1
|
Hu H, Yi L, Wu D, Zhang L, Zhou X, Wu Y, Shi H, Wei Y, Hou J. Identification of candidate genes associating with soybean cyst nematode in soybean ( Glycine max L.) using BSA-seq. PeerJ 2024; 12:e18252. [PMID: 39465172 PMCID: PMC11505975 DOI: 10.7717/peerj.18252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Soybean cyst nematode disease represents the major soil-borne disease of soybean. Identifying disease-resistant genes in soybean has a substantial impact on breeding of disease-resistant crops and genetic improvement. The present work created the F2 population with the disease-resistant line H-10 and disease-susceptible line Chidou4. 30 respective F2disease-resistant and disease-susceptible individuals for forming two DNA pools for whole-genome re-sequencing were selected. As a result, a total of 11,522,230 single nucleotide polymorphism (SNPs) markers from these two parental lines and two mixed pools were obtained. Accordng to SNP-index based association analysis, there were altogether 741 genes out of 99% confidence interval, which were mainly enriched into regions of 38,524,128∼39,849,988 bp with a total length of 1.33 Mb contain 111 genes on chromosome 2, 27,821,012∼29,612,574 bp with a total length of 1.79 Mb contain 92 genes on chromosome 3, 308∼348,214 bp with a total of length 0.35 Mb contain 34 genes on chromosome 10, and 53,867,581∼58,017, 852 bp with a total length of 4.15 Mb contain 504 genes on chromosome 18. Bulk segregant analysis in F2 generations (BSA-seq) was correlated with a disease resistance interval containing 15 genes. Then, using bioinformatics analysis and differential expression analysis, five candidate genes were identified: Glyma.02G211400, Glyma.18G252800, Glyma.18G285800, Glyma.18G287400 and Glyma.18G298200. Our results provides a key basis for analyzing the soybean resistance mechanism against soybean cyst nematode and cloning soybean resistance genes.
Collapse
Affiliation(s)
- Haibo Hu
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Soybean Academy, Chifeng Academy of Agricultural and Animal Husbandry Sciences, Chifeng, Inner Mongolia, China
| | - Liuxi Yi
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Depeng Wu
- Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Co-constructed by the Province and Ministry, Huaiyin Normal University, Huai’an, China
| | - Litong Zhang
- Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Co-constructed by the Province and Ministry, Huaiyin Normal University, Huai’an, China
| | - Xuechao Zhou
- Soybean Academy, Chifeng Academy of Agricultural and Animal Husbandry Sciences, Chifeng, Inner Mongolia, China
| | - Yang Wu
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Huimin Shi
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yunshan Wei
- Soybean Academy, Chifeng Academy of Agricultural and Animal Husbandry Sciences, Chifeng, Inner Mongolia, China
| | - Jianhua Hou
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
2
|
Critchfield R, King J, Bonkowski J, Telenko D, Creswell T, Zhang L. Characterization of Virulence Phenotypes of Heterodera glycines during 2020 in Indiana. J Nematol 2023; 55:20230039. [PMID: 37849471 PMCID: PMC10577647 DOI: 10.2478/jofnem-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 10/19/2023] Open
Abstract
The soybean cyst nematode (SCN, Heterodera glycines) is the most yield-limiting pathogen of soybean in the US. This study was carried out in order to provide updated information on SCN virulence phenotypes in Indiana. A total of 124 soil samples were collected from soybean fields in 2020 and all of them tested positive for SCN. The virulence phenotypes of 42 representative SCN populations were determined with seven soybean indicator lines using the standard HG type test. The most predominant HG types were 2.5.7 and 1.2.5.7, which accounted for 64% and 14% of the SCN populations tested, respectively. None of the SCN populations tested were rated as HG type 0, compared with 28% of the populations in a previous survey in Indiana during 2006-2008. Nearly 88% of the SCN populations evaluated in this study overcame the resistance provided by PI 88788, which is the most common source of resistance in soybean, up from 56% in the 2006-2008 survey. Approximately 14% of SCN populations tested were virulent to PI 548402 (Peking), in contrast to 0% in the 2006-2008 survey. This study reveals a trend of increasing virulence of SCN populations to resistant sources of soybean in Indiana. The results highlighted the importance of rotating soybean varieties with different types of resistance and identifying new sources of resistance for sustainable management of SCN.
