1
|
Spychała J, Tomkowiak A, Noweiska A, Bobrowska R, Rychel-Bielska S, Bocianowski J, Wolko Ł, Kowalczewski PŁ, Nowicki M, Kwiatek MT. Expression patterns of candidate genes for the Lr46/Yr29 "slow rust" locus in common wheat (Triticum aestivum L.) and associated miRNAs inform of the gene conferring the Puccinia triticina resistance trait. PLoS One 2024; 19:e0309944. [PMID: 39240941 PMCID: PMC11379320 DOI: 10.1371/journal.pone.0309944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/22/2024] [Indexed: 09/08/2024] Open
Abstract
Leaf rust caused by Puccinia triticina (Pt) is one of the most impactful diseases causing substantial losses in common wheat (Triticum aestivum L.) crops. In adult plants resistant to Pt, a horizontal adult plant resistance (APR) is observed: APR protects the plant against multiple pathogen races and is distinguished by durable persistence under production conditions. The Lr46/Yr29 locus was mapped to chromosome 1B of common wheat genome, but the identity of the underlying gene has not been demonstrated although several candidate genes have been proposed. This study aimed to analyze the expression of nine candidate genes located at the Lr46/Yr29 locus and their four complementary miRNAs (tae-miR5384-3p, tae-miR9780, tae-miR9775, and tae-miR164), in response to Pt infection. The plant materials tested included five reference cultivars in which the molecular marker csLV46G22 associated with the Lr46/Yr29-based Pt resistance was identified, as well as one susceptible control cultivar. Biotic stress was induced in adult plants by inoculation with fungal spores under controlled conditions. Plant material was sampled before and at 6, 12, 24, 48 hours post inoculation (hpi). Differences in expression of candidate genes at the Lr46/Yr29 locus were analyzed by qRT-PCR and showed that the expression of the genes varied at the analyzed time points. The highest expression of Lr46/Yr29 candidate genes (Lr46-Glu1, Lr46-Glu2, Lr46-Glu3, Lr46-RLK1, Lr46-RLK2, Lr46-RLK3, Lr46-RLK4, Lr46-Snex, and Lr46-WRKY) occurred at 12 and 24 hpi and such expression profiles were obtained only for one candidate gene among the nine genes analyzed (Lr46-Glu2), indicating that it may be a contributing factor in the resistance response to Pt infection.
Collapse
Affiliation(s)
- Julia Spychała
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Poznań Division, Department of Oilseed Crops, Poznań, Poland
| | - Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - Aleksandra Noweiska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Poznań Division, Department of Oilseed Crops, Poznań, Poland
| | - Roksana Bobrowska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Łukasz Wolko
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Marcin Nowicki
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Michał Tomasz Kwiatek
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Radzikow, Poland
| |
Collapse
|
2
|
Xiao B, Qie Y, Jin Y, Yu N, Sun N, Liu W, Wang X, Wang J, Qian Z, Zhao Y, Yuan T, Li L, Wang F, Liu C, Ma P. Genetic basis of an elite wheat cultivar Guinong 29 with harmonious improvement between multiple diseases resistance and other comprehensive traits. Sci Rep 2024; 14:14336. [PMID: 38906938 PMCID: PMC11192888 DOI: 10.1038/s41598-024-64998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Fungal diseases, such as powdery mildew and rusts, significantly affect the quality and yield of wheat. Pyramiding diverse types of resistance genes into cultivars represents the preferred strategy to combat these diseases. Moreover, achieving collaborative improvement between diseases resistance, abiotic stress, quality, and agronomic and yield traits is difficult in genetic breeding. In this study, the wheat cultivar, Guinong 29 (GN29), showed high resistance to powdery mildew and stripe rust at both seedling and adult plant stages, and was susceptible to leaf rust at the seedling stage but slow resistance at the adult-plant stage. Meanwhile, it has elite agronomic and yield traits, indicating promising coordination ability among multiple diseases resistance and other key breeding traits. To determine the genetic basis of these elite traits, GN29 was tested with 113 molecular markers for 98 genes associated with diseases resistance, stress tolerance, quality, and adaptability. The results indicated that two powdery mildew resistance (Pm) genes, Pm2 and Pm21, confirmed the outstanding resistance to powdery mildew through genetic analysis, marker detection, genomic in situ hybridization (GISH), non-denaturing fluorescence in situ hybridization (ND-FISH), and homology-based cloning; the stripe rust resistance (Yr) gene Yr26 and leaf rust resistance (Lr) genes Lr1 and Lr46 conferred the stripe rust and slow leaf rust resistance in GN29, respectively. Meanwhile, GN29 carries dwarfing genes Rht-B1b and Rht-D1a, vernalization genes vrn-A1, vrn-B1, vrn-D1, and vrn-B3, which were consistent with the phenotypic traits in dwarf characteristic and semi-winter property; carries genes Dreb1 and Ta-CRT for stress tolerance to drought, salinity, low temperature, and abscisic acid (ABA), suggesting that GN29 may also have elite stress-tolerance ability; and carries two low-molecular-weight glutenin subunit genes Glu-B3b and Glu-B3bef which contributed to high baking quality. This study not only elucidated the genetic basis of the elite traits in GN29 but also verified the capability for harmonious improvement in both multiple diseases resistance and other comprehensive traits, offering valuable information for breeding breakthrough-resistant cultivars.
Collapse
Affiliation(s)
- Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Key Laboratory of Crop Genetic and Breeding, Shijiazhuang, 050035, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ningning Yu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Nina Sun
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Wei Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China
| | - Jiaojiao Wang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Zejun Qian
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ya Zhao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Tangyu Yuan
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Fengtao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China.
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
3
|
Xu X, Li G, Bai G, Bian R, Bernardo A, Kolmer J, Carver BF, Wolabu TW, Wu Y. Characterization of Quantitative Trait Loci for Leaf Rust Resistance in the Uzbekistani Wheat Landrace Teremai Bugdai. PHYTOPATHOLOGY 2024; 114:1373-1379. [PMID: 38281142 DOI: 10.1094/phyto-09-23-0320-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Leaf rust, caused by Puccinia triticina, is a major cause of wheat yield losses globally, and novel leaf rust resistance genes are needed to enhance wheat leaf rust resistance. Teremai Bugdai is a landrace from Uzebekistan that is highly resistant to many races of P. triticina in the United States. To unravel leaf rust resistance loci in Teremai Bugdai, a recombinant inbred line (RIL) population of Teremai Bugdai × TAM 110 was evaluated for response to P. triticina race Pt54-1 (TNBGJ) and genotyped using single nucleotide polymorphism (SNP) markers generated by genotyping-by-sequencing (GBS). Quantitative trait loci (QTL) analysis using 5,130 high-quality GBS-SNPs revealed three QTLs, QLr-Stars-2DS, QLr-Stars-6BL, and QLr.Stars-7BL, for leaf rust resistance in two experiments. QLr-Stars-2DS, which is either a new Lr2 allele or a new resistance locus, was delimited to an ∼19.47-Mb interval between 46.4 and 65.9 Mb on 2DS and explained 31.3 and 33.2% of the phenotypic variance in the two experiments. QLr-Stars-6BL was mapped in an ∼84.0-kb interval between 719.48 and 719.56 Mb on 6BL, accounting for 33 to 36.8% of the phenotypic variance in two experiments. QLr.Stars-7BL was placed in a 350-kb interval between 762.41 and 762.76 Mb on 7BL and explained 4.4 to 5.3% of the phenotypic variance. Nine GBS-SNPs flanking these QTLs were converted to kompetitive allele specific PCR (KASP) markers, and these markers can be used to facilitate their introgression into locally adapted wheat lines.
Collapse
Affiliation(s)
- Xiangyang Xu
- U.S. Department of Agriculture-Agricultural Research Service, Peanut and Small Grains Research Unit, Stillwater, OK 74075
| | - Genqiao Li
- U.S. Department of Agriculture-Agricultural Research Service, Peanut and Small Grains Research Unit, Stillwater, OK 74075
| | - Guihua Bai
- U.S. Department of Agriculture-Agricultural Research Service, Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506
| | - Ruolin Bian
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - Amy Bernardo
- U.S. Department of Agriculture-Agricultural Research Service, Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506
| | - Jim Kolmer
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108
| | - Brett F Carver
- Department of Plant and Soil Science, Oklahoma State University, Stillwater, OK 74075
| | - Tezera W Wolabu
- Department of Plant and Soil Science, Oklahoma State University, Stillwater, OK 74075
| | - Yanqi Wu
- Department of Plant and Soil Science, Oklahoma State University, Stillwater, OK 74075
| |
Collapse
|
4
|
Qiao L, Gao X, Jia Z, Liu X, Wang H, Kong Y, Qin P, Yang B. Identification of adult resistant genes to stripe rust in wheat from southwestern China based on GWAS and WGCNA analysis. PLANT CELL REPORTS 2024; 43:67. [PMID: 38341832 DOI: 10.1007/s00299-024-03148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/13/2024]
Abstract
KEY MESSAGE In this study, genome-wide association studies combined with transcriptome data analysis were utilized to reveal potential candidate genes for stripe rust resistance in wheat, providing a basis for screening wheat varieties for stripe rust resistance. Wheat stripe rust, which is caused by the wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, Pst) is one of the world's most devastating diseases of wheat. Genetic resistance is the most effective strategy for controlling diseases. Although wheat stripe rust resistance genes have been identified to date, only a few of them confer strong and broad-spectrum resistance. Here, the resistance of 335 wheat germplasm resources (mainly wheat landraces) from southwestern China to wheat stripe rust was evaluated at the adult stage. Combined genome-wide association study (GWAS) and weighted gene co-expression network analysis (WGCNA) based on RNA sequencing from stripe rust resistant accession Y0337 and susceptible accession Y0402, five candidate resistance genes to wheat stripe rust (TraesCS1B02G170200, TraesCS2D02G181000, TraesCS4B02G117200, TraesCS6A02G189300, and TraesCS3A02G122300) were identified. The transcription level analyses showed that these five genes were significantly differentially expressed between resistant and susceptible accessions post inoculation with Pst at different times. These candidate genes could be experimentally transformed to validate and manipulate fungal resistance, which is beneficial for the development of the wheat cultivars resistant to stripe rust.
