuran Lu
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Zengyu Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Maofeng Chai
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
4
|
Wang R, Wang H, Huang S, Zhao Y, Chen E, Li F, Qin L, Yang Y, Guan Y, Liu B, Zhang H. Assessment of yield performances for grain sorghum varieties by AMMI and GGE biplot analyses. FRONTIERS IN PLANT SCIENCE 2023; 14:1261323. [PMID: 37965005 PMCID: PMC10642804 DOI: 10.3389/fpls.2023.1261323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
Grain sorghum is an exceptional source of dietary nutrition with outstanding economic values. Breeding of grain sorghum can be slowed down by the occurrence of genotype × environment interactions (GEI) causing biased estimation of yield performance in multi-environments and therefore complicates direct phenotypic selection of superior genotypes. Multi-environment trials by randomized complete block design with three replications were performed on 13 newly developed grain sorghum varieties at seven test locations across China for two years. Additive main effects and multiplicative interaction (AMMI) and genotype + genotype × environment (GGE) biplot models were adopted to uncover GEI patterns and effectively identify high-yielding genotypes with stable performance across environments. Yield (YLD), plant height (PH), days to maturity (DTM), thousand seed weight (TSW), and panicle length (PL) were measured. Statistical analysis showed that target traits were influenced by significant GEI effects (p < 0.001), that broad-sense heritability estimates for these traits varied from 0.40 to 0.94 within the medium to high range, that AMMI and GGE biplot models captured more than 66.3% of total variance suggesting sufficient applicability of both analytic models, and that two genotypes, G3 (Liaoza No.52) and G10 (Jinza 110), were identified as the superior varieties while one genotype, G11 (Jinza 111), was the locally adapted variety. G3 was the most stable variety with highest yielding potential and G10 was second to G3 in average yield and stability whereas G11 had best adaptation only in one test location. We recommend G3 and G10 for the production in Shenyang, Chaoyang, Jinzhou, Jinzhong, Yulin, and Pingliang, while G11 for Yili.
Collapse
Affiliation(s)
- Runfeng Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Provincial Engineering Research Center for Featured Minor Crops, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Hailian Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Provincial Engineering Research Center for Featured Minor Crops, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Shaoming Huang
- Crop Development Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yingxing Zhao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Provincial Engineering Research Center for Featured Minor Crops, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Erying Chen
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Provincial Engineering Research Center for Featured Minor Crops, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Feifei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Provincial Engineering Research Center for Featured Minor Crops, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Ling Qin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Provincial Engineering Research Center for Featured Minor Crops, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yanbing Yang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Provincial Engineering Research Center for Featured Minor Crops, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yan’an Guan
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Provincial Engineering Research Center for Featured Minor Crops, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Bin Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Huawen Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Provincial Engineering Research Center for Featured Minor Crops, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
5
|
Srungarapu R, Mahendrakar MD, Mohammad LA, Chand U, Jagarlamudi VR, Kondamudi KP, Kudapa H, Samineni S. Genome-Wide Association Analysis Reveals Trait-Linked Markers for Grain Nutrient and Agronomic Traits in Diverse Set of Chickpea Germplasm. Cells 2022; 11:cells11152457. [PMID: 35954301 PMCID: PMC9367858 DOI: 10.3390/cells11152457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Chickpea is an inexpensive source of protein, minerals, and vitamins to the poor people living in arid and semi-arid regions of Southern Asia and Sub-Saharan Africa. New chickpea cultivars with enhanced levels of protein, Fe and Zn content are a medium-term strategy for supplying essential nutrients for human health and reducing malnutrition. In the current study, a chickpea reference set of 280 accessions, including landraces, breeding lines, and advanced cultivars, was evaluated for grain protein, Fe, Zn content and agronomic traits over two seasons. Using a mid-density 5k SNP array, 4603 highly informative SNPs distributed across the chickpea genome were used for GWAS analysis. Population structure analysis revealed three subpopulations (K = 3). Linkage disequilibrium (LD) was extensive, and LD decay was relatively low. A total of 20 and 46 marker-trait associations (MTAs) were identified for grain nutrient and agronomic traits, respectively, using FarmCPU and BLINK models. Of which seven SNPs for grain protein, twelve for Fe, and one for Zn content were distributed on chromosomes 1, 4, 6, and 7. The marker S4_4477846 on chr4 was found to be co-associated with grain protein over seasons. The markers S1_11613376 and S1_2772537 co-associated with grain Fe content under NSII and pooled seasons and S7_9379786 marker under NSI and pooled seasons. The markers S4_31996956 co-associated with grain Fe and days to maturity. SNP annotation of associated markers were found to be related to gene functions of metal ion binding, transporters, protein kinases, transcription factors, and many more functions involved in plant metabolism along with Fe and protein homeostasis. The identified significant MTAs has potential use in marker-assisted selection for developing nutrient-rich chickpea cultivars after validation in the breeding populations.
