1
|
Yang Y, Zhang Y, Li J, Xu P, Wu Z, Deng X, Pu Q, Lv Y, Elgamal WHAS, Maniruzzaman S, Deng W, Zhou J, Tao D. Three QTL from Oryza meridionalis Could Improve Panicle Architecture in Asian Cultivated Rice. RICE (NEW YORK, N.Y.) 2023; 16:22. [PMID: 37129647 PMCID: PMC10154444 DOI: 10.1186/s12284-023-00640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Rice panicle architecture is directly associated with grain yield and is also the key target in high-yield rice breeding program. In this study, three BC6F2 segregation populations derived from the crosses between two accessions of Oryza meridionalis and a O. sativa spp. japonica cultivar Dianjingyou 1, were employed to map QTL for panicle architecture. Three QTL, EP4.2, DEP7 and DEP8 were identified and validated using substitution mapping strategy on chromosome 4, 9 and 8, respectively. The three QTL showed pleiotropic phenotype on panicle length (PL), grain number per panicle (GNPP), number of primary branches (NPB), number of secondary branches (NSB), and grain width. DEP7 and DEP8 showed yield-enhancing potential by increasing GNPP, NPB and NSB, while EP4.2 exhibited wide grain, short stalk and panicle which can improve plant and panicle architecture, too. Moreover, epistatic interaction for PL was detected between EP4.2 and DEP7, and epistatic analysis between DEP7 and DEP8 for GNPP and NPB also revealed significant two QTL interactions. The result would help us understand the molecular basis of panicle architecture and lay the foundation for using these three QTL in rice breeding.
Collapse
Grants
- 31991221 National Natural Science Foundation of China
- 31991221 National Natural Science Foundation of China
- 31991221 National Natural Science Foundation of China
- 31991221 National Natural Science Foundation of China
- 31991221 National Natural Science Foundation of China
- 31991221 National Natural Science Foundation of China
- 202101AS070036, 202101AT070193, 202001AS070003, 202003AD150007, 530000210000000013809 Yunnan Provincial Science and Technology Department, China
- 202101AS070036, 202101AT070193, 202001AS070003, 202003AD150007, 530000210000000013809 Yunnan Provincial Science and Technology Department, China
- 202101AS070036, 202101AT070193, 202001AS070003, 202003AD150007, 530000210000000013809 Yunnan Provincial Science and Technology Department, China
- 202101AS070036, 202101AT070193, 202001AS070003, 202003AD150007, 530000210000000013809 Yunnan Provincial Science and Technology Department, China
- 202101AS070036, 202101AT070193, 202001AS070003, 202003AD150007, 530000210000000013809 Yunnan Provincial Science and Technology Department, China
- 202101AS070036, 202101AT070193, 202001AS070003, 202003AD150007, 530000210000000013809 Yunnan Provincial Science and Technology Department, China
- 202101AS070036, 202101AT070193, 202001AS070003, 202003AD150007, 530000210000000013809 Yunnan Provincial Science and Technology Department, China
- 202101AS070036, 202101AT070193, 202001AS070003, 202003AD150007, 530000210000000013809 Yunnan Provincial Science and Technology Department, China
- 202101AS070036, 202101AT070193, 202001AS070003, 202003AD150007, 530000210000000013809 Yunnan Provincial Science and Technology Department, China
- 202101AS070036, 202101AT070193, 202001AS070003, 202003AD150007, 530000210000000013809 Yunnan Provincial Science and Technology Department, China
- YNWR-QNBJ-2018-359 Yunnan Provincial Government
- YNWR-QNBJ-2018-359 Yunnan Provincial Government
- YNWR-QNBJ-2018-359 Yunnan Provincial Government
Collapse
Affiliation(s)
- Ying Yang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Yu Zhang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Jing Li
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Peng Xu
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650233, China
| | - Zhijuan Wu
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Xianneng Deng
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Qiuhong Pu
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Yonggang Lv
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Walid Hassan Ali Soliman Elgamal
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Sakha, 33717, Egypt
| | - Sheikh Maniruzzaman
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
- Plant Breeding Division, Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh
| | - Wei Deng
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Jiawu Zhou
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
| | - Dayun Tao
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
| |
Collapse
|
2
|
Abdullah M, Okemo P, Furtado A, Henry R. Potential of Genome Editing to Capture Diversity From Australian Wild Rice Relatives. Front Genome Ed 2022; 4:875243. [PMID: 35572739 PMCID: PMC9091330 DOI: 10.3389/fgeed.2022.875243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Rice, a staple food worldwide and a model crop, could benefit from the introduction of novel genetics from wild relatives. Wild rice in the AA genome group closely related to domesticated rice is found across the tropical world. Due to their locality outside the range of domesticated rice, Australian wild rice populations are a potential source of unique traits for rice breeding. These rice species provide a diverse gene pool for improvement that could be utilized for desirable traits such as stress resistance, disease tolerance, and nutritional qualities. However, they remain poorly characterized. The CRISPR/Cas system has revolutionized gene editing and has improved our understanding of gene functions. Coupled with the increasing availability of genomic information on the species, genes in Australian wild rice could be modified through genome editing technologies to produce new domesticates. Alternatively, beneficial alleles from these rice species could be incorporated into cultivated rice to improve critical traits. Here, we summarize the beneficial traits in Australian wild rice, the available genomic information and the potential of gene editing to discover and understand the functions of novel alleles. Moreover, we discuss the potential domestication of these wild rice species for health and economic benefits to rice production globally.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
- ARC Centre for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, QLD, Australia
| | - Pauline Okemo
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
- ARC Centre for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, QLD, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
- ARC Centre for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Robert Henry,
| |
Collapse
|
3
|
Fujino K, Kawahara Y, Koyanagi KO, Shirasawa K. Translation of continuous artificial selection on phenotype into genotype during rice breeding programs. BREEDING SCIENCE 2021; 71:125-133. [PMID: 34377060 PMCID: PMC8329892 DOI: 10.1270/jsbbs.20089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/25/2020] [Indexed: 06/13/2023]
Abstract
Understanding genetic diversity among local populations is a primary goal of modern crop breeding programs. Here, we demonstrated the genetic relationships of rice varieties in Hokkaido, Japan, one of the northern limits of rice cultivation around the world. Furthermore, artificial selection during rice breeding programs has been characterized using genome sequences. We utilized 8,565 single nucleotide polymorphisms and insertion/deletion markers distributed across the genome in genotype-by-sequencing for genetic diversity analyses. Phylogenetics, genetic population structure, and principal component analysis showed that a total of 110 varieties were classified into four distinct clusters according to different populations geographically and historically. Furthermore, the genome sequences of 19 rice varieties along with historic representations in Hokkaido, nucleotide diversity and FST values in each cluster revealed that artificial selection of elite phenotypes focused on chromosomal regions. These results clearly demonstrated the history of the selections on agronomic traits as genome sequences among current rice varieties from Hokkaido.