Collapse
Affiliation(s)
- Liang Qiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xue Gao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhiqiang Jia
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xingchen Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huiyutang Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yixi Kong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Baoju Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
5
|
Norman M, Chen C, Miah H, Patpour M, Sørensen C, Hovmøller M, Forrest K, Kumar S, Prasad P, Gangwar OP, Bhardwaj S, Bariana H, Periyannan S, Bansal U. Sr65: a widely effective gene for stem rust resistance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:1. [PMID: 38071267 DOI: 10.1007/s00122-023-04507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
KEY MESSAGE Sr65 in chromosome 1A of Indian wheat landrace Hango-2 is a potentially useful all-stage resistance gene that currently protects wheat from stem rust in Australia, India, Africa and Europe. Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), threatened global wheat production with the appearance of widely virulent races that included TTKSK and TTRTF. Indian landrace Hango-2 showed resistance to Pgt races in India and Australia. Screening of a Hango-2/Avocet 'S' (AvS) recombinant inbred line population identified two stem rust resistance genes, a novel gene (temporarily named as SrH2) from Hango-2 and Sr26 from AvS. A mapping population segregating for SrH2 alone was developed from two recombinant lines. SrH2 was mapped on the short arm of chromosome 1A, where it was flanked by KASP markers KASP_7944 (proximal) and KASP_12147 (distal). SrH2 was delimited to an interval of 1.8-2.3 Mb on chromosome arm 1AS. The failure to detect candidate genes through MutRenSeq and comparative genomic analysis with the pan-genome dataset indicated the necessity to generate a Hango-2 specific assembly for detecting the gene sequence linked with SrH2 resistance. MutRenSeq however enabled identification of SrH2-linked KASP marker sunCS_265. Markers KASP_12147 and sunCS_265 showed 92% and 85% polymorphism among an Australian cereal cultivar diversity panel and can be used for marker-assisted selection of SrH2 in breeding programs. The effectiveness of SrH2 against Pgt races from Europe, Africa, India, and Australia makes it a valuable resource for breeding stem rust-resistant wheat cultivars. Since no wheat-derived gene was previously located in chromosome arm 1AS, SrH2 represents a new locus and named as SR65.
Collapse
Affiliation(s)
- Michael Norman
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Chunhong Chen
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Hanif Miah
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Mehran Patpour
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Chris Sørensen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Mogens Hovmøller
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Kerrie Forrest
- Agriculture Victoria, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Rd., Bundoora, VIC, 3083, Australia
| | - Subodh Kumar
- Indian Council of Agricultural Research - Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Pramod Prasad
- Indian Council of Agricultural Research - Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Om Prakash Gangwar
- Indian Council of Agricultural Research - Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Subhash Bhardwaj
- Indian Council of Agricultural Research - Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Harbans Bariana
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
- School of Science, Western Sydney University, Bourke Road, Richmond, NSW, 2753, Australia
| | - Sambasivam Periyannan
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, ACT, 2601, Australia.
- School of Agriculture and Environmental Science, Centre for Crop Health, University of Southern Queensland, West Street, Toowoomba, QLD, 4350, Australia.
| | - Urmil Bansal
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia.
| |
Collapse
|
6
|
Yang G, Zhang N, Boshoff WHP, Li H, Li B, Li Z, Zheng Q. Identification and introgression of a novel leaf rust resistance gene from Thinopyrum intermedium chromosome 7J s into wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:231. [PMID: 37875643 DOI: 10.1007/s00122-023-04474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
KEY MESSAGE A novel leaf rust resistance locus located on a terminal segment (0-69.29 Mb) of Thinopyrum intermedium chromosome arm 7JsS has been introduced into wheat genome for disease resistance breeding. Xiaoyan 78829, a wheat-Thinopyrum intermedium partial amphiploid, exhibits excellent resistance to fungal diseases in wheat. To transfer its disease resistance to common wheat (Triticum aestivum), we previously developed a translocation line WTT26 using chromosome engineering. Disease evaluation showed that WTT26 was nearly immune to 14 common races of leaf rust pathogen (Puccinia triticina) and highly resistant to Ug99 race PTKST of stem rust pathogen (P. graminis f. sp. tritici) at the seedling stage. It also displayed high adult plant resistance to powdery mildew (caused by Blumeria graminis f. sp. tritici). Cytogenetic and molecular marker analysis revealed that WTT26 carried a T4BS·7JsS chromosome translocation. Once transferred into the susceptible wheat genetic background, chromosome 7JsS exhibited its resistance to leaf rust, indicating that the resistance locus was located on this alien chromosome. To enhance the usefulness of this locus in wheat breeding, we further developed several new translocation lines with small Th. intermedium segments using irradiation and developed 124 specific markers using specific-locus amplified fragment sequencing, which increased the marker density of chromosome 7JsS. Furthermore, a refined physical map of chromosome 7JsS was constructed with 74 specific markers, and six bins were thus arranged according to the co-occurrence of markers and alien chromosome segments. Combining data from specific marker amplification and resistance evaluation, we mapped a new leaf rust resistance locus in the 0-69.29 Mb region on chromosome 7JsS. The translocation lines carrying the new leaf rust resistance locus and its linked markers will contribute to wheat disease-resistance breeding.
Collapse
Affiliation(s)
- Guotang Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Zhang
- Department of Plant Pathology, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Willem H P Boshoff
- Department of Plant Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Prasad P, Jain N, Chaudhary J, Thakur RK, Savadi S, Bhardwaj SC, Gangwar OP, Lata C, Adhikari S, Kumar S, Balyan HS, Gupta PK. Candidate effectors for leaf rust resistance gene Lr28 identified through transcriptome and in-silico analysis. Front Microbiol 2023; 14:1143703. [PMID: 37789861 PMCID: PMC10543267 DOI: 10.3389/fmicb.2023.1143703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/31/2023] [Indexed: 10/05/2023] Open
Abstract
Puccinia spp. causing rust diseases in wheat and other cereals secrete several specialized effector proteins into host cells. Characterization of these proteins and their interaction with host's R proteins could greatly help to limit crop losses due to diseases. Prediction of effector proteins by combining the transcriptome analysis and multiple in-silico approaches is gaining importance in revealing the pathogenic mechanism. The present study involved identification of 13 Puccinia triticina (Pt) coding sequences (CDSs), through transcriptome analysis, that were differentially expressed during wheat-leaf rust interaction; and prediction of their effector like features using different in-silico tools. NCBI-BLAST and pathogen-host interaction BLAST (PHI-BLAST) tools were used to annotate and classify these sequences based on their most closely matched counterpart in both the databases. Homology between CDSs and the annotated sequences in the NCBI database ranged from 79 to 94% and with putative effectors of other plant pathogens in PHI-BLAST from 24.46 to 54.35%. Nine of the 13 CDSs had effector-like features according to EffectorP 3.0 (≥0.546 probability of these sequences to be effector). The qRT-PCR expression analysis revealed that the relative expression of all CDSs in compatible interaction (HD2329) was maximum at 11 days post inoculation (dpi) and that in incompatible interactions (HD2329 + Lr28) was maximum at 3 dpi in seven and 9 dpi in five CDSs. These results suggest that six CDSs (>0.8 effector probability as per EffectorP 3.0) could be considered as putative Pt effectors. The molecular docking and MD simulation analysis of these six CDSs suggested that candidate Lr28 protein binds more strongly to candidate effector c14094_g1_i1 to form more stable complex than the remaining five. Further functional characterization of these six candidate effectors should prove useful for a better understanding of wheat-leaf rust interaction. In turn, this should facilitate effector-based leaf rust resistance breeding in wheat.
Collapse
Affiliation(s)
- Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Rajni Kant Thakur
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | | | | | - Om Prakash Gangwar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Charu Lata
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Sneha Adhikari
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| |
Collapse
|
8
|
Xu S, Lyu Z, Zhang N, Li M, Wei X, Gao Y, Cheng X, Ge W, Li X, Bao Y, Yang Z, Ma X, Wang H, Kong L. Genetic mapping of the wheat leaf rust resistance gene Lr19 and development of translocation lines to break its linkage with yellow pigment. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:200. [PMID: 37639002 DOI: 10.1007/s00122-023-04425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
KEY MESSAGE The leaf rust resistance gene Lr19, which is present on the long arm of chromosome 7E1 in Thinopyrum ponticum, was mapped within a 0.3-cM genetic interval, and translocation lines were developed to break its linkage with yellow pigmentation The leaf rust resistance locus Lr19, which was transferred to wheat (Triticum aestivum) from its relative Thinopyrum ponticum in 1966, still confers broad resistance to most known races of the leaf rust pathogen Puccinia triticina (Pt) worldwide. However, this gene has not previously been fine-mapped, and its tight linkage with a gene causing yellow pigmentation has limited its application in bread wheat breeding. In this study, we genetically mapped Lr19 using a bi-parental population from a cross of two wheat-Th. ponticum substitution lines, the Lr19-carrying line 7E1(7D) and the leaf rust-susceptible line 7E2(7D). Genetic analysis of the F2 population and the F2:3 families showed that Lr19 was a single dominant gene. Genetic markers allowed the gene to be mapped within a 0.3-cM interval on the long arm of Th. ponticum chromosome 7E1, flanked by markers XsdauK3734 and XsdauK2839. To reduce the size of the Th. ponticum chromosome segment carrying Lr19, the Chinese Spring Ph1b mutant was employed to promote recombination between the homoeologous chromosomes of the wheat chromosome 7D and the Th. ponticum chromosome 7E1. Two translocation lines with short Th. ponticum chromosome fragments carrying Lr19 were identified using the genetic markers closely linked to Lr19. Both translocation lines were resistant to 16 Pt races collected throughout China. Importantly, the linkage between Lr19 and yellow pigment content was broken in one of the lines. Thus, the Lr19 linked markers and translocation lines developed in this study are valuable resources in marker-assisted selection as part of common wheat breeding programs.
