1
|
Inthaisong S, Boonchuen P, Jaichopsanthia T, Songwattana P, Khairum A, Chueakhunthod W, Tharapreuksapong A, Tittabutr P, Teaumroong N, Tantasawat PA. Insights into mungbean defense response to Cercospora leaf spot based on transcriptome analysis. Sci Rep 2025; 15:1334. [PMID: 39779807 PMCID: PMC11711198 DOI: 10.1038/s41598-024-84787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Several mungbean (Vigna radiata (L.) Wilczek) cultivars are susceptible to Cercospora leaf spot (CLS) caused by Cercospora canescens Ellis & Martin, and it is necessary to explore resistance sources and understand resistance mechanisms. However, the CLS resistance mechanisms have not yet been explored. The response to CLS revealed significantly different disease severity scores in both mungbean genotypes. Hypersensitive response (HR) started to appear at 2 days after inoculation (DAI) in SUPER5 but was never observed in CN84-1. SUPER5 exhibited fewer and smaller lesions than CN84-1 during CLS infection, resulting in SUPER5 being resistant while CN84-1 was susceptible to CLS. In this study, RNA sequencing (RNA-seq) analysis was used to unravel the mechanisms of resistance to CLS in a resistant line (SUPER5) and a susceptible variety (CN84-1) upon CLS infection. A total of 9510 DEGs including 4615 up-regulated and 4895 down-regulated genes were revealed. Of these 3242 and 1027 genes were uniquely up-regulated only in the SUPER5 and CN84-1, respectively, while 2902 and 734 genes were down-regulated only in SUPER5 and CN84-1, respectively. The 843 DEGs were enriched in biological processes mainly associated with plant defense responses, defense response to fungus, protein phosphorylation and response to chitin in Gene Ontology (GO) terms analysis. KEGG pathway analysis showed that these genes were represented in plant-pathogen interaction, the MAPK signaling pathway, plant hormone signal transduction, and cell wall component biosynthesis in response to the CLS infection specifically in SUPER5. In addition, the qRT-PCR was used to analyze the expression pattern of 22 candidate DEGs belonging to pathogenesis related (PR) proteins, resistance (R) proteins, transcription factors, hypersensitive response (HR), and the essential genes involved in cell wall activity during CLS-infected V. radiata. It was found that the expression of these genes was consistent with the RNA-seq analysis, showing a highly significant correlation with a coefficient of 0.7163 (p < 0.01). The co-expression network illustrated the interactions among these genes, which were involved in multiple functions related to the defense response. Interestingly, the ones encoding PR-2, thaumatin, peroxidase, defensin, RPM1, pectinesterase, chalcone synthase, auxin efflux carrier, and transcription factors (Pti1, Pti5, Pti6 and WRKY40) were highly significantly up-regulated in SUPER5 but not in CN84-1 upon CLS infection, suggesting that they might be involved in the CLS resistance mechanisms. Moreover, SUPER5 was found to have higher β-1,3-glucanase and chitinase activity levels than CN84-1. Our findings contribute to an understanding of the CLS resistance mechanisms and may advocate the development of more effective disease management approaches.
Collapse
Affiliation(s)
- Sukanya Inthaisong
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Tana Jaichopsanthia
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pongpan Songwattana
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Apinya Khairum
- Department of Horticulture, Faculty of Agriculture, Ubon Ratchathani University, Warin Chamrap, Ubon Ratchathani, 34190, Thailand
| | - Witsarut Chueakhunthod
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Akkawat Tharapreuksapong
- Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Piyada Alisha Tantasawat
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
2
|
Srichan M, Laosatit K, Lin Y, Yuan X, Chen X, Somta P. QTL-seq and QTL mapping identify a new locus for Cercospora leaf spot (Cercospora canescens) resistance in mungbean (Vigna radiata) and a cluster of Receptor-like protein 12 (RLP12) genes as candidate genes for the resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:278. [PMID: 39601832 DOI: 10.1007/s00122-024-04782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
KEY MESSAGE QTL-seq, linkage mapping, and whole-genome resequencing revealed a new locus (qCLS5.1) controlling Cercospora canescens resistance in mungbean and Receptor-like protein 12 (RLP12) genes as candidate genes for the resistance. Cercospora leaf spot (CLS) disease, caused by Cercospora canescens, is a common disease of mungbean (Vigna radiata). In this study, the genetics of CLS resistance was investigated in a new source of resistance (accession V2817) and the resistance was finely mapped to identify candidate genes. F2 and F2:3 populations of the cross V1197 (susceptible) × V2718 and a BC1F1 population of the cross V1197 × (V1197 × V2817) were used in this study. Segregation analysis suggested that the resistance is controlled by a single dominant gene. QTL-seq using F2 individuals revealed that a single QTL (designated qCLS5.1) on chromosome 5 controlled the resistance. The qCLS5.1 was confirmed in the F2:3 and BC1F1 populations by QTL analysis. Fine mapping using 978 F2 individuals localized qCLS5.1 to a 48.94 Kb region containing three tandemly duplicated Receptor-like protein 12 (RLP12) genes. Whole-genome resequencing and alignment of V1197 and V2817 revealed polymorphisms causing amino acid changes and premature stop codons in the three RLP12 genes. Collectively, these results show that qCLS5.1 is a new locus for CLS resistance in mungbean, and a cluster of RLP12 genes are candidate genes for the resistance. The new locus qCLS5.1 will be useful for molecular breeding of durable CLS-resistant mungbean cultivars.