Collapse
Affiliation(s)
- Ricky Critchfield
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Jaden King
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - John Bonkowski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Darcy Telenko
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Tom Creswell
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Lei Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
- Department of Entomology, Purdue University, West Lafayette, IN47907
| |
Collapse
|
3
|
Abstract
Resistance to the soybean cyst nematode (SCN) is a topic incorporating multiple mechanisms and multiple types of science. It is also a topic of substantial agricultural importance, as SCN is estimated to cause more yield damage than any other pathogen of soybean, one of the world's main food crops. Both soybean and SCN have experienced jumps in experimental tractability in the past decade, and significant advances have been made. The rhg1-b locus, deployed on millions of farm acres, has been durable and will remain important, but local SCN populations are gradually evolving to overcome rhg1-b. Multiple other SCN resistance quantitative trait loci (QTL) of proven value are now in play with soybean breeders. QTL causal gene discovery and mechanistic insights into SCN resistance are contributing to both basic and applied disciplines. Additional understanding of SCN and other cyst nematodes will also grow in importance and lead to novel disease control strategies.
Collapse
Affiliation(s)
- Andrew F Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
4
|
Basnet P, Meinhardt CG, Usovsky M, Gillman JD, Joshi T, Song Q, Diers B, Mitchum MG, Scaboo AM. Epistatic interaction between Rhg1-a and Rhg2 in PI 90763 confers resistance to virulent soybean cyst nematode populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2025-2039. [PMID: 35381870 PMCID: PMC9205835 DOI: 10.1007/s00122-022-04091-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/25/2022] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE An epistatic interaction between SCN resistance loci rhg1-a and rhg2 in PI 90763 imparts resistance against virulent SCN populations which can be employed to diversify SCN resistance in soybean cultivars. With more than 95% of the $46.1B soybean market dominated by a single type of genetic resistance, breeding for soybean cyst nematode (SCN)-resistant soybean that can effectively combat the widespread increase in virulent SCN populations presents a significant challenge. Rhg genes (for Resistance to Heterodera glycines) play a key role in resistance to SCN; however, their deployment beyond the use of the rhg1-b allele has been limited. In this study, quantitative trait loci (QTL) were mapped using PI 90763 through two biparental F3:4 recombinant inbred line (RIL) populations segregating for rhg1-a and rhg1-b alleles against a SCN HG type 1.2.5.7 (Race 2) population. QTL located on chromosome 18 (rhg1-a) and chromosome 11 (rhg2) were determined to confer SCN resistance in PI 90763. The rhg2 gene was fine-mapped to a 169-Kbp region pinpointing GmSNAP11 as the strongest candidate gene. We demonstrated a unique epistatic interaction between rhg1-a and rhg2 loci that not only confers resistance to multiple virulent SCN populations. Further, we showed that pyramiding rhg2 with the conventional mode of resistance, rhg1-b, is ineffective against these virulent SCN populations. This highlights the importance of pyramiding rhg1-a and rhg2 to maximize the impact of gene pyramiding strategies toward management of SCN populations virulent on rhg1-b sources of resistance. Our results lay the foundation for the next generation of soybean resistance breeding to combat the number one pathogen of soybean.
Collapse
Affiliation(s)
- Pawan Basnet
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Clinton G Meinhardt
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | | | - Trupti Joshi
- Department of Health Management and Informatics, MUIDSI, and Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, USA
| | - Brian Diers
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, IL, USA
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
| | - Andrew M Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
5
|
Wei H, Lian Y, Li J, Li H, Song Q, Wu Y, Lei C, Wang S, Zhang H, Wang J, Lu W. Identification of Candidate Genes Controlling Soybean Cyst Nematode Resistance in "Handou 10" Based on Genome and Transcriptome Analyzes. FRONTIERS IN PLANT SCIENCE 2022; 13:860034. [PMID: 35371127 PMCID: PMC8965568 DOI: 10.3389/fpls.2022.860034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is a highly destructive pathogen for soybean production worldwide. The use of resistant varieties is the most effective way of preventing yield loss. Handou 10 is a commercial soybean variety with desirable agronomic traits and SCN resistance, however genes underlying the SCN resistance in the variety are unknown. An F2:8 recombinant inbred line (RIL) population derived from a cross between Zheng 9525 (susceptible) and Handou 10 was developed and its resistance to SCN HG type 2.5.7 (race 1) and 1.2.5.7 (race 2) was identified. We identified seven quantitative trait loci (QTLs) with additive effects. Among these, three QTLs on Chromosomes 7, 8, and 18 were resistant to both races. These QTLs could explain 1.91-7.73% of the phenotypic variation of SCN's female index. The QTLs on chromosomes 8 and 18 have already been reported and were most likely overlapped with rhg1 and Rhg4 loci, respectively. However, the QTL on chromosome 7 was novel. Candidate genes for the three QTLs were predicted through genes functional analysis and transcriptome analysis of infected roots of Handou 10 vs. Zheng 9525. Transcriptome analysis performed also indicated that the plant-pathogen interaction played an important role in the SCN resistance for Handou 10. The information will facilitate SCN-resistant gene cloning, and the novel resistant gene will be a source for improving soybeans' resistance to SCN.