Collapse
Affiliation(s)
- Shoushen Xu
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zhongfan Lyu
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Na Zhang
- College of Plant Protection, Technological Innovation Center for Biological Control Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, 071001, Hebei, People's Republic of China
| | - Mingzhu Li
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xinyi Wei
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Yuhang Gao
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xinxin Cheng
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Wenyang Ge
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xuefeng Li
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Yinguang Bao
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, Sichun, People's Republic of China
| | - Xin Ma
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Hongwei Wang
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Lingrang Kong
- National Key Laboratory of Wheat Improvement, Shandong Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Hou W, Lu Q, Ma L, Sun X, Wang L, Nie J, Guo P, Liu T, Li Z, Sun C, Ren Y, Wang X, Yang J, Chen F. Mapping of quantitative trait loci for leaf rust resistance in the wheat population 'Xinmai 26/Zhoumai 22'. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3019-3032. [PMID: 36879436 DOI: 10.1093/jxb/erad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/02/2023] [Indexed: 05/21/2023]
Abstract
Leaf rust, caused by the fungal pathogen Puccinia triticina (Pt), is one of the major and dangerous diseases of wheat, and has caused serious yield loss of wheat worldwide. Here, we investigated adult-plant resistance (APR) to leaf rust in a recombinant inbred line (RIL) population derived from 'Xinmai 26' and 'Zhoumai 22' over 3 years. Linkage mapping for APR to leaf rust revealed four quantitative trait loci (QTL) in this RIL population. Two QTL, QLr.hnau-2BS and QLr.hnau-3BS were contributed by 'Zhoumai22', whereas QLr.hnau-2DS and QLr.hnau-5AL were contributed by 'Xinmai 26'. The QLr.hnau-2BS covering a race-specific resistance gene Lr13 showed the most stable APR to leaf rust. Overexpression of Lr13 significantly increased APR to leaf rust. Interestingly, we found that a CNL(coiled coil-nucleotide-binding site-leucine-rich repeat)-like gene, TaCN, in QLr.hnau-2BS completely co-segregated with leaf rust resistance. The resistant haplotype TaCN-R possessed half the sequence of the coiled-coil domain of TaCN protein. Lr13 strongly interacted with TaCN-R, but did not interact with the full-length TaCN (TaCN-S). In addition, TaCN-R was significantly induced after Pt inoculation and changed the sub-cellular localization of Lr13 after interaction. Therefore, we hypothesized that TaCN-R mediated leaf rust resistance possibly by interacting with Lr13. This study provides important QTL for APR to leaf rust, and new insights into understanding how a CNL gene modulates disease resistance in common wheat.
Collapse
Affiliation(s)
- Weixiu Hou
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Qisen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Lin Ma
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaonan Sun
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Liyan Wang
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Jingyun Nie
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Peng Guo
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Ti Liu
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Zaifeng Li
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaodong Wang
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
10
|
Annan EN, Huang L. Molecular Mechanisms of the Co-Evolution of Wheat and Rust Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091809. [PMID: 37176866 PMCID: PMC10180972 DOI: 10.3390/plants12091809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Wheat (Triticum spp.) is a cereal crop domesticated >8000 years ago and the second-most-consumed food crop nowadays. Ever since mankind has written records, cereal rust diseases have been a painful awareness in antiquity documented in the Old Testament (about 750 B.C.). The pathogen causing the wheat stem rust disease is among the first identified plant pathogens in the 1700s, suggesting that wheat and rust pathogens have co-existed for thousands of years. With advanced molecular technologies, wheat and rust genomes have been sequenced, and interactions between the host and the rust pathogens have been extensively studied at molecular levels. In this review, we summarized the research at the molecular level and organized the findings based on the pathogenesis steps of germination, penetration, haustorial formation, and colonization of the rusts to present the molecular mechanisms of the co-evolution of wheat and rust pathogens.
Collapse
Affiliation(s)
- Emmanuel N Annan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| | - Li Huang
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
| |
Collapse
|
11
|
Bokore FE, Cuthbert RD, Knox RE, Hiebert CW, Pozniak CJ, Berraies S, Ruan Y, Meyer B, Hucl P, McCallum BD. Genetic mapping of leaf rust ( Puccinia triticina Eriks) resistance genes in six Canadian spring wheat cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1130768. [PMID: 37021307 PMCID: PMC10067638 DOI: 10.3389/fpls.2023.1130768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/09/2023] [Indexed: 06/19/2023]
Abstract
The Canada Western Red Spring wheat (Triticum aestivum L.) cultivars AAC Concord, AAC Prevail, CDC Hughes, Lillian, Glenlea, and elite line BW961 express a spectrum of resistance to leaf rust caused by Puccinia triticina Eriks. This study aimed to identify and map the leaf rust resistance of the cultivars using three doubled haploid populations, AAC Prevail/BW961 (PB), CDC Hughes/AAC Concord (HC), and Lillian/Glenlea (LG). The populations were evaluated for seedling resistance in the greenhouse and adult plant disease response in the field at Morden, MB for 3 years and genotyped with the 90K wheat Infinium iSelect SNP array. Genetic maps were constructed to perform QTL analysis on the seedling and field leaf rust data. A total of three field leaf rust resistance QTL segregated in the PB population, five in the HC, and six in the LG population. In the PB population, BW961 contributed two QTL on chromosomes 2DS and 7DS, and AAC Prevail contributed a QTL on 4AL consistent across trials. Of the five QTL in HC, AAC Concord contributed two QTL on 4AL and 7AL consistent across trials and a QTL on 3DL.1 that provided seedling resistance only. CDC Hughes contributed two QTL on 1DS and 3DL.2. Lillian contributed four QTL significant in at least two of the three trials on 2BS, 4AL, 5AL, and 7AL, and Glenlea two QTL on 4BL and 7BL. The 1DS QTL from CDC Hughes, the 2DS from BW961, the 4AL from the AAC Prevail, AAC Concord, and Lillian, and the 7AL from AAC Concord and Lillian conferred seedling leaf rust resistance. The QTL on 4AL corresponded with Lr30 and was the same across cultivars AAC Prevail, AAC Concord, and Lillian, whereas the 7AL corresponding with LrCen was coincident between AAC Concord and Lillian. The 7DS and 2DS QTL in BW961 corresponded with Lr34 and Lr2a, respectively, and the 1DS QTL in CDC Hughes with Lr21. The QTL identified on 5AL could represent a novel gene. The results of this study will widen our knowledge of leaf rust resistance genes in Canadian wheat and their utilization in resistance breeding.
Collapse
Affiliation(s)
- Firdissa E. Bokore
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Richard D. Cuthbert
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Ron E. Knox
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Colin W. Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Curtis J. Pozniak
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Samia Berraies
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Brad Meyer
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Pierre Hucl
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brent D. McCallum
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| |
Collapse
|
12
|
Tan C, Zhang H, Chen H, Guan M, Zhu Z, Cao X, Ge X, Zhu B, Chen D. First Report on Development of Genome-Wide Microsatellite Markers for Stock ( Matthiola incana L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:748. [PMID: 36840095 PMCID: PMC9965543 DOI: 10.3390/plants12040748] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Stock (Matthiola incana (L.) R. Br.) is a famous annual ornamental plant with important ornamental and economic value. The lack of DNA molecular markers has limited genetic analysis, genome evolution, and marker-assisted selective breeding studies of M. incana. Therefore, more DNA markers are needed to support the further elucidation of the biology and genetics of M. incana. In this study, a high-quality genome of M. incana was initially assembled and a set of effective SSR primers was developed at the whole-genome level using genome data. A total of 45,612 loci of SSRs were identified; the di-nucleotide motifs were the most abundant (77.35%). In total, 43,540 primer pairs were designed, of which 300 were randomly selected for PCR validation, and as the success rate for amplification. In addition, 22 polymorphic SSR markers were used to analyze the genetic diversity of 40 stock varieties. Clustering analysis showed that all varieties could be divided into two clusters with a genetic distance of 0.68, which were highly consistent with their flower shape (potted or cut type). Moreover, we have verified that these SSR markers are effective and transferable within the Brassicaceae family. In this study, potential SSR molecular markers were successfully developed for 40 M. incana varieties using whole genome analysis, providing an important genetic tool for theoretical and applied research on M. incana.
Collapse
Affiliation(s)
- Chen Tan
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Haimei Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Haidong Chen
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Miaotian Guan
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Zhenzhi Zhu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Xueying Cao
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Xianhong Ge
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 431700, China
| | - Bo Zhu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Daozong Chen
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
13
|
Kaur S, Gill HS, Breiland M, Kolmer JA, Gupta R, Sehgal SK, Gill U. Identification of leaf rust resistance loci in a geographically diverse panel of wheat using genome-wide association analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1090163. [PMID: 36818858 PMCID: PMC9929074 DOI: 10.3389/fpls.2023.1090163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Leaf rust, caused by Puccinia triticina (Pt) is among the most devastating diseases posing a significant threat to global wheat production. The continuously evolving virulent Pt races in North America calls for exploring new sources of leaf rust resistance. A diversity panel of 365 bread wheat accessions selected from a worldwide population of landraces and cultivars was evaluated at the seedling stage against four Pt races (TDBJQ, TBBGS, MNPSD and, TNBJS). A wide distribution of seedling responses against the four Pt races was observed. Majority of the genotypes displayed a susceptible response with only 28 (9.8%), 59 (13.5%), 45 (12.5%), and 29 (8.1%) wheat accessions exhibiting a highly resistant response to TDBJQ, TBBGS, MNPSD and, TNBJS, respectively. Further, we conducted a high-resolution multi-locus genome-wide association study (GWAS) using a set of 302,524 high-quality single nucleotide polymorphisms (SNPs). The GWAS analysis identified 27 marker-trait associations (MTAs) for leaf rust resistance on different wheat chromosomes of which 20 MTAs were found in the vicinity of known Lr genes, MTAs, or quantitative traits loci (QTLs) identified in previous studies. The remaining seven significant MTAs identified represent genomic regions that harbor potentially novel genes for leaf rust resistance. Furthermore, the candidate gene analysis for the significant MTAs identified various genes of interest that may be involved in disease resistance. The identified resistant lines and SNPs linked to the QTLs in this study will serve as valuable resources in wheat rust resistance breeding programs.