Collapse
Affiliation(s)
- Makawan Srichan
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
- Tropical Vegetable Research Center, Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
3
|
Songsaeng A, Boonchuen P, Nareephot P, Piromyou P, Wongdee J, Greetatorn T, Inthaisong S, Tantasawat PA, Teamtisong K, Tittabutr P, Sato S, Boonkerd N, Songwattana P, Teaumroong N. Enhancing Resistance to Cercospora Leaf Spot in Mung Bean (Vigna radiata L.) through Bradyrhizobium sp. DOA9 Priming: Molecular Insights and Bio-Priming Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:2495. [PMID: 39273979 PMCID: PMC11396852 DOI: 10.3390/plants13172495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mung bean (Vigna radiata L.), a vital legume in Asia with significant nutritional benefits, is highly susceptible to Cercospora leaf spot (CLS) caused by Cercospora canescens, leading to significant yield losses. As an alternative to chemical fungicides, bio-priming with rhizobacteria can enhance plant resistance. This study explores the potential of Bradyrhizobium sp. strain DOA9 to augment resistance in mung bean against CLS via root priming. The results reveal that short (3 days) and double (17 and 3 days) priming with DOA9 before fungal infection considerably reduces lesion size on infected leaves by activating defense-related genes, including Pti1, Pti6, EDS1, NDR1, PR-1, PR-2, Prx, and CHS, or by suppressing the inhibition of PR-5 and enhancing peroxidase (POD) activity in leaves. Interestingly, the Type 3 secretion system (T3SS) of DOA9 may play a role in establishing resistance in V. radiata CN72. These findings suggest that DOA9 primes V. radiata CN72's defense mechanisms, offering an effective bio-priming strategy to alleviate CLS. Hence, our insights propose the potential use of DOA9 as a bio-priming agent to manage CLS in V. radiata CN72, providing a sustainable alternative to chemical fungicide applications.
Collapse
Affiliation(s)
- Apisit Songsaeng
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Phongkeat Nareephot
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongdet Piromyou
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jenjira Wongdee
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Teerana Greetatorn
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sukanya Inthaisong
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Piyada Alisha Tantasawat
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kamonluck Teamtisong
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongpan Songwattana
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
4
|
Wu R, Jia Q, Guo Y, Lin Y, Liu J, Chen J, Yan Q, Yuan N, Xue C, Chen X, Yuan X. Characterization of TBP and TAFs in Mungbean ( Vigna radiata L.) and Their Potential Involvement in Abiotic Stress Response. Int J Mol Sci 2024; 25:9558. [PMID: 39273505 PMCID: PMC11394781 DOI: 10.3390/ijms25179558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
The TATA-box binding protein (TBP) and TBP-associated factors (TAFs) constitute the transcription factor IID (TFIID), a crucial component of RNA polymerase II, essential for transcription initiation and regulation. Several TFIID subunits are shared with the Spt-Ada-Gcn5-acetyltransferase (SAGA) coactivator complex. Recent research has revealed the roles of TBP and TAFs in organogenesis and stress adaptation. In this study, we identified 1 TBP and 21 putative TAFs in the mungbean genome, among which VrTAF5, VrTAF6, VrTAF8, VrTAF9, VrTAF14, and VrTAF15 have paralogous genes. Their potential involvement in abiotic stress responses was also investigated here, including high salinity, water deficit, heat, and cold. The findings indicated that distinct genes exerted predominant influences in the response to different abiotic stresses through potentially unique mechanisms. Specifically, under salt stress, VrTBP, VrTAF2, and VrTAF15-1 were strongly induced, while VrTAF10, VrTAF11, and VrTAF13 acted as negative regulators. In the case of water-deficit stress, it was likely that VrTAF1, VrTAF2, VrTAF5-2, VrTAF9, and VrTAF15-1 were primarily involved. Additionally, in response to changes in ambient temperature, it was possible that genes such as VrTAF5-1, VrTAF6-1, VrTAF9-2, VrTAF10, VrTAF13, VrTAF14b-2, and VrTAF15-1 might play a dominant role. This comprehensive exploration of VrTBP and VrTAFs can offer a new perspective on understanding plant stress responses and provide valuable insights into breeding improvement.