Collapse
Affiliation(s)
- Rajasekhar Srungarapu
- Accelerated Crop Improvement, Chickpea Breeding, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, India
- Department of Molecular Biology and Biotechnology, Acharya N.G. Ranga Agricultural University, Guntur 522034, India
| | - Mahesh Damodhar Mahendrakar
- Accelerated Crop Improvement, Chickpea Breeding, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, India
| | - Lal Ahamed Mohammad
- Department of Genetics and Plant Breeding, Acharya N.G. Ranga Agricultural University, Guntur 522034, India
| | - Uttam Chand
- Accelerated Crop Improvement, Chickpea Breeding, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, India
| | - Venkata Ramana Jagarlamudi
- Department of Genetics and Plant Breeding, Acharya N.G. Ranga Agricultural University, Guntur 522034, India
| | - Kiran Prakash Kondamudi
- Department of Statistics and Computer Applications, Acharya N.G. Ranga Agricultural University, Guntur 522034, India
| | - Himabindu Kudapa
- Genomics, Pre-Breeding and Bioinformatics, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, India
| | - Srinivasan Samineni
- Accelerated Crop Improvement, Chickpea Breeding, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, India
- Correspondence:
| |
Collapse
|
6
|
Jha UC, Nayyar H, Parida SK, Deshmukh R, von Wettberg EJB, Siddique KHM. Ensuring Global Food Security by Improving Protein Content in Major Grain Legumes Using Breeding and 'Omics' Tools. Int J Mol Sci 2022; 23:7710. [PMID: 35887057 PMCID: PMC9325250 DOI: 10.3390/ijms23147710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Grain legumes are a rich source of dietary protein for millions of people globally and thus a key driver for securing global food security. Legume plant-based 'dietary protein' biofortification is an economic strategy for alleviating the menace of rising malnutrition-related problems and hidden hunger. Malnutrition from protein deficiency is predominant in human populations with an insufficient daily intake of animal protein/dietary protein due to economic limitations, especially in developing countries. Therefore, enhancing grain legume protein content will help eradicate protein-related malnutrition problems in low-income and underprivileged countries. Here, we review the exploitable genetic variability for grain protein content in various major grain legumes for improving the protein content of high-yielding, low-protein genotypes. We highlight classical genetics-based inheritance of protein content in various legumes and discuss advances in molecular marker technology that have enabled us to underpin various quantitative trait loci controlling seed protein content (SPC) in biparental-based mapping populations and genome-wide association studies. We also review the progress of functional genomics in deciphering the underlying candidate gene(s) controlling SPC in various grain legumes and the role of proteomics and metabolomics in shedding light on the accumulation of various novel proteins and metabolites in high-protein legume genotypes. Lastly, we detail the scope of genomic selection, high-throughput phenotyping, emerging genome editing tools, and speed breeding protocols for enhancing SPC in grain legumes to achieve legume-based dietary protein security and thus reduce the global hunger risk.
Collapse
Affiliation(s)
- Uday C. Jha
- ICAR—Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh 160014, India;
| | - Swarup K. Parida
- National Institute of Plant Genome Research, New Delhi 110067, India;
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Punjab 140308, India;
| | | | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
7
|
Nguyen DT, Hayes JE, Atieno J, Li Y, Baumann U, Pattison A, Bramley H, Hobson K, Roorkiwal M, Varshney RK, Colmer TD, Sutton T. The genetics of vigour-related traits in chickpea (Cicer arietinum L.): insights from genomic data. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:107-124. [PMID: 34643761 DOI: 10.1007/s00122-021-03954-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/17/2021] [Indexed: 05/27/2023]
Abstract
QTL controlling vigour and related traits were identified in a chickpea RIL population and validated in diverse sets of germplasm. Robust KASP markers were developed for marker-assisted selection. To understand the genetic constitution of vigour in chickpea (Cicer arietinum L.), genomic data from a bi-parental population and multiple diversity panels were used to identify QTL, sequence-level haplotypes and genetic markers associated with vigour-related traits in Australian environments. Using 182 Recombinant Inbred Lines (RILs) derived from a cross between two desi varieties, Rupali and Genesis836, vigour QTL independent of flowering time were identified on chromosomes (Ca) 1, 3 and 4 with genotypic variance explained (GVE) ranging from 7.1 to 28.8%. Haplotype analysis, association analysis and graphical genotyping of whole-genome re-sequencing data of two diversity panels consisting of Australian and Indian genotypes and an ICRISAT Chickpea Reference Set revealed a deletion in the FTa1-FTa2-FTc gene cluster of Ca3 significantly associated with vigour and flowering time. Across the RIL population and diversity panels, the impact of the deletion was consistent for vigour but not flowering time. Vigour-related QTL on Ca4 co-located with a QTL for seed size in Rupali/Genesis836 (GVE = 61.3%). Using SNPs from this region, we developed and validated gene-based KASP markers across different panels. Two markers were developed for a gene on Ca1, myo -inositol monophosphatase (CaIMP), previously proposed to control seed size, seed germination and seedling growth in chickpea. While associated with vigour in the diversity panels, neither the markers nor broader haplotype linked to CaIMP was polymorphic in Rupali/Genesis836. Importantly, vigour appears to be controlled by different sets of QTL across time and with components which are independent from phenology.