Collapse
Affiliation(s)
- Shivreet Kaur
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Harsimardeep S. Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Matthew Breiland
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - James A. Kolmer
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), St. Paul, MN, United States
| | - Rajeev Gupta
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Fargo, ND, United States
| | - Sunish K. Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Upinder Gill
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
14
|
Barilli E, Rubiales D. Identification and Characterization of Resistance to Rust in Lentil and Its Wild Relatives. PLANTS (BASEL, SWITZERLAND) 2023; 12:626. [PMID: 36771710 PMCID: PMC9919313 DOI: 10.3390/plants12030626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Lentil rust is a major disease worldwide caused by Uromyces viciae-fabae. In this study, we screened a large germplasm collection of cultivated lentils (Lens culinaris ssp. culinaris) and its wild relatives, both in adult plants in the field with a local rust isolate during 2 seasons and in seedlings under controlled conditions with four fungal isolates of worldwide origin. The main results from our study were the following: (1) a significant number of accessions with resistance based on hypersensitive reaction (reduced Infection Type (IT)) were identified in cultivated lentil and in L. ervoides, L. nigricans and L.c. orientalis. The IT scores showed a clear isolate-specific response suggesting race-specificity, so each fungal isolate might be considered a different race. Resistance was identified against all isolates what might be the basis to develop a standard differential set that should be a priority for rust definition and monitoring. (2) Interestingly, although at lower frequency than in L. ervoides and L. nigricans, the hypersensitive response was also observed within cultivated lentil, with accession 1561 (L.c. culinaris) displaying resistance to the four isolates making this accession a valuable ready-to-use resource for lentil resistance breeding. Resistance to all other rust isolates was also available within L.c. culinaris in an isolate-specific manner. Accession 1308 (L. ervoides) showed resistance against all isolates tested, as well as a reduced number of accessions belonging to other wild Lens species. (3) In addition, our screenings allowed the identification of several accessions with partial resistance (reduced Disease Severity (DS) despite high IT). Adult Plant Resistance resulting in reduced severity in adult plants in the field, despite high susceptibility in seedlings, was more frequently identified in L.c. culinaris, but also in L. nigricans and L.c. orientalis.
Collapse
|
15
|
Zhao R, Liu B, Wan W, Jiang Z, Chen T, Wang L, Bie T. Mapping and characterization of a novel adult-plant leaf rust resistance gene LrYang16G216 via bulked segregant analysis and conventional linkage method. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:1. [PMID: 36645449 DOI: 10.1007/s00122-023-04270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
A novel adult-plant leaf rust resistance gene LrYang16G216 on wheat chromosome 6BL was identified and mapped to a 0.59 cM genetic interval by BSA and conventional linkage method. Leaf rust (Puccinia triticina) is one of the most devastating fungal diseases of wheat (Triticum aestivum L.). Discovery and identification of new resistance genes is essential to develop disease-resistant cultivars. An advanced breeding line Yang16G216 was previously identified to confer adult-plant resistance (APR) to leaf rust. In this research, a recombinant inbred line (RIL) population was constructed from the cross between Yang16G216 and a highly susceptible line Yang16M6393, and genotyped with exome capture sequencing and 55 K SNP array. Through bulked segregant analysis (BSA) and genetic linkage mapping, a stable APR gene, designated as LrYang16G216, was detected and mapped to the distal region of chromosome arm 6BL with a genetic interval of 2.8 cM. For further verification, another RIL population derived from the cross between Yang16G216 and a susceptible wheat variety Yangmai 29 was analyzed using the enriched markers in the target interval, and LrYang16G216 was further narrowed to a 0.59 cM genetic interval flanked by the KASP markers Ax109403980 and Ax95083494, corresponding to the physical position 712.34-713.94 Mb in the Chinese Spring reference genome, in which twenty-six disease resistance-related genes were annotated. Based on leaf rust resistance spectrum, mapping data and physical location, LrYang16G216 was identified to be a novel and effective APR gene. The LrYang16G216 with linked markers will be useful for marker-assisted selection in wheat resistance breeding.
Collapse
Affiliation(s)
- Renhui Zhao
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China
| | - Bingliang Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225007, China
| | - Wentao Wan
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China
| | - Zhengning Jiang
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China
| | - Tiantian Chen
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China
| | - Ling Wang
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China
| | - Tongde Bie
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China.
| |
Collapse
|
16
|
Zhuansun X, Sun J, Liu N, Zhang S, Wang H, Hu Z, Ma J, Sun Q, Xie C. Mapping a leaf rust resistance gene LrOft in durum wheat Ofanto and its suppressor SuLrOft in common wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1108565. [PMID: 37152129 PMCID: PMC10161252 DOI: 10.3389/fpls.2023.1108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Epidemics of leaf rust (caused by the fungal pathogen Puccinia triticina Erikss., Pt) raise concerns regarding sustainability of wheat production. Deployment of resistant cultivars is the most effective and economic strategy for combating this disease. Ofanto is a durum wheat cultivar that exhibits high resistance to Pt race PHT throughout its entire growing period. In the present study, we identified a leaf rust resistance gene in Ofanto and temporarily designated it as LrOft. LrOft was mapped to a 2.5 cM genetic interval in chromosome arm 6BL between Indel markers 6B6941 and 6B50L24. During introgression of LrOft from Ofanto to common wheat it was observed that F1 plants of Ofanto crossed with Shi4185 exhibited leaf rust resistance whereas the F1 of Ofanto crossed with ND4503 was susceptible. In order to map the presumed suppressor locus, a Shi4185/ND4503//Ofanto three-way pentaploid population was generated and SuLrOft was mapped on chromosome arm 2AS. SuLrOft was mapped within a 2.6 cM genetic interval flanked by 2AS50L14 and 2AS50L6. Fine mapping using 2,268 plants of the three-way cross narrowed the suppressor locus to a 68.2-kbp physical interval according to IWGSC RefSeq v1.1. Sequence analysis of genes in the physical interval revealed that TraesCS2A02G110800 encoding an RPP-13-like protein with an NB-ARC domain was a potential candidate for SuLrOft.
Collapse
Affiliation(s)
- Xiangxi Zhuansun
- Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), China Agricultural University, Beijing, China
- Beijing Key Laboratory of Crop Genetic Improvement, Beijing, China
| | - Junna Sun
- Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), China Agricultural University, Beijing, China
- Beijing Key Laboratory of Crop Genetic Improvement, Beijing, China
| | - Nannan Liu
- Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), China Agricultural University, Beijing, China
- Beijing Key Laboratory of Crop Genetic Improvement, Beijing, China
| | - Shengnan Zhang
- Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), China Agricultural University, Beijing, China
- Beijing Key Laboratory of Crop Genetic Improvement, Beijing, China
| | - Huifang Wang
- Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), China Agricultural University, Beijing, China
- Beijing Key Laboratory of Crop Genetic Improvement, Beijing, China
| | - Zhaorong Hu
- Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), China Agricultural University, Beijing, China
- Beijing Key Laboratory of Crop Genetic Improvement, Beijing, China
| | - Jun Ma
- Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), China Agricultural University, Beijing, China
- Beijing Key Laboratory of Crop Genetic Improvement, Beijing, China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), China Agricultural University, Beijing, China
- Beijing Key Laboratory of Crop Genetic Improvement, Beijing, China
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), China Agricultural University, Beijing, China
- Beijing Key Laboratory of Crop Genetic Improvement, Beijing, China
- *Correspondence: Chaojie Xie,
| |
Collapse
|
17
|
Sheng D, Qiao L, Zhang X, Li X, Chang L, Guo H, Zhang S, Chen F, Chang Z. Fine mapping of a recessive leaf rust resistance locus on chromosome 2BS in wheat accession CH1539. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:52. [PMID: 37313422 PMCID: PMC10248610 DOI: 10.1007/s11032-022-01318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Leaf rust (LR), caused by Puccinia triticina (Pt), is one of the most important fungal diseases of wheat worldwide. The wheat accession CH1539 showed a high level of resistance to leaf rust. A mapping population of 184 recombinant inbred lines (RILs) was developed from a cross between the resistant accession CH1539 and the susceptible cultivar SY95-71. The RILs showed segregating infection responses to Puccinia triticina Eriks. (Pt) race THK at the seedling stage. Genetic analysis showed that leaf rust resistance was controlled by a monogenic gene, and the potential locus was temporarily named LrCH1539. Bulked segregant analysis (BSA) using a 35 K DArTseq array located LrCH1539 on the short arm of chromosome 2B. Subsequently, a genetic linkage map of LrCH1539 was constructed using the developed 2BS chromosome-specific markers, and its flanking markers were sxau-2BS136 and sxau-2BS81. An F2 subpopulation with 3619 lines was constructed by crossing the resistant and susceptible lines selected from the RIL population. The inoculation identification results showed that LrCH1539 was recessively inherited and was fine-mapped to a 779.4-kb region between markers sxau-2BS47 and sxau-2BS255 at the end of 2BS. The linkage marker analysis showed that the positions of LrCH1539 and Lr16 were the same, but the identification results of the resistance spectrum indicated that the causal genes of the two might be different. The resistant materials reported in this study and the cosegregation marker can be used for marker-assisted selection breeding of leaf rust-resistant wheat cultivars. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01318-4.
Collapse
Affiliation(s)
- Dece Sheng
- College of Life Science, Shanxi University, Taiyuan, 030006 Shanxi China
| | - Linyi Qiao
- College of Agronomy, Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Xiaojun Zhang
- College of Agronomy, Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Xin Li
- College of Agronomy, Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Lifang Chang
- College of Agronomy, Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Huijuan Guo
- College of Agronomy, Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Shuwei Zhang
- College of Agronomy, Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Fang Chen
- College of Agronomy, Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Zhijian Chang
- College of Agronomy, Shanxi Province Key Laboratory of Crop Genetics and Gene Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| |
Collapse
|
18
|
Li J, Bao Y, Han R, Wang X, Xu W, Li G, Yang Z, Zhang X, Li X, Liu A, Li H, Liu J, Zhang P, Liu C. Molecular and Cytogenetic Identification of Stem Rust Resistant Wheat- Thinopyrum intermedium Introgression Lines. PLANT DISEASE 2022; 106:2447-2454. [PMID: 35196099 DOI: 10.1094/pdis-10-21-2274-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thinopyrum intermedium (JJJsJsStSt, 2n = 6x = 42), a wild relative of common wheat, possesses many desirable agronomic genes for wheat improvement. The production of wheat-Thinopyrum intermedium introgression lines is a key step for transferring these beneficial genes into wheat. In this study, we characterized three wheat-Thinopyrum intermedium introgression lines TA3681, TA5566, and TA5567 using non-denaturing fluorescence in situ hybridization, genomic in situ hybridization, PCR-based landmark unique gene, and intron targeting markers. Our results showed that TA3681 is a wheat-Thinopyrum intermedium 1St disomic addition line, TA5566 is a wheat-Thinopyrum intermedium non-Robertsonian translocation line carrying two pairs of 3A-7Js translocation chromosomes, and that TA5567 is a wheat-Thinopyrum intermedium non-Robertsonian translocation line carrying a pair of 3A-7Js translocation chromosomes. We developed 13, 36, and 15 Thinopyrum intermedium chromosome-specific markers for detecting the introgressed Thinopyrum chromosomes in TA3681, TA5566, and TA5567, respectively. Stem rust assessment revealed that TA3681 exhibited a high level of seedling resistance to Chinese-prevalent Puccinia graminis f. sp. tritici pathotypes, and both TA5566 and TA5567 were highly resistant to Australian P. graminis f. sp. tritici pathotypes, indicating that Thinopyrum intermedium chromosomes 1St and 7Js might carry new stem rust resistance genes. Therefore, the new identified introgression lines may be useful for improving wheat stem rust resistance.