Collapse
Affiliation(s)
- Ranran Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Qiyuan Jia
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingjian Guo
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jinyang Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Na Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
5
|
Laosatit K, Amkul K, Lin Y, Yuan X, Chen X, Somta P. Two genes encoding caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1) are candidate genes for physical seed dormancy in cowpea (Vigna unguiculata (L.) Walp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:146. [PMID: 38834825 DOI: 10.1007/s00122-024-04653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
KEY MESSAGE The major QTL Sdp1.1+ controlling seed dormancy in cowpea was finely mapped, and two CCoAOMT1 genes were identified as candidate genes for the dormancy. Seed dormancy in wild cowpea may be useful in breeding cultivated cowpea with pre-harvest sprouting resistance. A previous study identified a major quantitative trait locus (QTL) for seed dormancy, Sdp1.1+ , using the population of the cross between cultivated cowpea 'JP81610' and wild cowpea 'JP89083.' However, the molecular basis of seed dormancy in cowpea is not yet known. In this study, we aimed to finely map the locus Sdp1.1+ and identify candidate gene(s) for it. Germination tests demonstrated that the seed coat is the major factor controlling seed dormancy in the wild cowpea JP89083. Microscopic observations revealed that wild cowpea seeds, unlike cultivated cowpea seeds, possessed a palisade cuticle layer. Fine mapping using a large F2 population of the cross JP81610 × JP89083 grown in Thailand revealed a single QTL, Sdp1.1+ , controlling seed dormancy. The Sdp1.1+ was confirmed using a small F2 population of the same cross grown in Japan. The Sdp1.1+ was mapped to a 37.34-Kb region containing three genes. Two closely linked genes, Vigun03g278900 (VuCCoAOMT1a) and Vigun03g290000 (VuCCoAOMT1b), located 4.844 Kb apart were considered as candidate genes for seed dormancy. The two genes encoded caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1). DNA sequencing and alignment of VuCCoAOMT1a and VuCCoAOMT1b between JP89083 and JP81610 revealed a single nucleotide polymorphism (SNP) causing an amino acid change in VuCCoAOMT1a and several SNPs leading to six amino acid changes in VuCCoAOMT1b. Altogether, these results indicate that VuCCoAOMT1a and VuCCoAOMT1b are candidate genes controlling physical seed dormancy in the wild cowpea JP89083.
Collapse
Affiliation(s)
- Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Kitiya Amkul
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand.
| |
Collapse
|
6
|
Somta P, Laosatit K, Yuan X, Chen X. Thirty Years of Mungbean Genome Research: Where Do We Stand and What Have We Learned? FRONTIERS IN PLANT SCIENCE 2022; 13:944721. [PMID: 35909762 PMCID: PMC9335052 DOI: 10.3389/fpls.2022.944721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Mungbean is a socioeconomically important legume crop in Asia that is currently in high demand by consumers and industries both as dried beans and in plant-based protein foods. Marker-assisted and genomics-assisted breeding are promising approaches to efficiently and rapidly develop new cultivars with improved yield, quality, and resistance to biotic and abiotic stresses. Although mungbean was at the forefront of research at the dawn of the plant genomics era 30 years ago, the crop is a "slow runner" in genome research due to limited genomic resources, especially DNA markers. Significant progress in mungbean genome research was achieved only within the last 10 years, notably after the release of the VC1973A draft reference genome constructed using next-generation sequencing technology, which enabled fast and efficient DNA marker development, gene mapping, and identification of candidate genes for complex traits. Resistance to biotic stresses has dominated mungbean genome research to date; however, research is on the rise. In this study, we provide an overview of the past progress and current status of mungbean genomics research. We also discuss and evaluate some research results to provide a better understanding of mungbean genomics.