Collapse
Affiliation(s)
- He Wei
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Yun Lian
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Jinying Li
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Haichao Li
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, United States
| | - Yongkang Wu
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Chenfang Lei
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Shiwei Wang
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Hui Zhang
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Jinshe Wang
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Weiguo Lu
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| |
Collapse
|
6
|
Grunwald DJ, Zapotocny RW, Ozer S, Diers BW, Bent AF. Detection of rare nematode resistance Rhg1 haplotypes in Glycine soja and a novel Rhg1 α-SNAP. THE PLANT GENOME 2022; 15:e20152. [PMID: 34716668 DOI: 10.1002/tpg2.20152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
This study pursued the hypothesis that wild plant germplasm accessions carrying alleles of interest can be identified using available single nucleotide polymorphism (SNP) genotypes for particular alleles of other (unlinked) genes that contribute to the trait of interest. The soybean cyst nematode (SCN, Heterodera glycines [HG]) resistance locus Rhg1 is widely used in farmed soybean [Glycine max (L.) Merr.]. The two known resistance-conferring haplotypes, rhg1-a and rhg1-b, typically contain three or seven to 10 tandemly duplicated Rhg1 segments, respectively. Each Rhg1 repeat carries four genes, including Glyma.18G022500, which encodes unusual isoforms of the vesicle-trafficking chaperone α-SNAP. Using SoySNP50K data for NSFRAN07 allele presence, we discovered a new Rhg1 haplotype, rhg1-ds, in six accessions of wild soybean, Glycine soja Siebold & Zucc. (0.5% of the ∼1,100 G. soja accessions in the USDA collection). The α-SNAP encoded by rhg1-ds is unique at an important site of amino acid variation and shares with the rhg1-a and rhg1-b α-SNAP proteins the traits of cytotoxicity and altered N-ethylmaleimide sensitive factor (NSF) protein interaction. Copy number assays indicate three repeats of rhg1-ds. G. soja PI 507613 and PI 507623 exhibit resistance to HG type 2.5.7 SCN populations, in part because of contributions from other loci. In a segregating F2 population, rhg1-b and rhg1-ds made statistically indistinguishable contributions to resistance to a partially virulent HG type 2.5.7 SCN population. Hence, the unusual multigene copy number variation Rhg1 haplotype was present but rare in ancestral G. soja and was present in accessions that offer multiple traits for SCN resistance breeding. The accessions were initially identified for study based on an unlinked SNP.
Collapse
Affiliation(s)
- Derrick J Grunwald
- Dep. of Plant Pathology, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ryan W Zapotocny
- Dep. of Plant Pathology, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Seda Ozer
- Dep. of Crop Science, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brian W Diers
- Dep. of Crop Science, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew F Bent
- Dep. of Plant Pathology, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
7
|
Nissan N, Mimee B, Cober ER, Golshani A, Smith M, Samanfar B. A Broad Review of Soybean Research on the Ongoing Race to Overcome Soybean Cyst Nematode. BIOLOGY 2022; 11:211. [PMID: 35205078 PMCID: PMC8869295 DOI: 10.3390/biology11020211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
Abstract
Plant pathogens greatly impact food security of the ever-growing human population. Breeding resistant crops is one of the most sustainable strategies to overcome the negative effects of these biotic stressors. In order to efficiently breed for resistant plants, the specific plant-pathogen interactions should be understood. Soybean is a short-day legume that is a staple in human food and animal feed due to its high nutritional content. Soybean cyst nematode (SCN) is a major soybean stressor infecting soybean worldwide including in China, Brazil, Argentina, USA and Canada. There are many Quantitative Trait Loci (QTLs) conferring resistance to SCN that have been identified; however, only two are widely used: rhg1 and Rhg4. Overuse of cultivars containing these QTLs/genes can lead to SCN resistance breakdown, necessitating the use of additional strategies. In this manuscript, a literature review is conducted on research related to soybean resistance to SCN. The main goal is to provide a current understanding of the mechanisms of SCN resistance and list the areas of research that could be further explored.
Collapse
Affiliation(s)
- Nour Nissan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Benjamin Mimee
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu Research and Development Centre, Saint-Jean-sur-Richelieu, QC J3B 7B5, Canada;
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Myron Smith
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| |
Collapse
|