Collapse
Affiliation(s)
- Jianbo Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Huang and Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, Shandong 250100, China
- Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2570, Australia
| | - Yinguang Bao
- Agronomy College, Shandong Agricultural University, Taian, Shandong 271002, China
| | - Ran Han
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Huang and Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, Shandong 250100, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Huang and Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, Shandong 250100, China
| | - Wenjing Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Huang and Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, Shandong 250100, China
| | - Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Xiaojun Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030810, China
| | - Xin Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030810, China
| | - Aifeng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Huang and Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, Shandong 250100, China
| | - Haosheng Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Huang and Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, Shandong 250100, China
| | - Jianjun Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Huang and Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, Shandong 250100, China
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2570, Australia
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Huang and Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan, Shandong 250100, China
| |
Collapse
|
19
|
Liu D, Yuan C, Singh RP, Randhawa MS, Bhavani S, Kumar U, Huerta-Espino J, Lagudah E, Lan C. Stripe rust and leaf rust resistance in CIMMYT wheat line "Mucuy" is conferred by combinations of race-specific and adult-plant resistance loci. FRONTIERS IN PLANT SCIENCE 2022; 13:880138. [PMID: 36061764 PMCID: PMC9437451 DOI: 10.3389/fpls.2022.880138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Developing wheat varieties with durable resistance is a core objective of the International Maize and Wheat Improvement Center (CIMMYT) and many other breeding programs worldwide. The CIMMYT advanced wheat line "Mucuy" displayed high levels of resistance to stripe rust (YR) and leaf rust (LR) in field evaluations in Mexico and several other countries. To determine the genetic basis of YR and LR resistance, 138 F5 recombinant inbred lines (RILs) derived from the cross of Apav#1× Mucuy were phenotyped for YR responses from 2015 to 2020 at field sites in India, Kenya, and Mexico, and LR in Mexico. Seedling phenotyping for YR and LR responses was conducted in the greenhouse in Mexico using the same predominant races as in field trials. Using 12,681 polymorphic molecular markers from the DArT, SNP, and SSR genotyping platforms, we constructed genetic linkage maps and QTL analyses that detected seven YR and four LR resistance loci. Among these, a co-located YR/LR resistance loci was identified as Yr29/Lr46, and a seedling stripe rust resistance gene YrMu was mapped on the 2AS/2NS translocation. This fragment also conferred moderate adult plant resistance (APR) under all Mexican field environments and in one season in Kenya. Field trial phenotyping with Lr37-virulent Puccinia triticina races indicated the presence of an APR QTL accounting for 18.3-25.5% of the LR severity variation, in addition to a novel YR resistance QTL, QYr.cim-3DS, derived from Mucuy. We developed breeder-friendly KASP and indel molecular markers respectively for Yr29/Lr46 and YrMu. The current study validated the presence of known genes and identified new resistance loci, a QTL combination effect, and flanking markers to facilitate accelerated breeding for genetically complex, durable rust resistance.
Collapse
Affiliation(s)
- Demei Liu
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Innovation Academy for Seed Design Chinese Academy of Sciences (CAS), Xining, China
| | - Chan Yuan
- Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), New Delhi, India
| | - Julio Huerta-Espino
- Campo Experimental Valle de México, Instituto Nacional de Investigacion Forestales Agricolas y Pecuarias (INIFAP), Texcoco, Mexico
| | - Evans Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Canberra, ACT, Australia
| | - Caixia Lan
- Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
Xu X, Kolmer J, Li G, Tan C, Carver BF, Bian R, Bernardo A, Bai G. Identification and characterization of the novel leaf rust resistance gene Lr81 in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2725-2734. [PMID: 35716201 DOI: 10.1007/s00122-022-04145-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/28/2022] [Indexed: 05/05/2023]
Abstract
The novel, leaf rust seedling resistance gene, Lr81, was identified in a Croatian breeding line and mapped to a genomic region of less than 100 Kb on chromosome 2AS. Leaf rust, caused by Puccinia triticina, is the most common and widespread rust disease in wheat. Races of Puccinia triticina evolve rapidly in the southern Great Plains of the USA, and leaf rust resistance genes often lose effectiveness shortly after deployment in wheat production. PI 470121, a wheat breeding line developed by the University of Zagreb in Croatia, showed high resistance to Puccinia triticina races collected from Oklahoma, suggesting that PI 470121 could be a leaf rust resistance source for the southern Great Plains of the USA. Genetic analysis based on an F2 population and F2:3 families derived from the cross PI 470121 × Stardust indicated that PI 470121 carries a dominant seedling resistance gene, designated as Lr81. Linkage mapping delimited Lr81 to a genomic region of 96,148 bp flanked by newly developed KASP markers Xstars-KASP320 and Xstars-KASP323 on the short arm of chromosome 2A, spanning 67,030,206-67,132,354 bp in the Chinese Spring reference assembly (IWGSC RefSeq v1.0). Deletion bin mapping assigned Lr81 to the terminal bin 2AS-0.78-1.00. Allelism tests indicated that Lr81 is a distinctive leaf rust resistance locus with the physical order Lr65-Lr17-Lr81. Marker-assisted selection based on a set of markers closely linked to leaf rust resistance genes in PI 470121 and Stardust enabled identification of a recombinant inbred line RIL92 carrying Lr81 only. Lr81 is a valuable leaf rust resistance source that can be rapidly introgressed into locally adapted cultivars using KASP markers Xstars-KASP320 and Xstars-KASP323.
Collapse
Affiliation(s)
- Xiangyang Xu
- Wheat, Peanut, and Other Field Crops Research Unit, USDA-ARS, Stillwater, OK, 74075, USA.
| | - James Kolmer
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN, 55106, USA
| | - Genqiao Li
- Wheat, Peanut, and Other Field Crops Research Unit, USDA-ARS, Stillwater, OK, 74075, USA
| | - Chengcheng Tan
- Wheat, Peanut, and Other Field Crops Research Unit, USDA-ARS, Stillwater, OK, 74075, USA
| | - Brett F Carver
- Plant and Soil Science Department, Oklahoma State, University, Stillwater, OK, 74078, USA
| | - Ruolin Bian
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Amy Bernardo
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Guihua Bai
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| |
Collapse
|
21
|
Raghunandan K, Tanwar J, Patil SN, Chandra AK, Tyagi S, Agarwal P, Mallick N, Murukan N, Kumari J, Sahu TK, Jacob SR, Kumar A, Yadav S, Nyamgoud S, Vinod, Singh AK, Jha SK. Identification of Novel Broad-Spectrum Leaf Rust Resistance Sources from Khapli Wheat Landraces. PLANTS (BASEL, SWITZERLAND) 2022; 11:1965. [PMID: 35956445 PMCID: PMC9370231 DOI: 10.3390/plants11151965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022]
Abstract
Wheat leaf rust caused by Puccinia triticina Eriks is an important disease that causes yield losses of up to 40% in susceptible varieties. Tetraploid emmer wheat (T. turgidum ssp. Dicoccum), commonly called Khapli wheat in India, is known to have evolved from wild emmer (Triticum turgidum var. dicoccoides), and harbors a good number of leaf rust resistance genes. In the present study, we are reporting on the screening of one hundred and twenty-three dicoccum wheat germplasm accessions against the leaf rust pathotype 77-5. Among these, an average of 45.50% of the germplasms were resistant, 46.74% were susceptible, and 8.53% had mesothetic reactions. Further, selected germplasm lines with accession numbers IC138898, IC47022, IC535116, IC535133, IC535139, IC551396, and IC534144 showed high level of resistance against the eighteen prevalent pathotypes. The infection type varied from ";", ";N", ";N1" to ";NC". PCR-based analysis of the resistant dicoccum lines with SSR marker gwm508 linked to the Lr53 gene, a leaf rust resistance gene effective against all the prevalent pathotypes of leaf rust in India and identified from a T. turgidum var. dicoccoides germplasm, indicated that Lr53 is not present in the selected accessions. Moreover, we have also generated 35K SNP genotyping data of seven lines and the susceptible control, Mandsaur Local, to study their relationships. The GDIRT tool based on homozygous genotypic differences revealed that the seven genotypes are unique to each other and may carry different resistance genes for leaf rust.