Collapse
Affiliation(s)
- Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
7
|
Laosatit K, Amkul K, Yimram T, Chen J, Lin Y, Yuan X, Wang L, Chen X, Somta P. A Class II KNOX Gene, KNAT7-1, Regulates Physical Seed Dormancy in Mungbean [ Vigna radiata (L.) Wilczek]. FRONTIERS IN PLANT SCIENCE 2022; 13:852373. [PMID: 35371162 PMCID: PMC8965505 DOI: 10.3389/fpls.2022.852373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Seed dormancy in wild mungbean (Vigna radiata var. sublobata) may be useful for the breeding of cultivated mungbean (var. radiata) with pre-harvest sprouting resistance. Previous studies have identified two major quantitative trait loci (QTLs) for seed dormancy, HsA and Sdwa5.1.1+, in wild mungbean that are possibly having the same locus or linked. However, these QTLs have not been confirmed/verified and a molecular basis of seed dormancy in mungbean is not yet known. In this study, we aimed to finely map the Sdwa5.1.1+ and identify candidate gene(s) for this locus. Microscopic observations revealed that wild mungbean "ACC41" seeds had a palisade cuticle layer, while cultivated mungbean "Kamphaeng Saen 2" (KPS2) seeds lacked this layer. Fine mapping using an F2 population developed from a cross between ACC41 and KPS2 revealed two linked QTLs, Sdwa5.1.1+ and Sdwa5.1.2+, controlling seed dormancy. The Sdwa5.1.1+ was confirmed in an F2:3 population derived from the same cross and mapped to a 3.298-Kb region containing only one gene LOC106767068, designated as VrKNAT7-1, which encodes the transcription factor KNOTTED ARABIDOPSIS THALIANA7 (KNAT7), a class II KNOTTED1-LIKE HOMEOBOX (KNOX II) protein. VrKNAX7 sequence alignment between ACC41 and KPS2 revealed several polymorphisms in the coding, untranslated, and promoter regions. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of VrKNAT7-1 and VrCYP86A, a putative downstream regulation of VrKNAT7-1, in the seed coat of ACC41 is statistically much higher than that of KPS2. Altogether, these results indicate that VrKNAT7-1 controls physical seed dormancy in the wild mungbean ACC41.
Collapse
Affiliation(s)
- Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Kitiya Amkul
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Tarika Yimram
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lixia Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Nakhon Pathom, Thailand
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, Thailand
| |
Collapse
|
8
|
Zhang H, Xu W, Chen H, Chen J, Liu X, Chen X, Yang S. Transcriptomic analysis of salt tolerance-associated genes and diversity analysis using indel markers in yardlong bean (Vigna unguiculata ssp. sesquipedialis). BMC Genom Data 2021; 22:34. [PMID: 34530724 PMCID: PMC8447766 DOI: 10.1186/s12863-021-00989-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High salinity is a devastating abiotic stresses for crops. To understand the molecular basis of salinity stress in yardlong bean (Vigna unguiculata ssp. sesquipedalis), and to develop robust markers for improving this trait in germplasm, whole transcriptome RNA sequencing (RNA-seq) was conducted to compare the salt-tolerant variety Suzi 41 and salt-sensitive variety Sujiang 1419 under normal and salt stress conditions. RESULTS Compared with controls, 417 differentially expressed genes (DEGs) were identified under exposure to high salinity, including 42 up- and 11 down-regulated DEGs in salt-tolerant Suzi 41 and 186 up- and 197 down-regulated genes in salt-sensitive Sujiang 1419, validated by qRT-PCR. DEGs were enriched in "Glycolysis/Gluconeogenesis" (ko00010), "Cutin, suberine and wax biosynthesis" (ko00073), and "phenylpropanoid biosynthesis" (ko00940) in Sujiang 1419, although "cysteine/methionine metabolism" (ko00270) was the only pathway significantly enriched in salt-tolerant Suzi 41. Notably, AP2/ERF, LR48, WRKY, and bHLH family transcription factors (TFs) were up-regulated under high salt conditions. Genetic diversity analysis of 84 yardlong bean accessions using 26 InDel markers developed here could distinguish salt-tolerant and salt-sensitive varieties. CONCLUSIONS These findings show a limited set of DEGs, primarily TFs, respond to salinity stress in V. unguiculata, and that these InDels associated with salt-inducible loci are reliable for diversity analysis.