Collapse
Affiliation(s)
- Kenji Fujino
- Hokkaido Agricultural Research Center, National Agricultural Research Organization, Sapporo, Hokkaido 062-8555, Japan
| | - Yoshihiro Kawahara
- Institute of Crop Science, National Agricultural Research Organization, Tsukuba, Ibaraki 305-8518, Japan
- Advanced Analysis Center, National Agricultural Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Kanako O. Koyanagi
- Faculty of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido 060-0814, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
4
|
Henry RJ. Australian Wild Rice Populations: A Key Resource for Global Food Security. FRONTIERS IN PLANT SCIENCE 2019; 10:1354. [PMID: 31695720 PMCID: PMC6817564 DOI: 10.3389/fpls.2019.01354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/01/2019] [Indexed: 05/24/2023]
Abstract
Rice is one of the most important food crops contributing to the diet of large numbers of people especially in Asia. Rice (Oryza sativa) was domesticated in Asia many thousands of years ago and more recently independently in Africa. Wild rice populations are found around the tropical world. The extensive production of rice in many areas has displaced the wild populations that were the basis of the original domestications by humans. Recent research, reviewed here, has identified wild rice species in northern Australia that have been isolated from the impact of domestication in Asia. Wild rice populations contain novel alleles that are a source of desirable traits such as erect habit, disease resistance, large grain size, and unique starch properties. These populations include the most divergent genotypes within the primary gene pool of rice and more distant wild relatives. Genome sequencing also suggests the presence of populations that are close relatives of domesticated rice. Hybrid populations that demonstrate mechanisms of ongoing evolution of wild Oryza have been identified in the wild. These populations provide options for both new domestications and utilization of novel alleles to improve or adapt domesticated rice using conventional or preferably new breeding technologies. Climate change and growing food demands associated with population and economic growth are major challenges for agriculture including rice production. The availability of diverse genetic resources to support crop adaptation and new crop domestication is critical to continued production, and increased efforts to support in situ and ex situ conservation of wild Oryza and related species are warranted.
Collapse
|
5
|
Fujino K, Hirayama Y, Kaji R. Marker-assisted selection in rice breeding programs in Hokkaido. BREEDING SCIENCE 2019; 69:383-392. [PMID: 31598070 PMCID: PMC6776137 DOI: 10.1270/jsbbs.19062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/06/2019] [Indexed: 05/27/2023]
Abstract
Rice breeding programs in Hokkaido over the past 100 years have dramatically increased productivity and improved the eating quality of rice. Commercial varieties with high yield and good eating quality, such as Kirara 397, Hoshinoyume, and Nanatsuboshi, have been continuously registered since 1990. Furthermore, varieties with better eating quality using Wx1-1, which reduces amylose content to improve the taste of sticky rice, such as Oborozuki and Yumepirika, were registered in 2006 and 2008, respectively. However, to the best of our knowledge the genomic changes associated with these improvements have not been determined. Better understanding of the relationships between DNA sequences and agricultural traits could facilitate rice breeding programs in Hokkaido. Marker-assisted selection (MAS), which can select the plants with chromosomal regions tagged with DNA markers for desirable traits, is an advanced technology to manage genetic improvements. Here, we summarize the current states of MAS in rice breeding programs in Hokkaido before huge data sets of genome sequences using next-generation sequencing technology come into practical use in rice breeding programs.
Collapse
Affiliation(s)
- Kenji Fujino
- Hokkaido Agricultural Research Center, National Agricultural Research Organization,
Sapporo, Hokkaido 062-8555,
Japan
| | - Yuji Hirayama
- Kamikawa Agricultural Experiment Station, Local Independent Administrative Agency Hokkaido Research Organization,
Pippu, Hokkaido 078-0397,
Japan
| | - Ryota Kaji
- Hokkaido Agricultural Research Center, National Agricultural Research Organization,
Sapporo, Hokkaido 062-8555,
Japan
| |
Collapse
|