Collapse
Affiliation(s)
- K. Raghunandan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (K.R.); (J.T.); (S.N.P.); (A.K.C.); (S.T.); (P.A.); (N.M.); (N.M.); (S.Y.); (S.N.); (V.)
| | - Jatin Tanwar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (K.R.); (J.T.); (S.N.P.); (A.K.C.); (S.T.); (P.A.); (N.M.); (N.M.); (S.Y.); (S.N.); (V.)
| | - Shivanagouda N. Patil
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (K.R.); (J.T.); (S.N.P.); (A.K.C.); (S.T.); (P.A.); (N.M.); (N.M.); (S.Y.); (S.N.); (V.)
| | - Ajay Kumar Chandra
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (K.R.); (J.T.); (S.N.P.); (A.K.C.); (S.T.); (P.A.); (N.M.); (N.M.); (S.Y.); (S.N.); (V.)
| | - Sandhya Tyagi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (K.R.); (J.T.); (S.N.P.); (A.K.C.); (S.T.); (P.A.); (N.M.); (N.M.); (S.Y.); (S.N.); (V.)
| | - Priyanka Agarwal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (K.R.); (J.T.); (S.N.P.); (A.K.C.); (S.T.); (P.A.); (N.M.); (N.M.); (S.Y.); (S.N.); (V.)
| | - Niharika Mallick
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (K.R.); (J.T.); (S.N.P.); (A.K.C.); (S.T.); (P.A.); (N.M.); (N.M.); (S.Y.); (S.N.); (V.)
| | - Niranjana Murukan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (K.R.); (J.T.); (S.N.P.); (A.K.C.); (S.T.); (P.A.); (N.M.); (N.M.); (S.Y.); (S.N.); (V.)
| | - Jyoti Kumari
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India; (J.K.); (T.K.S.); (S.R.J.)
| | - Tanmaya Kumar Sahu
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India; (J.K.); (T.K.S.); (S.R.J.)
| | - Sherry R. Jacob
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India; (J.K.); (T.K.S.); (S.R.J.)
| | - Atul Kumar
- Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110008, India;
| | - Suresh Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (K.R.); (J.T.); (S.N.P.); (A.K.C.); (S.T.); (P.A.); (N.M.); (N.M.); (S.Y.); (S.N.); (V.)
| | - Sneha Nyamgoud
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (K.R.); (J.T.); (S.N.P.); (A.K.C.); (S.T.); (P.A.); (N.M.); (N.M.); (S.Y.); (S.N.); (V.)
| | - Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (K.R.); (J.T.); (S.N.P.); (A.K.C.); (S.T.); (P.A.); (N.M.); (N.M.); (S.Y.); (S.N.); (V.)
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India; (J.K.); (T.K.S.); (S.R.J.)
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (K.R.); (J.T.); (S.N.P.); (A.K.C.); (S.T.); (P.A.); (N.M.); (N.M.); (S.Y.); (S.N.); (V.)
| |
Collapse
|
22
|
Zhang P, Lan C, Singh RP, Huerta-Espino J, Li Z, Lagudah E, Bhavani S. Identification and Characterization of Resistance Loci to Wheat Leaf Rust and Stripe Rust in Afghan Landrace "KU3067". FRONTIERS IN PLANT SCIENCE 2022; 13:894528. [PMID: 35837449 PMCID: PMC9274257 DOI: 10.3389/fpls.2022.894528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Leaf rust and stripe rust are important wheat diseases worldwide causing significant losses where susceptible varieties are grown. Resistant cultivars offer long-term control and reduce the use of hazardous chemicals, which can be detrimental to both human health and the environment. Land races have been a valuable resource for mining new genes for various abiotic and biotic stresses including wheat rusts. Afghan wheat landrace "KU3067" displayed high seedling infection type (IT) for leaf rust and low IT for stripe rust; however, it displayed high levels of field resistance for both rusts when tested for multiple seasons against the Mexican rust isolates. This study focused on identifying loci-conferring seedling resistance to stripe rust, and also loci-conferring adult plant resistance (APR) against the Mexican races of leaf rust and stripe rust. A backcrossed inbred line (BIL) population advanced to the BC1F5 generation derived from the cross of KU3067 and Apav (triple rust susceptible line) was used for both, inheritance and QTL mapping studies. The population and parents were genotyped with Diversity Arrays Technology-genotyping-by-sequencing (DArT-Seq) and phenotyped for leaf rust and stripe rust response at both seedling and adult plant stages during multiple seasons in Mexico with relevant pathotypes. Mapping results identified an all-stage resistance gene for stripe rust, temporarily designated as YrKU, on chromosome 7BL. In total, six QTL-conferring APR to leaf rust on 1AS, 2AL, 4DL, 6BL, 7AL, and 7BL, and four QTL for stripe rust resistance on 1BS, 2AL, 4DL, and 7BL were detected in the analyses. Among these, pleiotropic gene Lr67/Yr46 on 4DL with a significantly large effect is the first report in an Afghan landrace-conferring resistance to both leaf and stripe rusts. QLr.cim-7BL/YrKU showed pleiotropic resistance to both rusts and explained 7.5-17.2 and 12.6-19.3% of the phenotypic variance for leaf and stripe rusts, respectively. QYr.cim-1BS and QYr.cim-2AL detected in all stripe environments with phenotypic variance explained (PVE) 12.9-20.5 and 5.4-12.5%, and QLr.cim-6BL are likely to be new. These QTL and their closely linked markers will be useful for fine mapping and marker-assisted selection (MAS) in breeding for durable resistance to multiple rust diseases.
Collapse
Affiliation(s)
- Peipei Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Caixia Lan
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Julio Huerta-Espino
- Campo Experimental Valle de México the National Institute of Forestry, Agricultural and Livestock Research (INIFAP), Texcoco, Mexico
| | - Zaifeng Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Evans Lagudah
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra, ACT, Australia
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
23
|
Discovery of the New Leaf Rust Resistance Gene Lr82 in Wheat: Molecular Mapping and Marker Development. Genes (Basel) 2022; 13:genes13060964. [PMID: 35741726 PMCID: PMC9222540 DOI: 10.3390/genes13060964] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Breeding for leaf rust resistance has been successful worldwide and is underpinned by the discovery and characterisation of genetically diverse sources of resistance. An English scientist, Arthur Watkins, collected pre-Green Revolution wheat genotypes from 33 locations worldwide in the early part of the 20th Century and this collection is now referred to as the ‘Watkins Collection’. A common wheat genotype, Aus27352 from Yugoslavia, showed resistance to currently predominating Australian pathotypes of the wheat leaf rust pathogen. We crossed Aus27352 with a leaf rust susceptible wheat selection Avocet S and a recombinant inbred line (RIL) F6 population of 200 lines was generated. Initial screening at F3 generation showed monogenic segregation for seedling response to leaf rust in Aus27352. These results were confirmed by screening the Aus27352/Avocet S RIL population. The underlying locus was temporarily named LrAW2. Bulked segregant analysis using the 90K Infinium SNP array located LrAW2 in the long arm of chromosome 2B. Tests with molecular markers linked to two leaf rust resistance genes, Lr50 and Lr58, previously located in chromosome 2B, indicated the uniqueness of LrAW2 and it was formally designated Lr82. Kompetitive allele-specific polymerase chain reaction assays were developed for Lr82-linked SNPs. KASP_22131 mapped 0.8 cM proximal to Lr82 and KASP_11333 was placed 1.2 cM distal to this locus. KASP_22131 showed 91% polymorphism among a set of 89 Australian wheat cultivars. We recommend the use of KASP_22131 for marker assisted pyramiding of Lr82 in breeding programs following polymorphism check on parents.
Collapse
|
24
|
Wang Z, Jiang X, Zhang Y, Du Z, Feng J, Quan W, Ren J, Che M, Zhang Z. Identification and Validation of a Major Quantitative Trait Locus for Adult Plant Resistance Against Leaf Rust From the Chinese Wheat Landrace Bai Qimai. FRONTIERS IN PLANT SCIENCE 2022; 13:812002. [PMID: 35665144 PMCID: PMC9158542 DOI: 10.3389/fpls.2022.812002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/21/2022] [Indexed: 06/15/2023]
Abstract
Leaf rust caused by Puccinia triticina Eriks. (Pt) is a common disease of wheat worldwide. The Chinese wheat landrace Bai Qimai (BQM) has shown high resistance to leaf rust for a prolonged period of time; the infected leaves of BQM displayed high infection types (ITs), but they showed low disease severities at the adult plant stage. To find quantitative trait loci (QTL) for resistance to leaf rust, 186 recombinant inbred lines from the cross Nugaines × BQM were phenotyped for leaf rust response in multiple field environments under natural Pt infections and genotyped using the 90K wheat single nucleotide polymorphism (SNP) chip and simple sequence repeat (SSR) markers. A total of 2,397 polymorphic markers were used for QTL mapping, and a novel major QTL (QLr.cau-6DL) was detected on chromosome 6DL from BQM. The effectiveness of QLr.cau-6DL was validated using the three additional wheat populations (RL6058 × BQM, Aikang58 × BQM, and Jimai22 × BQM). QLr.cau-6DL could significantly reduce leaf rust severities across all tested environments and different genetic backgrounds, and its resistance was more effective than that of Lr34. Moreover, QLr.cau-6DL acted synergistically with Lr34 to confer strong resistance to leaf rust. We believe that QLr.cau-6DL should have high potential value in the breeding of wheat cultivars with leaf rust resistance.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xu Jiang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yuzhu Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Ziyi Du
- School of Agroforestry & Medicine, Open University of China, Beijing, China
| | - Jing Feng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Quan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Junda Ren
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Mingzhe Che
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zhongjun Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Bhurta R, Hurali DT, Tyagi S, Sathee L, Adavi B S, Singh D, Mallick N, Chinnusamy V, Vinod, Jha SK. Genome-Wide Identification and Expression Analysis of the Thioredoxin ( Trx) Gene Family Reveals Its Role in Leaf Rust Resistance in Wheat ( Triticum aestivum L.). Front Genet 2022; 13:836030. [PMID: 35401694 PMCID: PMC8990325 DOI: 10.3389/fgene.2022.836030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 01/11/2023] Open
Abstract
Bread wheat (Triticum aestivum L.; Ta) is the staple cereal crop for the majority of the world’s population. Leaf rust disease caused by the obligate fungal pathogen, Puccinia triticina L., is a biotrophic pathogen causing significant economic yield damage. The alteration in the redox homeostasis of the cell caused by various kinds of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in response to pathogenic infections is controlled by redox regulators. Thioredoxin (Trx) is one of the redox regulators with low molecular weight and is thermostable. Through a genome-wide approach, forty-two (42) wheat Trx genes (TaTrx) were identified across the wheat chromosome groups A, B, and D genomes containing 12, 16, and 14 Trx genes, respectively. Based on in silico expression analysis, 15 TaTrx genes were selected and utilized for further experimentation. These 15 genes were clustered into six groups by phylogenetic analysis. MicroRNA (miRNA) target analysis revealed eight different miRNA-targeted TaTrx genes. Protein–protein interaction (PPI) analysis showed TaTrx proteins interact with thioredoxin reductase, peroxiredoxin, and uncharacterized proteins. Expression profiles resulting from quantitative real-time PCR (qRT-PCR) revealed four TaTrx genes (TaTrx11-5A, TaTrx13-5B, TaTrx14-5D, and TaTrx15-3B) were significantly induced in response to leaf rust infection. Localization of ROS and its content estimation and an assay of antioxidant enzymes and expression analysis suggested that Trx have been involved in ROS homeostasis at span 24HAI-72HAI during the leaf rust resistance.