Collapse
Affiliation(s)
- Hongmei Zhang
- Soybean Research Institute of Nanjing Agricultural University/National Center for Soybean Improvement/National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, Jiangsu, China.,Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50, Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Wenjing Xu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50, Zhongling Street, Nanjing, 210014, Jiangsu, China.,College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50, Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50, Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Xiaoqing Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50, Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50, Zhongling Street, Nanjing, 210014, Jiangsu, China.
| | - Shouping Yang
- Soybean Research Institute of Nanjing Agricultural University/National Center for Soybean Improvement/National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
9
|
Li D, Walker E, Francki M. Genes Associated with Foliar Resistance to Septoria Nodorum Blotch of Hexaploid Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:ijms22115580. [PMID: 34070394 PMCID: PMC8197541 DOI: 10.3390/ijms22115580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 11/25/2022] Open
Abstract
The genetic control of host response to the fungal necrotrophic disease Septoria nodorum blotch (SNB) in bread wheat is complex, involving many minor genes. Quantitative trait loci (QTL) controlling SNB response were previously identified on chromosomes 1BS and 5BL. The aim of this study, therefore, was to align and compare the genetic map representing QTL interval on 1BS and 5BS with the reference sequence of wheat and identify resistance genes (R-genes) associated with SNB response. Alignment of QTL intervals identified significant genome rearrangements on 1BS between parents of the DH population EGA Blanco, Millewa and the reference sequence of Chinese Spring with subtle rearrangements on 5BL. Nevertheless, annotation of genomic intervals in the reference sequence were able to identify and map 13 and 12 R-genes on 1BS and 5BL, respectively. R-genes discriminated co-located QTL on 1BS into two distinct but linked loci. NRC1a and TFIID mapped in one QTL on 1BS whereas RGA and Snn1 mapped in the linked locus and all were associated with SNB resistance but in one environment only. Similarly, Tsn1 and WK35 were mapped in one QTL on 5BL with NETWORKED 1A and RGA genes mapped in the linked QTL interval. This study provided new insights on possible biochemical, cellular and molecular mechanisms responding to SNB infection in different environments and also addressed limitations of using the reference sequence to identify the full complement of functional R-genes in modern varieties.
Collapse
Affiliation(s)
- Dora Li
- State Agricultural Biotechnology Centre, Murdoch University, South St, Murdoch, WA 6150, Australia; (D.L.); (E.W.)
| | - Esther Walker
- State Agricultural Biotechnology Centre, Murdoch University, South St, Murdoch, WA 6150, Australia; (D.L.); (E.W.)
- Department of Primary Industries and Regional Development, 3 Baron Hay Ct, South Perth, WA 6151, Australia
| | - Michael Francki
- State Agricultural Biotechnology Centre, Murdoch University, South St, Murdoch, WA 6150, Australia; (D.L.); (E.W.)
- Department of Primary Industries and Regional Development, 3 Baron Hay Ct, South Perth, WA 6151, Australia
- Correspondence:
| |
Collapse
|
10
|
Lee E, Yang X, Ha J, Kim MY, Park KY, Lee SH. Identification of a Locus Controlling Compound Raceme Inflorescence in Mungbean [ Vigna radiata (L.) R. Wilczek]. Front Genet 2021; 12:642518. [PMID: 33763121 PMCID: PMC7982598 DOI: 10.3389/fgene.2021.642518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Mungbean [Vigna radiata (L.) R. Wilczek] produces a compound raceme inflorescence that branches into secondary inflorescences, which produce flowers. This architecture results in the less-domesticated traits of asynchronous pod maturity and multiple harvest times. This study identified the genetic factors responsible for the compound raceme of mungbean, providing a unique biological opportunity to improve simultaneous flowering. Using a recombinant inbred line (RIL) population derived from VC1973A, an elite cultivar with a compound raceme type, and IT208075, a natural mutant with a simple raceme type, a single locus that determined the inflorescence type was identified based on 1:1 segregation ratio in the F8 generation, and designated Comraceme. Linkage map analysis showed Comraceme was located on chromosome 4 within a marker interval spanning 520 kb and containing 64 genes. RILs carrying heterozygous fragments around Comraceme produced compound racemes, indicating this form was dominant to the simple raceme type. Quantitative trait loci related to plant architecture and inflorescence have been identified in genomic regions of soybean syntenic to Comraceme. In IT208075, 15 genes were present as distinct variants not observed in other landrace varieties or wild mungbean. These genes included Vradi04g00002481, a development-related gene encoding a B3 transcriptional factor. The upstream region of Vradi04g00002481 differed between lines producing the simple and compound types of raceme. Expression of Vradi04g00002481 was significantly lower at the early vegetative stage and higher at the early reproductive stage, in IT208075 than in VC1973A. Vradi04g00002481 was therefore likely to determine inflorescence type in mungbean. Although further study is required to determine the functional mechanism, this finding provides valuable genetic information for understanding the architecture of the compound raceme in mungbean.
Collapse
Affiliation(s)
- Eunsoo Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Xuefei Yang
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Jungmin Ha
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, South Korea
| | - Moon Young Kim
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Keum Yong Park
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Suk-Ha Lee
- Department of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|