Collapse
Affiliation(s)
- Duong T Nguyen
- School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, Australia
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
| | - Julie E Hayes
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Judith Atieno
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Yongle Li
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Angela Pattison
- School of Life and Environmental Science, The University of Sydney, Camperdown, NSW, Australia
| | - Helen Bramley
- School of Life and Environmental Science, The University of Sydney, Camperdown, NSW, Australia
| | - Kristy Hobson
- Department of Primary Industries, Tamworth Agricultural Institute, 4 Marsden, Park Rd, Calala, NSW, Australia
| | - Manish Roorkiwal
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Rajeev K Varshney
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Timothy D Colmer
- School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, Australia
| | - Tim Sutton
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia.
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia.
| |
Collapse
|
8
|
Rajkumar MS, Garg R, Jain M. Genome resequencing reveals DNA polymorphisms associated with seed size/weight determination in chickpea. Genomics 2021; 113:1458-1468. [PMID: 33744344 DOI: 10.1016/j.ygeno.2021.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/23/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022]
Abstract
Crop productivity in legumes is determined by number and size/weight of seeds. To understand the genetic basis of seed size/weight in chickpea, we performed genome resequencing of 13 small- and 5 large-seeded genotypes using Illumina platform. Single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) differentiating small- and large-seeded genotypes were identified. A total of 17,902 SNPs and 2594 InDels located in promoter and/or coding regions that may contribute to seed size/weight were detected. Of these, 266 SNPs showed significant association with seed size/weight trait. Twenty-three genes including those involved in cell growth/division, encoding transcription factors and located within QTLs associated with seed size/weight harbored SNPs within transcription factor binding motif(s) and/or coding region. The non-synonymous SNPs were found to affect the mutational sensitivity and stability of the encoded proteins. Overall, we provided a high-quality SNP map for large-scale genotyping applications and identified candidate genes that determine seed size/weight in chickpea.
Collapse
Affiliation(s)
- Mohan Singh Rajkumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
9
|
Gaur R, Verma S, Pradhan S, Ambreen H, Bhatia S. A high-density SNP-based linkage map using genotyping-by-sequencing and its utilization for improved genome assembly of chickpea (Cicer arietinum L.). Funct Integr Genomics 2020; 20:763-773. [PMID: 32856221 DOI: 10.1007/s10142-020-00751-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 01/06/2023]
Abstract
Genotyping-by-sequencing (GBS) allows rapid identification of markers for use in development of linkage maps, which expedite efficient breeding programs. In the present study, we have utilized GBS approach to identify and genotype single-nucleotide polymorphism (SNP) markers in an inter-specific RIL population of Cicer arietinum L. X C. reticulatum. A total of 141,639 raw SNPs were identified using the TASSEL-GBS pipeline. After stringent filtering, 8208 candidate SNPs were identified of which ~ 37% were localized in the intragenic regions followed by genic regions (~ 30%) and intergenic regions (~ 27%). We then utilized 6920 stringent selected SNPs from present study and 6714 SNPs and microsatellite markers available from previous studies for construction of linkage map. The resulting high-density linkage map comprising of eight linkage groups contained 13,590 markers which spanned 1299.14 cM of map length with an average marker density of 0.095 cM. Further, the derived linkage map was used to improve the available assembly of desi chickpea genome by anchoring 443 previously unplaced scaffolds onto eight linkage groups. The present efforts have refined anchoring of the desi chickpea genome assembly to 55.57% of the ~ 520 Mb of assembled desi genome. To the best of our knowledge, the linkage map generated in the present study represents one of the most dense linkage map developed for the crop till date. It will serve as a valuable resource for fine mapping and positional cloning of important quantitative trait loci (QTLs) associated with agronomical traits and also for anchoring and ordering of future genome sequence assemblies.
Collapse
Affiliation(s)
- Rashmi Gaur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Subodh Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Seema Pradhan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Heena Ambreen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India.
| |
Collapse
|
10
|
Ghangal R, Singh VK, Khemka NK, Rajkumar MS, Garg R, Jain M. Updates on Genomic Resources in Chickpea for Crop Improvement. Methods Mol Biol 2020; 2107:19-33. [PMID: 31893441 DOI: 10.1007/978-1-0716-0235-5_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, rapid advancement has been done in generation of genomic resources for the important legume crop chickpea. Here, we provide an update on important advancements made on availability of genomic resources for this crop. The availability of reference genome and transcriptome sequences, and resequencing of several accessions have enabled the discovery of gene space and molecular markers in chickpea. These resources have helped in elucidating evolutionary relationship and identification of quantitative trait loci for important agronomic traits. Gene expression in different tissues/organs during development and under abiotic/biotic stresses has been interrogated. In addition, single-base resolution DNA methylation patterns in different organs have been analyzed to understand gene regulation. Overall, we provide a consolidated overview of available genomic resources of chickpea that may help in fulfilling the promises for improvement of this important crop.
Collapse
Affiliation(s)
- Rajesh Ghangal
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vikash K Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Niraj K Khemka
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohan Singh Rajkumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|