Collapse
Affiliation(s)
| | | | - Sandhya Tyagi
- Division of Plant Physiology, ICAR-IARI, New Delhi, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-IARI, New Delhi, India
| | | | - Dalveer Singh
- Division of Plant Physiology, ICAR-IARI, New Delhi, India
| | | | | | - Vinod
- Division of Genetics, ICAR-IARI, New Delhi, India
| | | |
Collapse
|
26
|
Kumar K, Jan I, Saripalli G, Sharma PK, Mir RR, Balyan HS, Gupta PK. An Update on Resistance Genes and Their Use in the Development of Leaf Rust Resistant Cultivars in Wheat. Front Genet 2022; 13:816057. [PMID: 35432483 PMCID: PMC9008719 DOI: 10.3389/fgene.2022.816057] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Abstract
Wheat is one of the most important cereal crops in the world. The production and productivity of wheat is adversely affected by several diseases including leaf rust, which can cause yield losses, sometimes approaching >50%. In the present mini-review, we provide updated information on (i) all Lr genes including those derived from alien sources and 14 other novel resistance genes; (ii) a list of QTLs identified using interval mapping and MTAs identified using GWAS (particular those reported recently i.e., after 2018) and their association with known Lr genes; (iii) introgression/pyramiding of individual Lr genes in commercial/prominent cultivars from 18 different countries including India. Challenges and future perspectives of breeding for leaf rust resistance are also provided at the end of this mini-review. We believe that the information in this review will prove useful for wheat geneticists/breeders, not only in the development of leaf rust-resistant wheat cultivars, but also in the study of molecular mechanism of leaf rust resistance in wheat.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Irfat Jan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Wadura, India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - P. K. Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Wadura, India
| | - H. S. Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - P. K. Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- *Correspondence: P. K. Gupta, ,
| |
Collapse
|
27
|
Dorostkar S, Dadkhodaie A, Ebrahimie E, Heidari B, Ahmadi-Kordshooli M. Comparative transcriptome analysis of two contrasting resistant and susceptible Aegilops tauschii accessions to wheat leaf rust (Puccinia triticina) using RNA-sequencing. Sci Rep 2022; 12:821. [PMID: 35039525 PMCID: PMC8764039 DOI: 10.1038/s41598-021-04329-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Leaf rust, caused by Puccinia triticina Eriks., is the most common rust disease of wheat (Triticum aestivum L.) worldwide. Owing to the rapid evolution of virulent pathotypes, new and effective leaf rust resistance sources must be found. Aegilops tauschii, an excellent source of resistance genes to a wide range of diseases and pests, may provide novel routes for resistance to this disease. In this study, we aimed to elucidate the transcriptome of leaf rust resistance in two contrasting resistant and susceptible Ae. tauschii accessions using RNA-sequencing. Gene ontology, analysis of pathway enrichment and transcription factors provided an apprehensible review of differentially expressed genes and highlighted biological mechanisms behind the Aegilops–P. triticina interaction. The results showed the resistant accession could uniquely recognize pathogen invasion and respond precisely via reducing galactosyltransferase and overexpressing chromatin remodeling, signaling pathways, cellular homeostasis regulation, alkaloid biosynthesis pathway and alpha-linolenic acid metabolism. However, the suppression of photosynthetic pathway and external stimulus responses were observed upon rust infection in the susceptible genotype. In particular, this first report of comparative transcriptome analysis offers an insight into the strength and weakness of Aegilops against leaf rust and exhibits a pipeline for future wheat breeding programs.
Collapse
Affiliation(s)
- Saeideh Dorostkar
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Dadkhodaie
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Esmaeil Ebrahimie
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, 3086, Australia.,School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA, 5371, Australia.,School of BioSciences, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
28
|
Hurali DT, Bhurta R, Tyagi S, Sathee L, Sandeep AB, Singh D, Mallick N, Vinod, Jha SK. Analysis of NIA and GSNOR family genes and nitric oxide homeostasis in response to wheat-leaf rust interaction. Sci Rep 2022; 12:803. [PMID: 35039546 PMCID: PMC8764060 DOI: 10.1038/s41598-021-04696-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022] Open
Abstract
Nitric oxide (NO) modulates plant response to biotic and abiotic stresses by S-nitrosylation-mediated protein post-translational modification. Nitrate reductase (NR) and S-nitrosoglutathione reductase (GSNOR) enzymes are essential for NO synthesis and the maintenance of Nitric oxide/S-nitroso glutathione (NO/GSNO) homeostasis, respectively. S-nitrosoglutathione, formed by the S-nitrosylation reaction of NO with glutathione, plays a significant physiological role as the mobile reservoir of NO. The genome-wide analysis identified nine NR (NIA) and three GSNOR genes in the wheat genome. Phylogenic analysis revealed that the nine NIA genes +were clustered into four groups and the 3 GSNORs into two groups. qRT-PCR expression profiling of NIAs and GSNORs was done in Chinese spring (CS), a leaf rust susceptible wheat line showing compatible interaction, and Transfer (TR), leaf rust-resistant wheat line showing incompatible interaction, post-inoculation with leaf rust pathotype 77-5 (121-R-63). All the NIA genes showed upregulation during incompatible interaction in comparison with the compatible reaction. The GSNOR genes showed a variable pattern of expression: the TaGSNOR1 showed little change, whereas TaGSNOR2 showed higher expression during the incompatible response. TaGSNOR3 showed a rise of expression both in compatible and incompatible reactions. Before inoculation and after 72 h of pathogen inoculation, NO localization was studied in both compatible and incompatible reactions. The S-nitrosothiol accumulation, NR, and glutathione reductase activity showed a consistent increase in the incompatible interactions. The results demonstrate that both NR and GSNOR plays significant role in defence against the leaf rust pathogen in wheat by modulating NO homeostasis or signalling.
Collapse
Affiliation(s)
- Deepak T Hurali
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ramesh Bhurta
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sandhya Tyagi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Adavi B Sandeep
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Dalveer Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Niharika Mallick
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shailendra K Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
29
|
Gahtyari N, Jaiswal J, Sharma D, Talha M, Kumar N, Singh N. Genetic analysis and marker association of physiological traits under rainfed and heat stress conditions in spring wheat (Triticum aestivum L.). GENETIKA 2022; 54:1049-1068. [DOI: 10.2298/gensr2203049g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Identifying gene interactions and markers associated with physiological
traits, especially at later stages of grain filling, can help develop
effective breeding methodology in wheat crop. Six generations (P1, P2, F1,
F2, BC1P1 and BC1P2) of four different spring wheat crosses
(drought-responsive x drought susceptible) and F3 generation of a single
cross, i.e., MACS6272 x UP2828 were phenotyped and genotyped to decipher
gene action and associated markers. Ample variation in canopy temperature
depression (CTD - 2.6 - 5.6?C), chlorophyll content by SPAD (39.6 - 51.3),
relative water content (RWC - 51.5 - 75.4 %), grain filling period (GFP -
61.1 - 80.1 days), 100 seed weight (3.7 - 5.5 grams), harvest index (HI -
25.8 - 46.2 %), biological yield (BY - 35.5 - 89.8 grams) and grain yield
(GY - 13.4 - 36.5 grams) per plant were observed in six generations. GY
positively correlated with CTD, SPAD, 100SW, BY and HI (0.08* - 0.85**). BY
had the maximum direct (0.82) and indirect effect via other traits on GY.
Significant non-additive epistatic interactions (j & l) and duplicate gene
action were found for most traits except GFP and 100SW. Seven different SSR
markers associated with CTD, SPAD, NDVI, RWC, 100SW, and explained
phenotypic variation (PVE) ranging from 10.1% to 18.4%, with marker Xcfd35
explaining highest PVE for RWC. The identified candidate genes (in silico)
belonged to transmembrane proteins (Xcfd32, Xcfd50), nucleic acid binding
domains (Xbarc124, Xgwm484) and having enzymatic activity (Xcfd35, Xwmc47,
Xwmc728) important for abiotic stress tolerance. Complex inheritance
deciphered by six generations indicated delaying the selection to later
stages of segregation so that useful transgressive segregants can be
selected for improving grain yields in wheat.
Collapse
Affiliation(s)
- Navin Gahtyari
- Department of Genetics & Plant Breeding, G.B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Jai Jaiswal
- Department of Genetics & Plant Breeding, G.B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Devender Sharma
- Department of Genetics & Plant Breeding, G.B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Mohammed Talha
- Department of Genetics & Plant Breeding, G.B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Naveen Kumar
- Department of Molecular Biology & Genetic Engineering, G.B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Narendra Singh
- Department of Genetics & Plant Breeding, G.B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
30
|
Jin Y, Shi F, Liu W, Fu X, Gu T, Han G, Shi Z, Sheng Y, Xu H, Li L, An D. Identification of Resistant Germplasm and Detection of Genes for Resistance to Powdery Mildew and Leaf Rust from 2,978 Wheat Accessions. PLANT DISEASE 2021; 105:3900-3908. [PMID: 34129353 DOI: 10.1094/pdis-03-21-0532-re] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Powdery mildew and leaf rust, caused by Blumeria graminis f. sp. tritici and Puccinia triticina, respectively, are widespread diseases of wheat worldwide. The use of resistant cultivars is considered the most economical, environment-friendly, and effective method to control these diseases. In the present study, a collection of 2,978 wheat accessions consisting of 1,394 advanced breeding lines, 1,078 Chinese cultivars, 291 introduced cultivars, 132 lines containing alien chromosomes, and 83 landraces was tested for reactions to powdery mildew and leaf rust. The results indicated that 659 wheat accessions (22.1%) were highly resistant to a widely prevalent B. graminis f. sp. tritici isolate, E09, at the seedling stage, and 390 were consistently resistant to the mixture of B. graminis f. sp. tritici isolates at the adult plant stage. Meanwhile, 63 accessions (2.1%) were highly resistant to leaf rust at the adult plant stage, of which 54 were resistant to a predominant and highly virulent P. triticina race, THTT, at the seedling stage. Notably, 17 accessions were resistant to both powdery mildew and leaf rust. To detect known genes for resistance to powdery mildew and leaf rust, these accessions were tested with gene-specific or tightly linked markers for seven powdery mildew genes (Pm genes; Pm2, Pm4, Pm5, Pm6, Pm8, Pm21, and Pm24) and 10 Lr genes (Lr1, Lr9, Lr10, Lr19, Lr20, Lr24, Lr26, Lr34, Lr37, and Lr46). Of the 659 powdery mildew-resistant accessions, 328 might carry single Pm genes and 191 carry combined Pm genes. Pm2 was detected at the highest frequency of 59.6%, followed by Pm8, Pm6, Pm21, Pm4, and Pm5, whereas Pm24 was not detected. In addition, 139 accessions might contain unknown Pm genes different from those tested in this study. In the 63 accessions resistant to leaf rust, four leaf rust genes (Lr genes; Lr1, Lr10, Lr26, and Lr34) were detected in 41 accessions singly or in combination, whereas six genes (Lr9, Lr19, Lr20, Lr24, Lr37, and Lr46) were not detected. Twenty-two accessions might contain unknown Lr genes different from those tested in this study. This study not only provided important information for rationally distributing resistance genes in wheat breeding programs, but also identified resistant germplasm that might have novel genes to enrich the diversity of resistance sources.
Collapse
Affiliation(s)
- Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengyu Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weihua Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyi Fu
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhipeng Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Sheng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongxing Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Lihui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Zhou J, Singh RP, Ren Y, Bai B, Li Z, Yuan C, Li S, Huerta-Espino J, Liu D, Lan C. Identification of Two New Loci for Adult Plant Resistance to Leaf Rust and Stripe Rust in the Chinese Wheat Variety 'Neimai 836'. PLANT DISEASE 2021; 105:3705-3714. [PMID: 33779256 DOI: 10.1094/pdis-12-20-2654-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The characterization of leaf rust (caused by Puccinia triticina) and stripe rust (caused by Puccinia striiformis f. sp. tritici) resistance genes is the basis for breeding resistant wheat varieties and managing epidemics of these diseases in wheat. A cross between the susceptible wheat variety 'Apav#1' and resistant variety 'Neimai 836' was used to develop a mapping population containing 148 F5 recombinant inbred lines (RILs). Leaf rust phenotyping was done in field trials at Ciudad Obregón, Mexico, in 2017 and 2018, and stripe rust data were generated at Toluca, Mexico, in 2017 and in Mianyang, Ezhou, and Gansu, China, in 2019. Inclusive complete interval mapping (ICIM) was used to create a genetic map and identify significant resistance quantitative trait loci (QTL) with 2,350 polymorphic markers from a 15K wheat single-nucleotide polymorphism (SNP) array and simple-sequence repeats (SSRs). The pleiotropic multipathogen resistance gene Lr46/Yr29 and four QTL were identified, including two new loci, QLr.hzau-3BL and QYr.hzau-5AL, which explained 3 to 16% of the phenotypic variation in resistance to leaf rust and 7 to 14% of that to stripe rust. The flanking SNP markers for the two loci were converted to Kompetitive Allele-Specific PCR (KASP) markers and used to genotype a collection of 153 wheat lines, indicating the Chinese origin of the loci. Our results suggest that Neimai 836, which has been used as a parent for many wheat varieties in China, could be a useful source of high-level resistance to both leaf rust and stripe rust.
Collapse
Affiliation(s)
- Jingwei Zhou
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 06600 Mexico D.F., Mexico
| | - Yong Ren
- Mianyang Academy of Agricultural Science/Mianyang Branch of National Wheat Improvement Center, Mianyang 621023, Sichuan, P.R. China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, No. 1 Nongkeyuanxincun, Lanzhou 730070, Gansu Province, P.R. China
| | - Zhikang Li
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Chan Yuan
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Shunda Li
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Julio Huerta-Espino
- Campo Experimental Valle de Mexico Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias (INIFAP), 56230 Chapingo, Edo. de Mexico, Mexico
| | - Demei Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Crop Molecular Breeding and China and Qinghai Provincial Key Laboratory of Crop Molecular Breeding Northwest Institute of Plateau Biology, Innovation Academy for Seed Design, Xining 810008, P.R. China
| | - Caixia Lan
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| |
Collapse
|
32
|
Naz AA, Bungartz A, Serfling A, Kamruzzaman M, Schneider M, Wulff BBH, Pillen K, Ballvora A, Oerke EC, Ordon F, Léon J. Lr21 diversity unveils footprints of wheat evolution and its new role in broad-spectrum leaf rust resistance. PLANT, CELL & ENVIRONMENT 2021; 44:3445-3458. [PMID: 34212402 DOI: 10.1111/pce.14144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Aegilops tauschii, the progenitor of the wheat D genome, contains extensive diversity for biotic and abiotic resistance. Lr21 is a leaf rust resistance gene, which did not enter the initial gene flow from Ae. tauschii into hexaploid wheat due to restrictive hybridization events. Here, we used population genetics and high-resolution comparative genomics to study evolutionary and functional divergence of Lr21 in diploid and hexaploid wheats. Population genetics identified the original Lr21, lr21-1 and lr21-2 alleles and their evolutionary history among Ae. tauschii accessions. Comparative genetics of Lr21 variants between Ae. tauschii and cultivated genotypes suggested at least two independent polyploidization events in bread wheat evolution. Further, a recent re-birth of a unique Lr21-tbk allele and its neofunctionalization was discovered in the hexaploid wheat cv. Tobak. Altogether, four independent alleles were investigated and validated for leaf rust resistance in diploid, synthetic hexaploid and cultivated wheat backgrounds. Besides seedling resistance, we uncover a new role of the Lr21 gene in conferring an adult plant field resistance. Seedling and adult plant resistance turned out to be correlated with developmentally dependent variation in Lr21 expression. Our results contribute to understand Lr21 evolution and its role in establishing a broad-spectrum leaf rust resistance in wheat.
Collapse
Affiliation(s)
- Ali A Naz
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Plant Breeding, University of Applied Sciences, Osnabreuck, Germany
| | - Annemarie Bungartz
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Albrecht Serfling
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute, Quedlinburg, Germany
| | - Mohammad Kamruzzaman
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Michael Schneider
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | | | - Klaus Pillen
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Agim Ballvora
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Erich-Christian Oerke
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute, Quedlinburg, Germany
| | - Jens Léon
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| |
Collapse
|
33
|
Aycan M, Baslam M, Asiloglu R, Mitsui T, Yildiz M. Development of new high-salt tolerant bread wheat (Triticum aestivum L.) genotypes and insight into the tolerance mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:314-327. [PMID: 34147724 DOI: 10.1016/j.plaphy.2021.05.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/24/2021] [Indexed: 05/24/2023]
Abstract
The loss of cropland soils, climate change, and population growth are directly affecting the food supply. Given the higher incidence of salinity and extreme events, the cereal performance and yield are substantially hampered. Wheat is forecast to decline over the coming years due to the salinization widespread as one of the oldest and most environmental severe constraints facing global cereal production. To increase salinity tolerance of wheat, in this study, we developed two new salt-tolerant bread wheats, named 'Maycan' and 'Yıldız'. The salinity tolerance of these lines, their parents, and a salt-sensitive cultivar has been tested from measurements of physiological, biochemical, and genes associated with osmotic adjustment/plant tolerance in cultures containing 0 and 150 mM NaCl at the seedling stage. Differential growth reductions to increased salinity were observed in the salt-sensitive cultivar, with those newly developed exhibiting significantly greater root length, growth of shoot and water content as salinity tolerances overall than their parents. 'Maycan' and 'Yıldız' had higher osmoregulator proline content and antioxidants enzyme activities under salinity than the other bread wheat tested. Notably, an important upregulation in the expression of genes related to cellular ion balance, osmolytes accumulation, and abscisic acid was observed in both new wheat germplasms, which may improve salt tolerance. These finding revealed that 'Maycan' and 'Yıldız' exhibit high-salt tolerance at the seedling stage and differing in their tolerance mechanisms to the other tested cultivars, thereby providing an opportunity for their exploitation as modern bread wheats.
Collapse
Affiliation(s)
- Murat Aycan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Rasit Asiloglu
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Mustafa Yildiz
- Department of Field Crops, Faculty of Agriculture, Ankara University, Ankara, Turkey.
| |
Collapse
|
34
|
Zhang Q, Wei W, Zuansun X, Zhang S, Wang C, Liu N, Qiu L, Wang W, Guo W, Ma J, Peng H, Hu Z, Sun Q, Xie C. Fine Mapping of the Leaf Rust Resistance Gene Lr65 in Spelt Wheat 'Altgold'. FRONTIERS IN PLANT SCIENCE 2021; 12:666921. [PMID: 34262578 PMCID: PMC8274547 DOI: 10.3389/fpls.2021.666921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Wheat leaf rust (also known as brown rust), caused by the fungal pathogen Puccinia triticina Erikss. (Pt), is one by far the most troublesome wheat disease worldwide. The exploitation of resistance genes has long been considered as the most effective and sustainable method to control leaf rust in wheat production. Previously the leaf rust resistance gene Lr65 has been mapped to the distal end of chromosome arm 2AS linked to molecular marker Xbarc212. In this study, Lr65 was delimited to a 0.8 cM interval between flanking markers Alt-64 and AltID-11, by employing two larger segregating populations obtained from crosses of the resistant parent Altgold Rotkorn (ARK) with the susceptible parents Xuezao and Chinese Spring (CS), respectively. 24 individuals from 622 F2 plants of crosses between ARK and CS were obtained that showed the recombination between Lr65 gene and the flanking markers Alt-64 and AltID-11. With the aid of the CS reference genome sequence (IWGSC RefSeq v1.0), one SSR marker was developed between the interval matched to the Lr65-flanking marker and a high-resolution genetic linkage map was constructed. The Lr65 was finally located to a region corresponding to 60.11 Kb of the CS reference genome. The high-resolution genetic linkage map founded a solid foundation for the map-based cloning of Lr65 and the co-segregating marker will facilitate the marker-assisted selection (MAS) of the target gene.
Collapse
|